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Quadratic alternative algebras are completely classified, up to isomorphism, by means of the 
associated set of "vectors." They include the quaternion and octonion algebras, but also many 
other nonassociative algebras used in physics. 

I. INTRODUCTION 

Quadratic algebras, other than quaternion and octonion 
algebras, have been recently studied, in connection with 
some physical questions, by Jantzen,1 Plebanski and Przan­
owski,2.3 Hamed and Salingaros,4 Domokos and Kovesi-Do­
mokos,5.6 Wene,7-1O and others. 

The aim of this paper is to unify and cover most of the 
"algebraic" results of these authors, providing a description 
of a broad class of quadratic algebras, namely, all the qua­
dratic alternative algebras. 

Any quadratic algebra over a field of characteristic not 2 
can be decomposed into a direct sum of the field and an 
anticommutative algebra equipped with a bilinear form. 
Hence the properties satisfied by the algebra are closely re­
lated to the properties of the anticommutative algebra and 
the bilinear form. If the quadratic algebra is alternative then 
the structure of the anticommutative algebra is severely re­
stricted. This will be used to describe these algebras. We 
shall recover in this way some classical results on nondegen­
erate quadratic forms permitting composition and results of 
Kunze and Scheinberg 1 1 on alternative algebras with scalar 
involution. 

II. QUADRATIC ALGEBRAS 

By a quadratic algebra A, over the field F (F will be 
either R or C, but everything will be valid over arbitrary 
fields of characteristic not 2), we shall understand any non­
associative algebra with an identity element 1 and such that 
1, a, and a2 are linearly dependent for any a in A. 

Following Osborn,12 if A is a quadratic algebra over F 
(multiplication denoted by juxtaposition) and Vis the set of 
"vectors" [that is, the set of the elements x in A such that 
xEtF but x 2EJi' (here we identify F with F 1 ) ], then V is a 
subspace of A and A decomposes as a direct sum A = F $ V. 

If x,ye V, we write 

xy = - (x,y) + X'y, (1) 

where (x,y)EJi'andx·yeV. Clearly ( ) is a bilinear form 
on V (not necessarily symmetric) and' is an anticommuta­
tive product on V. The multiplication in A is then given by 

(a + x)(P + y) = (ap - (x,y» + (ay + px + x·y), 
(2) 

for a andpinFandx,yin V. 
Notice that we have added a minus sign to the bilinear 

form ( ,) as it appears in Ref. 12. Usually, for any element 
a in a quadratic algebra, one writes 

a2 - t(a)a + n(a) = 0, (3) 

with t(a) and n(a) in F.13 
Now, ifxEV, thenx2 = - (x,x), and thus t(x) = o and 

n(x) = (x,x); that is, the quadratic form associated to 
( ,) coincides with the restriction to V of the quadratic 
form n. Moreover 

(a + X)2 = (a2 - (x,x» + 2ax 

so 

t(a + x) = 2a, n(a + x) = a 2 + (x,x). 

We list in the next proposition some properties of qua­
dratic algebras that will be useful in the sequel. 

Proposition 2.1: Let A be a quadratic algebra over F. 
Then we have the following. 

(i) The map ~t(a) 1 - a is an involution of A if and 
only if ( ,) is symmetric. 

(ii) A is flexible [that is, (xy)x = x(yx), for all x, y in 
A] if and only if ( ,) is symmetric and invariant [that is, 
(x'y,z) = (x,y'z),forallx,y,zin V]. 

(iii) If A is a division algebra then for all x ( =/= 0) in V we 
have (x,x) =/=0, - 1 and for all linearly independentx,yin V, 
x, y, and X'y are linearly independent. Moreover, for finite­
dimensional algebras these conditions are also sufficient. 

(iv) If n is nondegenerate [equivalently, if the symmet­
ric bilinear form on V given by (x,y) + (y,x) is nondegene­
rate] then either A is simple or A is isomorphic to F $ F. If A 
is flexible and simple, then n is nondegenerate [equivalently 
( ,) is nondegenerate on V]. 

(v) A is associative if and only if it is flexible and the 
identity of the double cross product 

(x'y)'z= (x,z)y- (y,z)x (4) 

is satisfied. 
(vi) A is alternative [that is, (xy)y = xy and y(yx) 

= yx, for all x, y in A] if and only if it is flexible and the 
weak identity of the double cross product 

(x·y)·y = (x,y)y - (y,y)x (5) 

is satisfied. 
(vii) n admits composition [n(ab) = n(a)n(b)] ifand 

only if A is flexible and 

(x,x) (y,y) = (X,y)2 + (x·y,x·y). (6) 

In particular, if A is alternative, then n admits composition. 
(viii) A is a form of the algebra of color if and only if A 

is flexible, n is nondegenerate, for all x, y in V: 

«x'y) .y).y = ~(y,y) (x'y), (7) 
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and there are elements x,yeV such that x,y and (x·y)·y are 
linearly independent. 

Proof: The assertions (ii) and (iii) have been proved by 
Osborn 12; (i), (v), and (vi) are straightforwardl4,15; and 
(viii) has been proved by the author. 16 

With respect to (iv) we can proceed as follows: Let [be 
a nontrivial ideal of A and let a + x be a nonzero element in 
l. Sincethebilinearform (u,v)+ = (u,v) + (v,u) isnonde­
generate, (x,y) + #0 for some ye V, and hence if a = 0 then 

O#xy + yx = - (x,y)+El. 

Thus we may assume that 1 + xEl. Now, 

(1 +x)x= - (x,x) +xEl, 

so 1 + (x,x)El, but [#A, so (x,x) = - 1. If V has dimen­
sion greater than 1, then we take y in V with (x,y) + = 0, 
(y,y) #0. Then 

(I + x)y + y( 1 + x) = 2yE! 

and r = - (y,y)El. Thus [= A, a contradiction. If 
dim V = 1, V = Fx, and (x,x) = - 1, then F( 1 + x) is an 
ideal of A and A is isomorphic to FEB F. 

If A is flexible, then ( ,) is symmetric and invariant, 
so its radical (the set {XEV: (v,x) = O}) is an ideal of A. 
Hence if A is flexible and simple, then ( ,) is nondegener­
ate. 

For (vii), consider a = a + x and b = (3 + y. Then 

n(ab) - n(a)n(b) = «X,y)2 + (x'y,x'Y) - (x,x)(y,y» 

+ a{3«y,x) - (x,y» 

+ a«y,x'y) + (x'y,y» 

+ (3«x,x'Y) + (x·y,x». (8) 

Then n(ab) = n(a)n(b), for all a, b inA, if and only if, for 
all x, y in V, we have 

(x,x) (y,y) = (X,y)2 + (x'y,x'Y), 

(x,y) = (y,x), (x'y,y) = o. 

The last two conditions are equivalent to flexibility. In par­
ticular, if A is alternative, 

(x'y,x'Y) = - «x'y) 'y,x) 

= - «x,y)y - (y,y)x,x), 

so 

(x,x) (y,y) = (X,y)2 + (x'y,x'Y) 

and n admits composition. 
A sufficient condition for the simplicity of A was shown 

by Sagle. 17 Okubol8 uses, as in (iv), the nondegeneracy ofa 
bilinear form to obtain simple algebras in a more general 
setting (see also Ref. 19, Theorem 4.27), but its prooffails 
for V of dimension 1. A proof for the more general case 
considered by Okubo may be modeled on the proof above. 

If A is a quadratic flexible algebra and N is the radical of 
( ,), then the invariance of ( ,) forces N to be an ideal 
of A. Moreover, Proposition 2.1 (iv) implies that either A / N 
is simple or isomorphic to FEB F. 

In general, it is not true that if the quadratic algebra A is 
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simple, then n is nondegenerate, as shown by the quadratic 
algebra determined by V = sl(2,F) and ( ,) any nonzero 
degenerate symmetric bilinear form on V. 

There are examples of quadratic algebras that are not 
alternative although the quadratic form n admits composi­
tion (n is degenerate in those cases). 20 

Notice that if the dimension of A is finite, say m, and A is 
alternative, then (vi) shows that 

Trace «Rx )2) = - (m - 1 )(x,x) , 

so we have that ( ,) equals - 1/ (m - 1) times the Kill­
ingform of V [defined as {x,y} = Trace(RxRy )]' HereRx 
denotes the right multiplication in Vby the element x. 

A Malcev algebra is a nonassociative algebra satisfying 
the identities x2 = 0 and 

(xy) (xz) = «xy)z)x + «yz)x)x + «zx)x)y. 

Any Lie algebra is a Malcev algebra and if A is an alternative 
algebra, with multiplication denoted by juxtaposition, then 
the new algebra defined on A by considering the product 
[x,y] = xy - yx is a Malcev algebra. Thus if A is a quadratic 
alternative algebra, then Vwith the multiplication' is a Mal­
cevalgebra. Moreover, any central simple non-Lie Malcev 
algebra appears as the anticommutative algebra Vassociated 
to an octonion algebra. Incidentally, notice that (v) [resp. 
(vi)] proves that any anticommutative algebra equipped 
with a symmetric invariant bilinear form satisfying (4) 
[resp. (5)] is a Lie (resp. Malcev) algebra (see, also, Ref. 
21, Corollary 2.1 ) . 

Over arbitrary fields of characteristic 3, any anticom­
mutative algebra satisfying (5) is a Lie algebra. In any other 
characteristic, an anticommutative algebra satisfying (5) is 
a Lie algebra if and only if it satisfies (4), too. 

In the next section we shall study the anticommutative 
algebras over C that appear as the algebra of vectors of a 
quadratic alternative algebra. The method of working will 
use almost exclusively very elementary linear algebra. Final­
ly, in Sec. IV, all quadratic alternative algebras will be de­
scribed, recovering in a unified way the classical generalized 
theorem of Hurwitz and the results of Kunze and Schein­
berg. 11 

III. ANTICOMMUTATIVE ALGEBRAS VERIFYING (5) 
OVERC 

We shall assume in this section that F = C (or any alge­
braically closed field of characteristic not 2) and V is an 
anticommutative algebra equipped with a symmetric invar­
iant bilinear form so that (5) is satisfied. For any element x 
in V, Rx will denote the map ~Y' x. The linear span of all 
products of n elements in V (in any order of parentheses) 
will be denoted by V". 

Proposition 3. J: The bilinear form ( ,) is trivial if and 
only if V is a two-engelian Malcev algebra [that is, (R x ) 2 

= 0, for all XE V]. In this case V 4 = 0 and V satisfies (4) if 
and only if V 3 = O. 

Proof; The first and last assertions are obvious. Since 
( V, V) = 0, by linearizing (5) we get 

(x'y)'z= (z·x)·y VX,y,ZEV. 

Then 
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«x'y) ·Z)·t = (t· (x·y»·Z = (y. (t·x»·z = (z·y)· (l'x), 

but 

«x·y)·z)·t=«y,z)·x}-t= (x·t)·(y·z) = - (z·y)·(t·x) 

so 

«x'Y) ·z)·t = (z·y)· (t·x) = 0 

and therefore V 4 = O. 
The fact that any two-engelian Malcev algebra is nilpo­

tent of class <3 (V4 = 0) follows also from some results of 
FilippoV.22 

Corollary 3.2: The radical N of ( ,) in any quadratic 
alternative algebra A is the only maximal nilpotent ideal of 
A, it is of class of nilpotency at most 3, and the quotient 
algebra is either simple or isomorphic to FED F. 

Let us assume now that ( ,) #0; thus there is an ele­
ment he V with (h,h) = - 1. Then from (5) we get (R h )3 

= R h , so V = VoED VI ED V_I' where 

Vi = {xeV: XRh = ix}. 

Now if zeVo, then 0 = (z'h)'h = (z,h)h + z; thus Vo 
= Fh. Moreover 

( VO,VI + V_I) = (Vo,h· ( VI + V_I» 

= (Vo' h, VI + V_I) = 0, 

so (VO)l = VI + V_I' 
If x,yeVI , then 

(x,y) = (x'h,y) = (x,h'Y) = - (x,y); 

thus (VI' VI) = 0 and also (V_I,V -I) = O. Besides, 
(x'y)'h + X'y = 0, so (VI)2~ V_I and (V_I)2~ VI' 

If xeVI and yeV_ I , then (x·y)·h + X'y = (x,y)h and 
(Y'x)'h - y-x = (y,x)h; hence X'y = (x,y)h. 

Three cases appear. 
(A) N= VI + V_I' In this case VI' V_I =0 and, for 

x,yin VI andzin V -I' we have (x·y)·z = Oby the lineariza­
tion of (5). We therefore have N 3 = O. Moreover, if V satis­
fies (4), then for x,yeVI , (x'y)'h = 0, so N 2 = O. 

(B) There exist elements eE VI and fe V_I such that 
(e,f) = !, VI = Fe + Nn VI' and V_I = F f + Nn V_I' 

In this case, ifx,yeNn VI' (x'Y)'f = 0 by (5), but 

0= «x'Y) ·j)·e = - 2(e,f)x'y = - x·y. 

Hence N 2 = O. Moreover, the subalgebra generated bye,/, 
and h is isomorphic to sl(2,F) and if {ui : iEl} is a basis of 
Nn VI and Vi = Ui 'e, then {Vi: iEl} is a basis of Nn V -I' so 
N = ED {Fui + Fvi: iEl}. 

There is only one, up to isomorphism, irreducible mod­
ule for sl (2,F) considered as a Malcev algebra, that is not a 
module for sl(2,F) as a Lie algebra.23 This module has di­
mension 2. 

Since 

ui'f = (ui,j)h = 0 = Vi 'e, ui'e = Vi> 

we check that FUi + FVi is precisely this non-Lie module 
[notice that ui'(e'j) = Ui> but (ui'e)'f- (ui'j)'e 

- Ui , so FUi + FVi is not a Lie module for sl(2,F)]. 
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If V satisfies (4) and xeNnVI , then (x'e)'h=O, so 
x'e=O,butO= (x'e),/= - (e,f)x.HenceN=O. 

(C) There are elements e l ,e2eVI and fl,J;eV_ I with 
(ei,fj) = !l5ij (i,) = 1,2). 

In this case we write e3 = h .J; and J; = e I' e2• The in­
variance of ( ,) and (5) show that e; . e j = EijlJk' /; '/j 
= Eijkek and (eiJj ) = !l5ij (i,) = 1,2,3), where Eijk is the 
skew-symmetric tensor of Levi-Civita (E123 = 1). Now, if 
zeVI and (z/;) = 0, i = 1,2,3, then 

e3 'z= (f1'J;)'Z= - (f1'Z)'J;=O, 

but 

0= (z'e3 )'J; = - 2(e3h)z = - z. 

Therefore, in this case, N = 0 and V is, up to isomorphism, 
the only simple non-Lie Malcev algebra over C. 24 

Summarizing these we get the following theorem. 
Theorem 3.3: Let Vbe an anticommutative algebra over 

C equipped with a symmetric invariant bilinear form satisfy-
ing (5). Then either (a) Vis a two-engelian Malcev algebra; 
(b) there are vector subspaces M i , N i , i = ± 1, and skew­
symmetric mappings ,pi; Mi X M; .... N _; (i = ± 1) such 
that V = Ch ED MI ED NI ED M -I ED N -I and the multiplication 
in V is given by 

(9) 

and 

(10) 

for mi,m;eM;, n;eNi, I,] = ± 1; (c) V = sl(2,C) 
ED ( ED {Ni : iEl}), where lis an indexing set, N = ED {Ni: iEl} 
is Abelian, and each Ni is a non-Lie Malcev irreducible mod­
ule for s1(2,C); (d) Vis the simple non-Lie Malcev algebra 
over C. 

Conversely, all the algebras listed here satisfy (5). 
Moreover, V satisfies (4) if and only if either (a') V is a 
nilpotent Lie algebra of class <2; (b') there are vector sub­
spaces N i , i = ± 1, such that V = Ch ED NI ED N -I and the 
multiplication is given by ni . h = ini, Ni ' ~ = 0, i,} = ± 1; 
or (c') Vis isomorphic to sl(2,C). 

Notice that in all cases the algebra splits over the ideal 
N. This could have been easily proved without the reasoning 
before Theorem 3.3. It should also be remarked that 
Theorem 3.3 is valid over any field F provided either 
( ,) = 0 or there is he V with 0# - (h,h)eF 2

• 

IV. QUADRATIC ALTERNATIVE ALGEBRAS 

In this section A will denote a quadratic alternative alge­
bra over R or C (or, with some obvious changes, over any 
arbitrary field F, char F # 2). Then A = F ED Vand the alge­
bra V satisfies (5). If either F = C or F = R and V contains 
an element x such that (x,x) < 0, then everything works as in 
Sec. III and A is completely determined. In the case F = R, 
by extending scalars up to C we see that the dimension of the 
quotient of A, by the radical of ( ,), is 1, 2,4, or 8. In the 
latter case, A ® R C is the split Cayley-Dickson algebra over 
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C,15 SO A is an octonion algebra and we are done. 
So we have to pay attention to the cases in which F = R, 

the dimension of A / N is 2 or 4 and A does not contain any 
elementxeVwith (x,x) <0. 

If the dimension of A / N is 2 and e is an element of V with 
(e,e) = 1 then R + Re is isomorphic to Co We will identify 
both fields. Let u be the conjugate operator of Cover R 
(10" = 1, eO" = - e). Then A = C EB Nand N 3 = O. 

In this case, for x,yeN, 

(xy)e = (x-Y)'e = (e'x) 'yeN2, 

so Nand N 2 are vector spaces over C (action on the right). 
For a = a + {3e in C, x in N, we have ax = xaO". Let S be a 
supplementary subspace to N 2 in N. The multiplication in N 
determines a skew-symmetric bilinear mapping rp: 
S XS-+N 2. Now, for u,ueS, (u-e) -v = - (u'v) -e, so for 
aeC, rp(ua,v) = rp(u,v)aO". 

It is immediate to see that this construction gives an 
alternative algebra. 

Assume now that the dimension of A / N is 4 and that e I 
and e2 are orthogonal elements in Vwith (e;,e;) = 1,i = 1,2. 
Then Q = F 1 + Fe l + Fe2 + F(e l 'e2) is the quaternion di­
vision algebra, A = Q EB N, and N 2 = O. For ueN, a,beQn V, 
we have 

(ua)b = (u'a)'b = - (a'u)'b = (a'b)'u - (a,b)u 

= u(ba), 

so N is a vector space over the division algebra (tp (the 
opposite algebra of Q). On the left, if qeQ, ueN, then qu 
= uqO", where u is the standard involution in Q. In this way 

A is completely determined. 
Gathering together these results and the ones in Sec. III 

we obtain the following theorem. 
Theorem 4.1: Let A be a nonassociative algebra over F. 

Then A is a quadratic alternative algebra if and only if one of 
the following holds. 

(i) A = FEB V, with Va two-engelian Malcev algebra 
and multiplication given by (a + v) ({3 + w) = a{3 + v' w. 

(ii) A decomposes as a direct sum of vector spaces: 

A = F 1 EB Fh EB MI EB NI EB M -I EB N -I- ( 11) 

Also there are skew-symmetric bilinear mappings <p;: M; 
X M; -+ N _; (i = ± 1) such that the multiplication in A is 
determined by 

h 2 = 1, m;h= -hm; =im;. 

nih = - hn; = in;. m;m; = <p; (m;,m;), (12) 

NM. =M·N =N,.N
J
. =M;M_; =0, 

I ] J I 

for m;.m;eM;, n;eN;, i = ± 1. 
(iii)F = R and A decomposes as a direct sum of vector 

spaces: 

A = CEBSEB T. (13) 

Here Sand T are vector spaces over C (action on the right); 
and there is a skew-symmetric bilinear mapping (over R) rp: 
S xS-+ T, such that rp(s l k,S2) = rp(sl,s2)kU

, for Sl>S2eS and 
kEC, where u is the standard involution in C. The multiplica­
tion in A is determined by the multiplication in C, the actions 
of C on the right on Sand T, and 
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ks = sk 0", kt = tk u, SlS2 = rp(SI,s2)' 

ST= TS= T 2 =0, 

for kEC, S,SI,S2eS, and fET. 
(iv) A decomposes as a direct sum: 

A = M2 (F) EB (EB F 2
). 

lEI 

(14) 

(15) 

Here I is an indexing set, and the multiplication in A is deter­
mined by the usual multiplication in M2 (F), the fact that 
EB {F 2: iEl} is an ideal of A that squares to 0, and, for (a,/3) in 
any copy of F2, by 

(a,f3) e !) = (aa + {3b,ac + {3d), (16) 

that is, the usual matrix multiplication of (a.f3) by the trans­
pose of (~ ~), and e !) (a,{3) = (a,/3)( ~ c ~ b). (17) 

(v) F = R and A decomposes as a direct sum: 

(18) 

Here Q is the quaternion division algebra, N is a linear space 
over (tp (the action on the right) , and the multiplication on 
A is determined by the multiplication in Q and 

N 2 = 0, qn = nqu, ( 19) 

for neN and qEQ, where u is the standard involution in Q. 
( vi) A is an octonion algebra. 
Moreover, A is a quadratic associative algebra over F if 

and only if either (i') A is as in (i) but with Va nilpotent Lie 
algebra of class at most 2; (ii') A is as in (ii) but with 
MI = M -I = 0; (iii') A isasin (iii) but withS = 0; (iv') A is 
isomorphic to M 2 (F); or (v') A is the real quaternion divi­
sion algebra. 

Proof Only a few details must be checked. Case (iv) 
corresponds to the case V = sl (2,F) EB {N;; iEl} of Sec. III. 
Then we can identify h with (6 0_ I ), e with (? g), fwith 
(g o-I),and, forany i, U; with (1,0) and v; with (0,1) in the 
ith copy of F2. The rest is straightforward. 

Notice that this provides a proof of Hurwitz's Theorem, 
once it is proved that any composition algebra is alternative 
(see Ref. 13). 

Remark: Quadratic algebras with the corresponding 
norm form n, possibly degenerate, admitting composition 
form a broader class of algebras, since this condition affects 
only A / N, so it allows a great diversity for the radical N. For 
instance, it is not always true that there is a subalgebra S such 
that A = S EB N, as the following example shows: 

A =Fl +Fh +Fe+Ff+Fu, 

V=Fh +Fe+Ff+Fu, 
(20) 

with anticommutative product in V (the algebra of vectors) 
given by 

e'h=e+u, J-h= -J, e'f=~h, 

u·h = u, u'e = u·f= 0, 
(21) 
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and symmetric bilinear form ( ,) given by 

(u,V) ~ 0, (h,h) = - 1, (e,j) =!, 
other pairings being equal to O. 

(22) 

In this example, N = Fu, A IN~M2(F), the bilinear 
form is the one in sl (2,F) so that the corresponding norm 
form admits composition. But this algebra does not split 
over the ideal N, since it is easily shown that there is no 
subalgebra T of V with V = T ~ N. 

Actually, Proposition 2.1 (vii) tells us that a quadratic 
algebra admits composition if and only if it is a flexible alge­
bra such that its quotient algebra modulo the radical of 
( ,) is a composition algebra. 

V. CONCLUDING REMARKS 

Let us see how the algebras described in this paper unify 
some of the quadratic algebras considered in the references. 

Ilamed and Salingaros4 considered quadratic alterna­
tive algebras with dim V = 3 and nondegenerate ( ,). 
They correspond to the cases (iv) and (v) of Theorem 4.1 
with N = O. That is, they obtained, up to isomorphism, the 
quaternions, M2 (R) and M 2 (C). 

Jantzen' considered finite-dimensional quadratic alge­
bras in which V is a Lie algebra and ( ,) equals 
- l!(m - 1) times the Killing form of V. we have seen in 

Sec. II that this condition is necessary for A to be alternative. 
Then he proved that the quadratic algebra so obtained is 
associative in the following cases: (i) dim V = 1; (ii) m> 1 
and X'y = V(m - 1) [Trace(ad(x»y - Trace(ad(y»x]; 
and (iii) dim V = 3 and Trace(ad(x» = 0 for all x. 

The first of these cases corresponds to Theorem 4.1 (i') 
and (ii') with N, = N -I = O. 

In the second case, either Vis Abelian [and we are in the 
situation of Theorem 4.1 (i')] or there is an element hE V 
such that V=Fh~Swith Trace(ad(h» = - (m - 1) and 
S = {VEV: Trace(ad(v» = O}. Hence this latter case corre­
sponds to Theorem 4.1 (ii') with the additional condition of 
N _, being equal to O. 

Finally, in the third case we get that either Vis nilpotent 
of class at most 2-so we are in Theorem 4.1 (i' )--or V is 
simple-Theorem 4.l(iv') and (v'). 

Plebanski and Przanowski2 get the finite-dimensional 
associative version of Theorem 4.1 by means of the Bianchi­
Behr classification of real Lie algebras. They call the result-
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ing algebras "quaternionlike algebras" and study the rela­
tion of these algebras with abstract cross products on vector 
spaces3 [recall Proposition 2.1 (v) ] . 
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The rules of canonical quantization of gauge theories are formulated on the basis of the 
extended BRST symmetry principle. The existence of solutions of the generating equations of 
the gauge algebra is proved. Equivalence between the extended BRST quantization and the 
standard method of generalized canonical quantization is established. Ward identities 
corresponding to invariance of a theory under the extended BRST symmetry are obtained. 

I. INTRODUCTION 

The method of generalized canonical quantization is 
now becoming increasingly popular as the most effective 
means for solving the problems of quantization of dynamical 
systems with constraints 1-3 [see, also, the review (Ref. 4) ] . 
This method is based on the idea of a special type global 
supersymmetry, which in the Hamiltonian formalism is a 
generalization of the so-called BRST symmetry originally 
introduced in the Lagrangian formalism in the Abelian 
gauge theory5 and in the Yang-Mills theory.6 According to 
the now generally accepted terminology, the Lagrangian 
BRST supersymmetry along with its Hamiltonian analog 
are united by the general term "BRST symmetry." 

In its original version, the BRST symmetry means in­
variance of a resultant action under global nilpotent trans­
formations of dynamical variables with one single fermion 
parameter. The original BRST symmetry is, in principle, 
quite sufficient to construct a correct quantum description of 
an arbitrary dynamical system with constraints. 

It turns out, however, that the requirement of BRST 
symmetry may be substantially strengthened in such a way 
that the action be invariant not only under BRST transfor­
mations, but at the same time also under so-called anti­
BRST transformations.7

,8 The totality of global transforma­
tions extended in such a manner introduces instead of the 
original "restricted BRST algebra" an "extended BRST al­
gebra." 

The requirement of an extended BRST symmetry yields 
two most essential additional advantages. First, the fermion 
parameters of BRST and anti-BRST transformations, the 
same as their generators, tum out to form a natural doublet 
under the global symplectic group Sp(2). Second, the ex­
tended BRST symmetry in a number of cases leads directly 
to a natural geometrical formulation in which BRST and 
anti-BRST transformations assume the form of super trans­
lations in configuration and phase superspaces. 

The above-mentioned advantages of the extended 
BRST symmetry have been pointed out earlier by a number 
ofauthors,9-1l who have also discussed the various technical 

aspects of the corresponding quantization procedure for spe­
cial classes of dynamical systems. 

In the present paper we shall, for the most part, concern 
ourselves with a consistent formulation of the version of gen­
eralized canonical quantization based on the requirement of 
extended BRST symmetry for dynamical systems with lin­
early independent constraints. Besides, the most essential 
points of the formulation proposed are substantiated. First, 
this is the proof of existence and the description of arbitrari­
ness of solutions of the generating equations and, second, the 
proof of equivalence of our formulation and the usual ver­
sion based on the restricted BRST symmetry. 

We shall restrict our consideration to the case of first­
class constraints. The extension to the case of second-class 
constraints can be obtained in an obvious manner. 

The notation used is as follows. We use the standard 
definition 12 of the Poisson superbracket in phase space 
r = (PA,QA): 

{G,F} = 8G 8F _ 8F 8G (_ 1)E(G)E(F). (1) 
8QA 8PA 8QA 8PA 

By €( G) we denote Grassmann parity of the quantity G. 
Derivatives with respect to generalized momenta PA are al­
ways understood as left-hand, and those with respect to gen­
eralized coordinates QA (unless specified) as right-hand 
ones. Left-hand derivatives with respect to Q A have a special 
sign "/": 8/18QA. The Grassmann paritiesPA and QA coin­
cide: €(PA) = €(QA) = €A' The superbracket (1) possesses 
the standard algebraic properties: 

{G,F} = - {F,G} ( - 1 )ECG)E(F) , 

{F,GH} = {F,G}H + G{F,H}( - l)E(F)E(G) , (2) 

{{F,G},H}( - 1)E(F)E(H) + cycl. perm. (F,G,H) =0. 

The last relation is the Jacobi identity for the superbracket. 
Next, the indices of the global symplectic group Sp(2) 

are denoted by lowercase latin characters a,h,c, ... and take 
on two values a = 1,2. The invariant tensor of the group 
Sp(2) is denoted by 
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b ( 0 1)..DC ~a E" = _ 1 0' c: Ecb = Ub . 

Symmetrization in Sp(2) indices is denoted by 

A {ab} = A ab + A ba . 

Gauge indices are denoted by lowercase greek char­
acters a,/3,r, .... 

The ghost number of the quantity A is denoted by 
gh(A). For a new ghost number of the quantity A we use the 
notation ngh(A). 

II. BRST QUANTIZATION 

We consider a dynamical system that in the phase space 
of initial canonical variables (Pi,qi), i = 1,2, ... ,n, is de­
scribed by the Hamiltonian Ho = Ho( p,q) and by the set of 
linearly independent first-class constraints Ta = Ta (p,q), 
a = 1,2, ... ,m, whose Grassmann parities are E(Ho) = 0, 
E( Ta) = Ea, and the involution relations hold true: 

{Ta,Tp} = TrU~p, {Ho,Ta} = Tp V~ , (3) 

where the structure functions U~p possess the properties of 
generalized antisymmetry U~p = - (- 1)€a<'/lU~a. Next, 
we introduce an extended phase space r parametrized by the 
following set of canonical variables: 

r = (PA,QA) = (Pi,qi;f!J1 aa,c aa;Aa,1T") , 

E(qi) = Eo E( caa) = Ea + 1, E( 1T") = Ea , 
(4) 

where the ghost momenta f!J1 aa and the coordinates c aa 

form doublets with respect to the index a under the group 
Sp(2). 

The key role in the procedure of extended BRST quanti­
zation is played by the generating functions n a and~. The 
fermion functions n a are the solutions of Sp(2)-covariant 
generating equations 

{na,nb} =0, (5) 

which also satisfy the boundary conditions 

~na I = T ~a 
~C ab C = 1T = i!l' = A = 0 a b' 

~na I = E"bf!J1 b . 
~1T" C=1T=A=O a 

(6) 

In its tum, the boson function ~ satisfies generating equa­
tions of the form 

{~,na}=o, 

with the boundary condition 

~IC=1T= i!l' =A=O = Ho· 

(7) 

(8) 

The total unitarizing Hamiltonian H is now determined in 
terms of ~ and n a by the formula 

H = ~ + !Eab H <I>,nb},na}, (9) 

where <I> is the boson function fixing a concrete choice of 
admissible gauge. An essential property of the unitarizing 
Hamiltonian H [(9)] is its invariance 

~H = {H,na}Jla = 0 , ( 10) 

under extended BRST transformations of the variables of 
phase space r [see (4) ] 
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(11 ) 

Here Jla is a doublet of constant Grassmann parameters of 
extended BRST symmetry. The invariance (10) obviously 
follows from Eqs. (5) and (7), as well as from the Jacobi 
identity (2) for n°. 

We now consider from a quantum point of view the 
standard consequences of invariance of the unitarizing 
Hamiltonian H under the global transformations (11). To 
this end we define the vacuum functional Zq, in terms of the 
following functional integral: 

Zq, = J Dr exp { ~ J dt(PA QA - H) } . (12) 

Then Zq, does not, in fact, depend on the choice of the gauge 
functional <1>. Indeed, one can readily establish that any 
change of the gauge <I> -+ <I> + !:t.. <I> in the integral (12) can be 
compensated by the change of integration variables 
r -+ r + ~r, where 

~r = (i/21i) {r,na}Eab {nb,!:t..<I>} . 

Hence Zq, + ~q, = Zq" and therefore the S matrix is gauge 
invariant in the formalism of the extended BRST quantiza­
tion. 

Another consequence of invariance of the total Hamil­
tonian, which we discuss here, is the presence of gauge Ward 
identities. To derive these Ward identities, we consider the 
generating functional 

Z(J,r*,r) 

= J Drexp [~ J dt(PAQA_H+Jr 

+ r~{r,na} + ~ rEab Hr,nb},na
})] • (13) 

Using this generating functional, the Green's functions of 
the theory with the Hamiltonian H [Eq. (5)] are calculated 
through differentiation with respect to the sources J for r~ 
= r = J = O. In (13 ) we have introduced additional 

sources r~ to the transformations {r,na} of extended 
BRST symmetry and the source r to the generator ~Eab 
{{r,nb},na} and have taken into account that by virtue of 
Eqs. (5) and the Jacobi identity (2) there are no other non­
trivial generators. We shall now make the change of vari­
ables (11) in the functional integral (13), use the invariance 
property of H [ ( 10) ] , and also use the fact that the Berezin­
ian of the change of variables (11) is equal to unity. Then we 
shall obtain the following Ward identities for the generating 
functional Z [ (13 )] : 

J ~Z _ E"br: ~~ = o. (14) 
~r~ ~r 

It should be noted that the derivatives with respect to 
the additional sources r~ and r in (14) are left-hand ones. 
The identities (14) can be rewritten for the generating func­
tional of the vertex functions (the effective action). The ef­
fective action S is determined in the standard manner as the 
Legendre transformation of In Z with respect to the sources 
J: 

S«r),r*,r) = (lili) InZ(J,r*,r) -J.(r), (15) 
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where the averaged variables (r) are determined as 

(r) =.! t5ln Z(J,r*,r) . (16) 
i t5J 

Then (15) and (16) obviously imply 

t5S( (r),r*,r) = _ J 
t5(r) 

(17) 

and the identities (14) can be rewritten for S to become 

~. t5S + €,br* t5~ = O. (18) 
t5(r) t5r: b t5r 

In Eqs. (16)-( 18) the derivatives with respect to J are left­
hand and those with respect to (r) are right-hand. 

III. THE EXISTENCE THEOREM FOR GENERATING 
EQUATIONS OF THE GAUGE ALGEBRA 

The question of existence of solutions of the generating 
equations (5) and (7) satisfying the boundary conditions 
(6) and (7) is the crucial point of the whole scheme of ex­
tended BRST quantization. Here we shall prove, using a 
power series expansion of canonical variables C aa and 1f', 
the existence of solutions of Eqs. (5) and (7) and describe 
the arbitrariness present in these solutions. We shall prove 
the possibility of choosing solutions of generating equations 
in the form symmetric under the group Sp (2). 

In the standard BRST quantization procedure, the ini­
tial canonical variables Pi and qi are associated with the zero 
ghost number, the ghost variables C a (ca=c al ) are asso­
ciated with gh ( c a) = 1, and the antighost variables C a (C a 

=C a2
) with gh(C a) = - 1, etc. The solutions of gene rat­

ing equations are expanded in power series of the compo­
nents C a (C a enters only through gauges) associated with a 
positive ghost number. Therefore, the requirement of con­
servation of the ghost number in each order determines com­
pletely the structure of the expansion. As a result of the fact 
that gh( calC (12) = gh( 1f') = 0 in the procedure of ex­
tended BRST quantization, the structure of the 'expansion in 
power series of C aa and 1f' is now not fixed by the require­
ment of ghost number conservation. In view of this, it is 
convenient to introduce for all variables of the extended 
phase space (4) the so-called "new ghost number" ngh (n 
by the rule 

ngh(Pi) =ngh(qi) =0, ngh(C aa) = 1, 

ngh(1f') =2, ngh(&'aa)= -1, 

ngh(Aa)= -2, 

ngh(AB) = ngh(A) + ngh(B) , 

and to require fulfillment of the conditions 

ngh(JY') = 0, ngh(na
) = 1 . 

(19) 

(20) 

We shall seek solutions of Eqs. (5) and (7) in the form of 
expansions in power series of C aa and 1f': 

co 

n a = L n~, ngh(n~> = 1, n~ _c n
-

m
1T

m
, (21) 

n=l 

co 

JY'=Ho+ L JY'n' ngh(JY'n) =0, JY'n_cn-m~. 
n=l 

(22) 
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To begin with, we shall prove the existence of solutions 
of Eqs. (5). In the first-order perturbation series, the solu­
tion of Eqs. (5) and (6) has the form 

(23) 

Suppose that we are given quantities n~ such that Eqs. (5) 
are satisfied in the nth order. Now we shall find the expres­
sion for {no,nb} in the (n + 1 loth order: 

{na,nb
} n + I = w{an:}+ I + B ~b+ I , (24) 

where the quantities B ~b+ I are constructed from nk, k<n, 
and possess the symmetry properties B ~b+ I = B:a+ I' The 
operators wa in (24) are given by the formula 

w a= T _t5_+€,b&, ~+ (_1)Ea€,b1f'~. 
a t5&' ab t5A . t5Cab aa a 

(25) 

One can directly verify that the W a [(25)] form a set of 
nilpotent anticommuting operators 

w{awb} = o. (26) 

The quantities B ~b+ I satisfy the equations 

waB :c+ I + cycl. perm. (a,h,c) = 0 , (27) 

which follow, with allowance made for (26), from the Jacobi 
identities for n a calculated in the (n + 1 loth order. 

All further steps of the proof are based on the following 
lemma (a similar lemma for the case of a single nilpotent 
operator W was proved in Ref. 13). 

Lemma 1: Any regular solution of the equations 

wax=o, 

w{axa""an} = 0, 

(28) 

(29) 

which vanishes when Ta = &' aa = Aa = 0, has the form 

x = ! Eab WaWby, 

Xa,"'an = w{a,ya""an} , 

(30) 

(31) 

respectively, where Y, ya""an
_, are some functions of the 

variables of the extended phase space (4). In Eq. (29) the 
functions X a," 'a

n are regarded as symmetric under permuta­
tion of any indices. The symbol {a la2 " 'an } in (29) and 
(31) stands for cyclic permutation in ai' a2, ... ,an • 

To prove the lemma, we shall introduce a set of auxiliary 
fermion operators r a "conjugated" to W a by defining their 
algebra as 

r{arb} =0, w ar b +rbW a=t5:N. (32) 

The solution of Eq. (32) exists, for example, 

t5/ t5 
ra = &' aa -- - EabAa ---. (33) 

t5Ta t5&' ab 

Given this, the operator N in (32), scalar under the group 
Sp(2), takes on the form of "conformal" operator 

t5/ t5 t5 
N= T -+ &' --+A - (34) 

a t5Ta aa t5&' aa a t5Aa 

commuting with wa and r a 

NW a = waN, Nra = raN. (35) 
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We shall first consider the solution of Eqs. (28). We 
shall act upon Eqs. (28) from the left by the operator r band 
take into account (32). Then, with allowance made for the 
fact that on the solutions N> 0, we have 

X= (lIN)W 1r 1x= (l/N)W2r~. (36) 

From (36) it follows that 

X= (lIN)W 1r 1(lIN)W2rzX 

= - W 1 W 2«lIN2)r 1rzX) 

= !Eab waWb« 1I2N2)cdrc r dX}' (37) 

which proves the validity of Lemma 1 concerning solutions 
ofEqs. (28). 

Now let us proceed to the solution of Eqs. (29). To this 
end, in the algebra of the operators wa and r a we define the 
Sp(2) scalar operator M = r a w a

• One can readily establish 
the following essential properties of this operator: 

Mn = (2n - 1 _ I)N n- 2M 2 _ (2n - 1 _ 2)Nn- 1M, 

n>3,(38) 

(39) 

Let us act on Eqs. (29) from the left by the operators r a 

and sum over the index "a." We obtain 

MX a,· 'an + nNXa,·· 'an _ w{a'r aXa,·· 'an}a = 0 . (40) 

For the functions X a," 'an vanishing when Ta = 9 aa = Aa 
= 0, Eq. (40) implies 

x a,·· 'an = w{a, y~". ·an} + X~,,· 'an , 

where 

(41) 

y~' "an= (lInN)raX a""ana, (42) 

X~,···an = _ (llnN)MXa,···an. (43) 

The functions X~,,· 'an satisfy Eqs. (29) and, therefore, by 
virtue of (40), admit the following representation: 

(44) 

where 

(45) 

X
Q

•
O

••
On _ 

2 -
1 a "'a 1 2 a"'a --MXI' n= __ M X' n. (46) 

nN n2N 2 

In tum, the functions X~,···an also satisfy Eqs. (29) and, 
therefore, 

(47) 

ya""an 1 r Xa,···ana 1 r M 2X a""ana 
3 =- a '1. =-3-3 a , 

nN nN 
(48) 

(49) 

With allowance made for (38), from (43), (46), and (49) it 
follows that 
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X~,···an = _ (3/n)X~,···an _ (2/n2)X~,···an. (50) 

Substituting (50) into (47), we find 

X~,···an = _n_ w{a,y~, .. ·an} _ 2 Xa""an 
n + 3 n(n + 3) 1 • 

(51) 

Then (51) and (44) imply 

X a""an _ n(n + 3) W{ a "'a} 1 _ a,y, n 

(n+l)(n+2) 2 

2 
+ n w{a,ya""On} . (52) 

(n + l)(n + 2) 3 

Finally, taking into account (39), we find, from (41), (42), 
(45), (48), and (52), 

Xa""an = w{a'ra C~ - n(n :l)N
2
)xa, ... an}a. 

(53) 

Comparison of (53) with (31) completes the proof of 
Lemma 1. 

It should also be noted that the proof of Lemma 1 that 
we have carried out here exhibits an important fact concern­
ing solutions of Eqs. (28) and (29). Namely, in case the 
solutions of Eqs. (28) and (29) are Sp(2) covariant, the 
quantities Yand yO""on_t can be chosen in a Sp(2)-covar­
iant form. To prove this assertion, it suffices to refer to the 
representation of solutions ofEqs. (28) and (29) in the form 
(37) and (53), respectively. 

We now return to the proof of the existence of solutions 
of Eqs. (5). Since ngh(B:b+ I) = 2, it follows obviously 
that, for n>2, we have B :b+ 1 = 0 for Ta = 9 aa = Aa = O. 
When n = 1, the representation 

B~b= -{Ta,Tp}CPbcaO( _1)Ea 

= _T.yU~pCPbCao(_I)'"a 

holds true, and hence we have B ~b = 0 for Ta = O. Then by 
virtue of Lemma 1 there exist functions y: + 1 , such that 

B ob w{ayb} 
n+l= n+I' (54) 

Next, choosing 

(55) 

we obtain that Eqs. (5) are satisfied already in the (n + 1)­
th order. Applying induction, we conclude the proof of exis­
tence of solutions of the generating equations (5) with given 
boundary conditions (6). Note that, instead of n: + 1 

= - y: + 1 , we could take other functions 

n:+1 = - Y:+I + WOZn +! (56) 

and again the corresponding na would satisfy Eqs. (5) in the 
(n + 1 )-th order. On the basis of Lemma 1 proved just now, 
one can readily show that the terms Wazn + 1 in (56) ex­
haust [with given boundary conditions (6) ] all the arbitrar­
iness in the solution ofEqs. (5) in the (n + 1 )-th order. 

The above-mentioned arbitrariness in the solution of 
Eqs. (5) can be transformed to the form of canonical trans­
formation. Indeed, suppose there exist two solutions na and 
n~ ofEqs. (5). Suppose next that these solutions coincide up 
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to nth order inclusive [in the first order they coincide by 
virtue of the boundary conditions (6)], while in the 
(n + l)-th approximation they are already distinct. We 
shall write 

o~ + 1 = og n+ 1 + ao~ + 1 . 

Then the functions ao~ + 1 satisfy the equations 

w{aaO!}+ 1 = 0, 

whose solution has by virtue of Lemma 1 the following form: 

ao~+ 1 = wax" + 1 . 

Now we shall perform a canonical transformation of oa with 
the generating function X" + 1 : 

o'a = exp{ - X" + 1 }oa exp{X" + 1 } , 

where we have introduced the notation 

X _I5X,,+ 1 15[. 15Xn+ 1 15 
n+ 1 - 15PA I5QA - I5QA I5PA ' 

Then in the (n + 1 )-th approximation we have 

Oka = Ok = Ogk, k<n, 

o~a+ 1 = O~+I - {oa,x,,+lt+ 1 

=O~+I - wax" + 1 =Ogn+I' 

i.e., solutions of Eqs. (5) already coincide in the (n + 1) -th 
order. Then by induction we have that any two solutions of 
Eqs. (5) with the boundary conditions (6) and with identi­
cal new ghost numbers equal to unity are related by a canoni­
cal transformation. 

The situation is similar to the existence of solutions of 
equations for the boson generating function (7) with the' 
boundary condition (8). In considering Eqs. (7) we shall 
think ofthe functions oa as given solutions of Eqs. (5). In 
the zero approximation, K = Ro. Next we assume that 
quantities K" are constructed such that Eqs. (7) are satis­
fied in the nth order. Let us find the expression for {K,oa} 
in the (n + I )-th order: 

{K,oa},,+1 = - WaK"+1 +D~+I , 

where the operators W a are defined in (25), and the quanti­
ties D ~ + 1 are constructed from K m and O~ + l' m<n. The 
Jacobi identities for the functions K, oa, Ob, and Eqs. (5) 
imply that 

({K,oa},Ob} + ({K,Ob},oa}=o. (57) 

Considering the identities (57) in the (n + 1) -th order and 
taking (26) into account, we obtain 

W {aD b} - 0 ,,+1 - . (58) 

Since ngh(D~+ I) = 1 and n + 1>1, it obviously follows 
that D~+ 1 = 0 for Ta = 9 aa =.A.a = O. By Virtue of 
Lemma 1, the general solution ofEqs. (58) can be written as 

D~+I = WaXn+1 . 

Choosing 

(59) 

we find that Eqs. (7) are already satisfied in the (n + 1) -th 
order. Applying induction, we complete the proof of exis­
tence of the solution of Eqs. (7) with given boundary condi-
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tion (8). Note that instead of (59) we could take as K" + 1 
the function 

Kn+ 1 = X" + 1 + !€ab WbWayn+ 1 (60) 

and again the corresponding K would satisfy Eqs. (7) in the 
(n + 1)-th order. On the basis of Lemma 1, one can easily 
show that the second summand in the right-hand side of 
(60) exhausts all the arbitrariness in the solution ofEqs. (7) 
in the (n + l)-th order. 

The description of arbitrariness in the solution of Eqs. 
(7) with the boundary condition (8) rests upon the follow­
inglemma. 

Lemma 2: Any regular solution of equations 

vanishing when Ta = 9 aa =.A.a = 0, has the form 

X =! €ab (Ob,{na,y}} , 

(61) 

(62) 

where Yis a certain function of the variables of the extended 
phase space. 

We shall seek the solution of Eqs. (61) in the form of 
expansion in power series of C aa and 1f": 

co 

X= L Xn, X,,_c"-m1T"'. 
n=O 

In the zero-th order, Eq. (61) has the form 

waxo=O. 

By virtue of Lemma 1, the solution of this equation, 

Xo = !€ab WbWayo =! €ab (Ob,{oa,Yo}} + ... , 
with accuracy up to terms of higher order in C aa and IIa can 
be represented in the form (62). Next we suppose that up to 
the nth order the solution X ofEq. (61) can be represented in 
the form of (62): 

X = !€ab(Ob,{oa,[ Y],,}} + X(n+ 1) , (63) 

with a certain function [Y] n' which is a polynomial of de­
gree n with respect to powers of C and 11'. In the (n + 1 )-th 
approximation, 

Xn+1 =!€adOb,{oa'[Y]n}}n+1 +Un + l , 

U n + 1 = (X(n+l) )n+l , 

where the function Un + 1 satisfies the equation 

waUn + 1 =0, 

and, therefore, 

(64) 

(65) 

with accuracy up to terms of higher order than (n + 1). 
Taking (63 )-( 65) into account one can represent the solu­
tions of Eq. (61) in the (n + l)-th approximation in the 
form (62). Now the use of induction completes the proof of 
Lemma 2. 

One can similarly prove the assertion that any solution 
of the equation 

{o{a ,xa''''an}} = 0, 

for Xa,"'an symmetric with respect to the indices a j and van­
ishing when Ta = 9 aa =.A.a = 0, has the form 
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Furthermore, one can show that there exist odd functions aa 
and an even function a that form, along with oa, the com­
plex 

{na,ob} = {Ea,Eb} = {oa,a} = {Ea,a} = 0, 

{oa,a b } = 8: a. 
Making use of Lemma 2, one can now easily describe the 

arbitrariness present in the solution of Eqs. (7) with the 
boundary condition (8). Indeed, suppose there exist two so­
lutions ofEqs. (7), ~l) and ~2), with the boundary condi­
tion (8). Consider the function !1.71" = .71"< I) - ~2). This 
function satisfies the equation 

{oa,!1.71"} = 0 

and possesses the property !1.71" = 0 when Ta = 9 aa 
= Aa = O. By virtue of Lemma 2, 

!1.71" = !E"ab {Ob, {oa, y}} 

and the arbitrariness in the solution of Eqs. (7) with the 
boundary condition (8) corresponds to the change of the 
gauge in the total unitarizing Hamiltonian. 

IV. EQUIVALENCE OF STANDARD AND EXTENDED 
BRST QUANTIZATIONS 

As is well known, in the standard BRST quantization 
procedure the first step is determination of the fermion Omin 
and the boson .71" min generating functions using the follow­
ing equations and boundary conditions: 

(66) 

(67) 

in the minimal sector r min = (Poqi;&; a,C a), where &; a 

= 9 aI' ca=c al. Next, making use of Om in and.7l" min' one 
constructs the fermion function 0, 

o = Omin + 9 a 'Tf' ( 9 a = 9 a2 ) , 

and the total Hamiltonian H, 

H =.71" min + {'I1,0} , 

where '11 is a gauge fermion. 

(68) 

(69) 

Returning to the procedure of extended BRST quanti­
zation we note that using a canonical transformation, one 
can always bring the function 0 1 (or 0 2

) to the form (68). 
Indeed, consider the canonical transformation P A' Q A ... P ~ , 
Q 'A with the generating function 

X(P',Q) =Xo(p',q) + 9~a(A-I)p(p',q)C{Ja 
(70) 

where Xo ( p' ,q) is the generator of canonical transformation 
of the initial phase variables under which the constraints Ta 
take on the form 

TAp( p',q),q) = ppA~ (p',q) . (71) 

Here A ~ is the matrix nondegenerate on the hypersurface 
Ta =0. 

Under the canonical transformations (70), 

na ... O'a = p~C'aa + ~b9~b1T'a + ... . (72) 
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The functions o'a [(72)] satisfy Eqs. (5) and the boundary 
conditions 

80,a I a , 
--b =8b Pa, 
8c'a c'=.r= &"=A'=O 

80,a I = ~b9' b • 

81T'a C'=.r=A'=O a 

(73) 

In the class of boundary conditions (73) there exists a solu­
tion of Eqs. (5) in the form 

(74) 

Any two solutions of Eqs. (5) satisfying one and the same 
boundary conditions are known to be related through a ca­
nonical transformation. Therefore, there exists a canonical 
transformation P ~, Q 'A ... P::, Q "A, such that 

(75) 

We now change from the variables P::, Q "A to P A' Q A, em­
ploying a canonical transformation whose generating func­
tion is 

Y(P",Q) =Xo(p",q) + &;;(A-I)(i<p",q)CP 

+ A;;;:O + 9;Ca . (76) 

Taking into account that under such a transformation the 
relations (hereafter the tilde is omitted) 

p;c"a = Ta (p,q)C a + O(C,e; )3), 

hold, we obtain 

0"1 ... 0 1 = Omin (p,q,e;,C) + 9 a'Tf', (77) 

where Omin satisfies the equation and the boundary condi­
tions (66). Consequently, the function 0 I [( 77) ] is canoni­
cally equivalent to the function 0 defined by (68). 

Now let us represent the boson generating function.7l" 
as 

.71"1 =.7I"IC=,<J>=1T=A=O' .7I"dc=:7»=0 =Ho· 

The equation {.7I",O I} = 0 falls into two parts: 

(78) 

{.7I"I,Omin} = 0, {.7I"2,01} = O. (79) 

By virtue of (67) and (78), it follows from (79) that in the 
standard version of BRST quantization, .71"1 can be identi­
fied with .71" min: .71"1 = .71" min' Next, taking into account 
Lemma 2 and the fact that .71"2 = 0 when Ta = 9 aa = Aa 
= 0, we conclude from (79) that.7l"2 can be represented in 

the form 

.71"2 = {X,OI} , 

where X is a certain fermion function. 
Thus the total Hamiltonian of the extended BRST quan­

tization admits the representation [cf. (69)] 

H = .7I"min + {X + {i'l,cI>},O}, 0=02 . 

We have proved that the extended BRST quantization in a 
special basis of canonical variables is a particular case of 
standard BRST quantization that corresponds to a special 
choice of the gauge. 

It should also be noted that at the same time we have 
established the following fact: any regular solution of Eqs. 
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(5) with ngh(na
) = 1 is canonically equivalent to a linear­

ized solution of the type (75) with the same new ghost num­
ber. Indeed, suffice it to note that the generating functions of 
canonical transformations (70) and (76) conserve the new 
ghost number. 

v. CONCLUDING REMARKS 

We have proved the possibility of a consistent version of 
extended BRST quantization and established equivalence 
between extended and standard BRST quantizations. 

The lemmas proved here also make it possible to de­
scribe the arbitrariness in solutions of the generating equa­
tions (5) and (7) due to ambiguity in the choice of boundary 
conditions (6) and (S). It is a well-known fact that the clas­
sical dynamics does not change if to the Hamiltonian Ho we 
add a linear combination of constraints Ta: H ~ = Ho 
+ A aTa. Consider the solutions ofEqs. (7) that correspond 

to boundary conditions with Ho and H ~. Denote these solu­
tions by :Jt" and :Jt"'. Their difference a:Jt" = :Jt'" - :Jt" obvi­
ously satisfies the condition 1l.:Jt" = ° for Ta = 9 aa = Aa 
= ° and the equations {1l.:Jt",na} = 0. It is immediate from 

Lemma 2 that 

a:Jt" = ~Eab {nb, {na,Z}} , 

with a certain function Z. Consequently, passing over from 
the boundary condition with Ho to H ~ = Ho + A aTa corre­
sponds to a change of the gauge in the unitarizing Hamilto­
nianH [(9)]. 

The classical dynamics is also known to be independent 
of the choice oflinear combinations of constraints Ta. Let us 
investigate the behavior of solutions of Eqs. (5) in passing 
over from the constraints Ta to T~ = 1: ~ Tp, where 1: ~ is a 
certain nondegenerate matrix. We have already seen that 
any solution ofEqs. (5) is canonically equivalent to a linear­
ized solution. Let n a and n,a be solutions of Eqs. (5) that 
correspond to boundary conditions Ta and T~. These solu­
tions are canonically equivalent to one and the same linear­
ized solution and hence are related one to another through a 
certain canonical transformation. 

Thus all the arbitrariness existing in the solutions of 
Eqs. (5) is described by a canonical transformation, and the 
arbitrariness in (7) transforms into the change of the gauge 
in the total unitarizing Hamiltonian. 

APPENDIX: THE EXISTENCE THEOREM IN THE 
STANDARD FORMULATION 

We present here, from methodical considerations, the 
proof of the existence theorem for generating equations of 
the gauge algebra in the standard (nonextended) BRST 
quantization procedure. It should be noted that the proof of 
this theorem is given in the review (Ref. 4), but it is rather 
cumbersome there. Here we shall present a simpler version 
of the proof based on a systematic application of the algebra­
ic mechanism the reader may find in Sec. III of this paper. 

So, in the minimal sector 

r min = (Pi,qi;9 a,C a) , 

we consider the equations 
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(AI) 

{ } ~nmin I nmin,nmin = 0, --- = Ta , 
~ca c=i!)=o 

{:Jt" min ,nmin } = 0, :Jt" min I c = i!) = 0 = Ho , 

whose solution is sought in the form 
00 

n min = L .on' .on _9n- 1c n , 
n=l 

(A2) 

(A3) 

(A4) 

:Jt"min =Ho+ f :Jt"n, :Jt"n_?Jnc n . (A5) 
n=l 

The lowest approximation for n min is 

.01 = Taca. (A6) 

For higher approximations, the first ofEqs. (A2) gives the 
recurrent relations 

wnn + 1 + Bn + 1 = 0, n = 1,2, ... , 

where 

n 

(A7) 

(AS) 

Bn+l ==!{[n]n,[n]nln+l' [n]n== L .ok' (A9) 
k=l 

and { , } n implies the C n approximation of the bracket 
{ , }. 

The lowest approximation for :Jt" min is obviously Ho and 
for the approximations following this one the first of Eqs. 
(A3) yields 

W:Jt"n+l =Dn+ 1 , n=O,I, ... , 

where 

Dn+l ==([:Jt"]n,[n]n+Jn+l' 
n 

[ :Jt"] n == L :Jt" k • 
k=O 

(AlO) 

(All) 

(AI2) 

For our further puposes we need the following lemma: 
any regular solution of the equation 

WX=O, (A13) 

which vanishes when Ta = 0, 9 a = 0, has the form 

X=WY. (AI4) 

To prove this lemma, it suffices, as in the main text, to 
introduce the operator r with the following properties: 

r 2 =0, rw+ wr =N, (AI5) 

where N is the operator positive on the solutions of the 
above-mentioned class. 

The operator r corresponding to W from (AS) is cho­
sen to take the form 

r=?J ~ 
a ~Ta 

(AI6) 

and then 

~I - ~ 
N= Ta -+ 9 a-=-' (A17) 

~Ta ~9 a 

Applying to (A13) the operator r from the left and taking 
into account (A 15 ), we are led to the assertion of the lemma. 

Turning again to the proof of the existence theorem, we 
shall first consider Eqs. (A2). Suppose that these equations 
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are satisfied to an accuracy of C " terms, that is, the functions 
Ok' k = l, ... ,n, exist. Then from the identity 

({[O]",[O],,}, [O],,} =0 (A18) 

in the C" + 1 order we have 

WB,,+ 1 = o. (A19) 

From (A4) and (A9) it follows that 

B,,+ 1 k= 9 a =O = o. (A20) 

Then, by virtue of the lemma, we find, from (A 19) and 
(A20), 

B"+I = - WO"+I; (A2l) 

this equality being the definition of the function 0" + 1 

-&"C"+ I. 
Thus (A2l) impIies that Eq. (A2) is already satisfied in 

the C" + 1 approximation. Induction by n completes the 
proof of the existence of a solution of Eq. (A2). 
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We now turn to Eq. (A3). It.should only be noted here 
that when repeating quite similar arguments, rather than the 
identity (A18) one should use the relation 

({[K]",[O]n+ 1 },[O],,+ 1 }=O(Cn+2) , 

which is identically fulfilled with respect to [H]" by virtue 
of (A2). 
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A differential representation of the classical Lie superalgebra osp(mI2n) acting on superfield 
functions is given. This representation is used to construct matrix representations of the finite­
dimensional irreducible representations of the algebra. Inner products on the irreducible spaces 
are discussed and classes of star and grade-star equivalent representations are identified. 

I. INTRODUCTION 

It has recently been shown in considerable detail l
-
5 how 

vector coherent state (VeS) theory provides, under certain 
conditions, means to induce irreducible highest weight rep­
resentations of a complex Lie algebra or superalgebra g from 
highest weight irreps of a subalgebra 110 C g of rank 
(110) = rank(g). 

ves theory makes use of a Z gradation of g, 

g=lIo+ L D±i' (1.1 ) 
i= 1.2 •... 

"'-
defined in terms of a grading operator Z, belonging to a ear-
tan subalgebra, by the equation 

A 

(Z,x) = ix, VXEDi , (1.2) 

where the bracket (".) is the graded Lie product. Such a 
gradation endows the algebra with a Z graded structure. The 
zero grade component 110 is called the stability subalgebra. 

By definition, a Lie superalgebra, endowed with a Z 
graded structure, is a vector space g that (i) is a direct sum of 
vector subspaces Dj> where the index i takes integer values; 
and that (ii) has a bilinear product that satisfies 

(X,Y)ED i + j , 

(x,y) = - ( - 1 )ij(y,X) , 

(x,(y,z» = «x,y),z) + ( - l)i j(y,(x,z» , 

for XEDi, yEDj , and any z in g. 

( l.3a) 

( l.3b) 

( l.3c) 

It can be shown that any classical Lie superalgebra can 
be assigned a convenient Z graded structure, with either 
imax = 1 or 2. We then have for a classical Lie superalgebra 
that the even sector 

( 1.4a) 

of the superalgebra is its Lie subalgebra ~ = 110 or 
Do + D _ 2 + D + 2' The odd sector is 

gT = L Di = D - 1 + D + 1 • 
j odd 

The subspaces 
imax. 

D+ = LDj, 
;>0 

(l.4b) 

- imax 

D = L D j 
( 1.5) 

;<0 

are nilpotent subalgebras of raising and lowering operators. 
Since each level Dj is invariant under the adjoint action ad"" 
of the stability algebra Do, the subalgebras D ± are generally 
reducible under ad"". 

For imax = 1, the subalgebras D± are necessarily Abe­
lian. The first applications ofVeS theory addressed Lie alge­
bra cases with D ± Abelian,I-3.5 which present some simpli­
fying features. The Lie superalgebra gl(mln) with D± 
Abelian and ~ = 110 has been studied in Ref. 6. 

Recent developmeDts4 have shown that ves theory ap­
plies equally well to Lie algebras with imax :>2 and D ± non­
Abelian. The aim of this paper is to study classical superalge­
bras for which 

~ =110 +D_2 +n+ 2 

and for which D ± are non-Abelian and reducible under 110. 
More precisely, we consider the osp(m/2n) superalgebras 
for all m and n. Among the extra complications arising, note 
that, in contrast to the Abelian superalgebraic case for which 
the coset representative exp X of GINo, with XED+, is para­
metrized by Grassmann variables only, the non-Abelian 
case requires a parametrization by both Bargmann and 
Grassmann variables since D+ contains elements from both 
the odd and even parts of the superalgebra g (see also Farm­
er and Jarvis, Ref. 7). 

To improve the efficiency ofVeS theory as a tool for the 
explicit construction of irreducible representations of simple 
or semisimple algebras, we introduce herein some significant 
developments over previous expositions ofthe subject. 

We give an explicit construction of the irreducible ves 
module as a submodule of the vector-Grassmann-Barg­
mann (VGB) space. This is achieved by expanding ves 
states on an ab initio orthonormal VGB basis. The expansion 
operator tl, defined by Eq. (6.1), thereby defines a mappiDg 
from theVGB space onto the irreducible ves subspace. 
Note that previous treatments skipped this expansion and 
concentrated rather on the construction of matrix represen­
tations of the algebra. 

We introduce a projection operator in Eq. (6.3) that 
significantly simplifies the identification of the highest 
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weight states of the Ko submodules contained in an irreduci­
ble ves module of g. Previous treatments unnecessarily 
linked this identification to the independent problem of con­
structing equivalent Hermitian (star or grade-star) repre­
sentations. Following the introduction of the projector, the 
algebraic derivation of relevant recursion formulas [Eqs. 
( 6.2) and (7.13)J is considerably simplified. 

The identification of classes of star or grade-star equiva­
lent representations8 is shown to be quite simple within the 
present formalism. One has only to identify the circum­
stances under which the expression (- 1) <I> tJ, where 
( - 1) <I> is a phase signature proper to either the star or 
grade-star case [Eq. (7.14»), defines a positive-definite op­
erator %2 on the ves irreducible module. 

Also noteworthy are the following points. 
We show how ves theory provides a rationale for Kac's 

subsidiary conditions9 for the finite-dimensionality of irre­
ducible modules of the osp(mI2n) algebra (Sec. VI e). 

We show how ves theory predicts rhe decouplinglO of 
g-invariant submodules for atypical representations (Sec. 
VID). 

We construct explicitly all the irreducible finite-dimen­
sional representations of the superalgebras osp( 1I2n) for 
n>1 (Sees. VIII and IX B), of osp(2I2) (Sec. IX e) and 
osp(3/2) (Sec. IX D). Analytical expressions are given for 
all matrix elements of the representations. We identify all 
classes of star and grade-star equivalent representations for 
these algebras and give the (generalized) unitarized forms of 
the representations with their properties under (general­
ized) adjoint conjugation: 

II. THE osp(m/2n) SUPERALGEBRA 

A. The even subalgebra gil = so(m). sp(2n) 

The even part Ko of the Lie superalgebra g = osp(ml 
2n) is the direct sum9

•
11 so(m) Ell sp(2n) [and only sp(2n) if 

m = I). 

1. Thll 8O(m) subs/gllbrs 

A basis for so(m), m>2, is given by {Hob = -Hoo; 
1 <a < b<m} with commutation relations 

(Hab,Hcd ) = {jbcHad + {jbdHca + {jadHbc + {jacHdb (2.1) 

(Z2 graded commutators are denoted ( ... , ... ) in this manu­
script). 

It is convenient to introduce a set of Cartan (raising, 
lowering, and weight) operators for so(m): we set (we use 
the convention that l<a,b,c,d, ... <m while l<i,j,k,I, ... <r) 
with r = [mI2) 

d" = - d" =l(Hz'z' -Hz, IZ' I -iHz' IZ'; IJ JI"2 1,,:/ 1-,,:/- '-.~ 

- iHz"Zj_I)' l<i <j<r, (2.2a) 

f!lJ" = - f!lJj' = l(Hz' I z' I - Hz'z' - iHz' 12'; IJ 'l 1- .',)- '.'J 1- ':1 

- iHz"Zj_ I)' l<i <j<r, (2.2b) 

9: I} = !(H2I,zj + H2I_I,~_1 - iHz1 _ I,2j + iH2I,zj_l) , 

1 <i,j<r , (2.2c) 

to which we add, if m = 2r + 1, 
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g 1= - (l1,fi)(Hzr + I,ZI-I + iH2r+ 1,21)' 1 <:;i<:;r , 
(2.2d) 

~I = (lI,fi)(Hzr + I,Zi-1 -iH2r+ I,21)' l<i<:;r. (2.2e) 

From (2.1), we find the following set of commutation 
relations: 

(9: ij>d k/) = {jjk d i/ + {jj/d kl , 

(9:I}'~k) ={jjk~i' 

(9: 1},9: kl) = {j}k 9: i/ - {ji/9: kj , 

(9:lj'~k)= -{jlk~j' 

(2.3a) 

(2.3b) 

(2.3c) 

(2.3d) 

(9: ij ,f!lJ kl ) = -{jikf!lJjl-{jj/f!lJkj' (2.3e) 

From these we conclude that the set {9: Ij' 1 <:;i,j<:;r} gener­
ates a u(r) Lie algebra [or rather its complexification, not to 
be confused with the u (n ) C sp (2n) algebra to be introduced 
below) while the sets {dij}, {~i}' {~i}' and {f!lJ ij} span, 
under adu( rl' irreducible tensorial sets of rank {t t}, {t}, 
{- t}, and {- 1 - t}, respectively. 

Similarly, we find, whenever m = 2r + 1, that 

(~I,f!lJ kl) = {jil~ k - {jik~/' 

(~i>dkl) ={jik~/-{jil~k' 

(2.30 

(2.3g) 

from which we conclude that the union ofthe two u(r) irre­
ducible tensorial sets {g I} and {~i} spans an irreducible 
tensorial set of rank [1) under the adjoint action of the alge­
bra 

so(2r) =span{9: i j> l<:;i,j<r; dlj>f!lJij' 1<:;i<j<r}, 

where the so(2r) algebra closes through 

(f!lJ iJ,d kl) = {ji/ 9: kj - {jlk 9: Ij + {jjk 9: Ii - {jjl 9: kl . (2.3h) 

Finally, whenever m = 2r + 1, we verify that theso(m) 
algebra closes through 

(fPi,fPj) = d ij , 

(~i>~j) = f!lJji' 

(gi'~j) = 9: lj . 

(2.3i) 

(2.3j) 

(2.3k) 

All other so(m) commutators involving elements from the 
basis (2.2) vanish. 

Associated with the generators (2.2) ofso(m) are, for 
r= [mI2»2, 

the set of positive roots + (EI - Ej ) 

associated with 9: ij' 1 <:;i<j<:;r, 

the set of negative roots - (Ei - Ej ) 

associated with 9: ji> 1 <i <j<r , 

the set of positive roots + (Ei + Ej ) 

associated with d lj , 1 <:;i <j<:;r, 

the set of negative roots - (EI + Ej ) 

associated with f!lJ ij' I <:;i <j<r ; 

and, for m = 2r + 1, 

the set of positive roots + Ei 

associated with fP i> 1 <i<r , 

the set of negative roots - Ei 

associated with ~ i> 1 <:;i<:;r. 
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(2.4a) 

(2.4b) 

(2.4c) 

(2.4d) 

(2.4e) 

(2.40 
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For 80(2) -u( 1) (m = 2), we only have the weight opera­
tor HI2 with an associated null root. 

2. The sp(2n) Bubs/gebra 

Similarly, a Cartan basis for sp(2n) :Ju(n), n> 1, is giv­
en by 

{CaP.AaP =APa , Ba{:J =BPa ; 1 <a,p<n} (2.5) 

with commutation relations 

and 

(Ca{:J.A,.,,) = ~{:J,.Aa" + ~{:J"A,.a , 

(Ca{:J'C,.,,) = ~flI'Ca" - ~a"CI'fl • 

(Ca{:J,B,.,,) = - ~a,.B{:J" - ~a"B,.{:J' 

(2.6a) 

(2.6b) 

(2.6c) 

(Aa{:J.B,.,,) = ~a,.C{:J" + ~a"C{:J,. + ~{:J,.Ca" + ~{:J"Ca,. . 
(2.6d) 

All other sp(2n) commutators involving elements from the 
basis (2.5) vanish. Obviously, 

nO'==span{Ca{:J' l<a,p<n} (2.7a) 

generates a u (n) Lie algebra (more precisely, its complexifi­
cation) while the Abelian subalgebras 

n+ 2==span{Aa{:J' 1 <a.p<n} (2.Th) 

and 

n_2 ==span{Ba{:J' l<a'p<n} (2.7c) 

span, under adu(n)' irreducible ten80rial sets of rank {2} and 
{ - 2}, respectively. 

Associated with the generators (2.5) ofsp(2n) are 

the set of positive roots + (~a - ~{:J) 

associated with Ca{:J' l<a<p<n. 

the set of negative roots - (~a - ~{:J) 

associated with CPa' l<a<p<n. 

the set of positive roots + (~a + ~{:J) 
associated with AaP • 1 <a'p< n , 

the set of negative roots - (~a + ~{:J) 
associated with BaP , 1 <a'p< n . 

3. Cartan Buba/gebra and Z grading operator 

(2.8a) 

(2.8b) 

(2.8c) 

(2.8d) 

The sp(2n) roots (2.8) and their so(m) counterparts 
(2.4) belong to the space h* dual to the Cartan subalgebra h 
of Ko generated by the set of weight generators 

h = span{hi, l<i<;r; ha' l<a<;n}, (2.9a) 

where 

hi = ~ ii (no sum on i) • (2.9b) 

ha = Caa (no sum on a) . (2.9c) 

Wethereforehaveadualbasis{Ei,i= 1, ...• r;~a,a = 1, ...• n} 
with 

16 

Ei (hj ) = ~ij' ~a (hj ) = 0, 

Ei (ha ) = 0, ~a (h{:J) = ~a{:J . 
The trace operator 
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(2.10) 

A n 

Z = L h{:JEh (2.11) 
{:J=I 

naturally grades sp (2n) into the three subalgebras nO', n + 2 , 
and n _ 2 with Z grade 0, + 2, and - 2, respectively. Since 
the generators of 

so(m) ==~ (2.12) 

commute with the generators ofsp(2n) in general and with 
A 

Z in particular, an5! since all generators of u (n ) == nO' similar-
ly commute with Z, the subalgebra 

110 = ~ (B nO' = so(m) (B u(n) (2.13) 

can be regarded as a stability algebra (null Z grade subalge­
bra) leaving invariant all subalgebras n ± i of given Z grade 
and, by extension, subs~aces of representations of given Z 
grade. We remark that Z belongs to the center of 110: 

(Z.x) = 0, VXEIIo. (2.14) 

B. The odd subalgebra g1 of osp(mI2n) 

The odd part gT of the Lie superalgebra g = osp(ml 
2n ), m:l 2, carries an irreducible representation 9.11 [1]: (1) 
of its even part Ko = so(m) (Bsp(2n), where [1] and (1) 
stand for the fundamental irreps of so (m) and sp (2n ), re­
spectively. Under u(n), the sp(2n) irrep (1) splits into the 
two irreps {t} and { - t}: 

sp(2n)lu(n) : (1)l{1} + {- t}. 

[For the case m = 2, KT is reducible and spans the irreduci­
ble representations [± 1]: (1 ) of so (2) (B sp (2n ) 
- u (1 ) (B sp (2n ). ] We therefore introduce the no 
= so ( m) (B u (n) tensorial sets 

n+ 1 =span{Daa ; 1 <a<;m, l<a<n} 

and 

(2.15a) 

(2.15b) 

spanning the irreducible representations [1]:{ + I} and 
[1]:{ - 1} of no (and. for m = 2, the irreducible representa­
tions [± 1]:{ + 1} and [± 1]:{ - t} of no), respectively. 
We necessarily have 

(Hab,De,.) = ~bcDa,. - ~aeDb,. • 

(Ca{:J.De,.) = ~{:J,.Dea , 

(Hab,Ee,.) = ~bcEa,. - ~aeEb,. • 

(Ca{:J,Ee,.) = - ~{:J,.Eea , 

while 

(Aa{:J,Ee,.) = ~{:J,.Dea + ~a,.De{:J , 
(Ba{:J,De,.) = ~{:J,.Eea + ~a,.Ee{:J' 
(Aa{:J,De,.) = (Ba{:J,Ee,.) = 0. 

(2.16a) 

(2.16b) 

(2.16c) 

(2.16d) 

(2.16e) 

(2.16f) 

(2.16g) 

Obviously. n + I and n _ I have Z grade + 1 and - 1, re­
spectively. 

In order for 

g = Ko (B gT = (110 (B n + 2 (B n _ 2) (B (n + I (B n _ I ) 

to close upon the Lie superalgebra osp(mI2n), one must 
specify a set of anticommutation relations gT X KT ..... Ko com­
patible with the Jacobi superidentity 
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(P.(Q.R » = «P.Q >.R) + ( - I ),(P). '(Q)(P.(Q.R» • 

(2.17) 

where ~(P) is the Z2 grade of the operator Peg = osp(m/ 
2n). herein assumed to be consistent with the Z grade of P. 
We verify that . 

(Daa.Dbp ) = - OabAaP • 

(Eaa.Ebp ) = OabBaP • 

(2.18a) 

(2.18b) 

(Daa.Ebp ) = OabCaP - OapHab (2.18c) 

satisfy (2.17). Equations (2.18) may present a normaliza­
tion different from those appearing in the literature. 

Associated with the generators of gT are. for r = [m/ 
2]>1. 
the set of positive roots ( ± E; + oa) associated with 

D ± ;,a = (l/.j2)(D2;_I,a ± iDu,a)' I..;;;i..;;;r. I..;;;a..;;;n. 

(2.19a) 

the set of negative roots ( ± E; - oa ) associated with 

E±;,a = (lI.j2)(EU _ I,a ±iEu,a)' I..;;;i..;;;r. I..;;;a..;;;n; 

(2.19b) 

and. if m = 2r + 1>3. 

the set of positive roots + oa associated with 

DOa = D2,+ I,a' I..;;;a..;;;n. 

the set of negative roots - oa associated with 

Eoa = E2,+ I,a' l..;;;a";;;n. 

(2.19c) 

(2.19d) 

c. Supersymmetrlc Invariant bilinear form on root 
space 

The set of all even roots (2.4) and (2.8) is referred to as 
ao while the set of all odd roots (2.19) is referred to as aT. 
We further distinguish9,II the sets of roots 

At = { ± ( + E; + 0a); ± ( - E; + 0a); 
l..;;;i";;;r. I..;;;a..;;;n} • 

= 0. for m = 1 (r = 0) • 

(2.20a) 

(2.20b) 

i.e .• the sets of positive and negative odd roots t?Eh* such that 
21%ao' 

We find9
,ll that halfthe sum of the even positive roots Po 

is given by 

Po = pij(m) + pff(2n) • 

where 

p~(2n) =..!. ~ (2n + 2 - 2a)0 
o 2 a"':::l a • 

pij(m) = O. m = 1.2. 

(2.2Ia) 

(2.2Ib) 

(2.2Ic) 

I ' pij(m) =_ L (2r+ 1- 2i)E;. m = 2r+ 1>3. 
2;=1 

(2.2Id) 
1 ' pij(m) = - L (2r - 2i)EjO m = 2r>4. (2.21e) 
2 ;=1 

while half the sum of the odd positive roots (PT) is given by 

(2.21f) 
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for all m. Finally, we denote by p the supersum 

P=Po -PI' (2.22) 

A supersymmetric invariant and nondegenerate bilinear 
form on h* is given by9,11 

(E;,Ej ) = - olj , 
(EjOOa) = O. 

(Oa.op) = + oaP • 

implying 

({}.{}) = O. Vt?EAT = At + Af . 

D. Simple roots for osp (m/2n) 

(2.23a) 

(2.23b) 

(2.23c) 

(2.24) 

We denote by n a distinguished set9 of simple roots for 
osp(m/2n) containing a single odd root. It is given (i) for 
osp( 1I2n). by 

n={OI -02 .02 -03.· ... 0n_1 -On.On}, 

with on the odd root; (ii) for osp(2!2n). by 

(2.25a) 

n = {EI - 01.01 - O2 .02 - 03 ..... 0n_1 - on,Un}. 

(2.25b) 

with (EI-O I) the odd root; (iii) forosp(2r+ 1I2n). r>l. 
by 

(2.25c) 

with (on - EI ) the odd root; and (iv) for osp(2r/2n). r>2. 
by 

n = {Ol - O2 .02 - 03 .... ,On _ I - On , 

On - EI.EI - E2 •• ... E,_ I - E"E,_ I + EJ , (2.25d) 

with (On - EI ) to odd root. The distinguished set of simple 
roots n minus its odd root plus the even root 20n forms a set 
of simple roots no for go = so(m) esp(2n) [except for 
osp (2/2n), where no is given by n minus its odd root] : it is 
given (i) for osp(1/2n). by 

no = {Ol - O2 ,02 - 03.· .. 'On_1 - 0n.2on}; (2.26a) 

(ii) for osp(2!2n). by 

no = {Ol - O2 .02 - 03 .... 'On_1 - on.2on}; (2.26b) 

(iii) for osp(2r + 1I2n). r> I. by 

no = {Ol - O2 ,02 - 03.· .. 'On_1 - on,20n • 

(2.26c) 

and (iv) forosp(2r/2n). r>2, by 

no = {Ol - O2 .02 - 03 ..... On _ I - On .Un • 

(2.26d) 

III. GRADED HIGHEST WEIGHT MODULES 

A. Graded highest weight modules for osp(ml2n) 

A Z2 graded carrier space for a representatioin of 
osp(m/2n) is referred to as a osp(m12n) module. Let 
M(A 0) be a module for a finite-dimensional irreducible rep­
resentation of osp (m/2n) with highest weight 
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r " 
AO = L ..t ?€; + L q~l5a' r = [mI2], (3.1 ) 

;=1 a=1 

and highest weight state lAO) such that 

h;IAO) = 'tfiiIAO) =..t?IAO), 1 <i<r (no sum on i), 

'tf Ii lAO) = 0, 1 < i<j<r, 

..@;IAO)=O, I<i<r (ifm=2r+1), 

d' Ii lAO) = 0, 1 <i<j<r. 
(3.2) 

ha lAO) = Caa lAO) = u~ lAO), 

CaP lAO) =0, 

AapIAO) = 0, 

I<a<n (no sum on a), 

I<a<p<n, 

1 <a</J<n, 

Daa lAO) = 0, I<a<r, I<a<n. 

This subspace carries an irreducible representation of the 
stability algebra Do = so (m) E& u (n) conveniently labeled by 
its so(m) and u(n) highest weights [11 O]:{UO}, where 
[..to] = [..t?11~···A?] and{uO}={u?u~"'u~}referto 
so(m) and u(n), respectively [seeEq. (3.2)]. This subspace 
will be referred to as the intrinsic Do module. 1 

It is assumed herein (although this is not essential for 
the validity ofthe present induction formalism) that the in­
trinsic Do module M(A")(Ao) is finite dimensional and that 
the labels 11 ? and u ~ are real numbers such that 

(u~ - u~+ dEZ +, l<a<n - I, 

u~EZ+, 

(A?-A?+I)EZ+, I<i<r-I (3.Sa) 

U?EZ+, m=2r+ 1>3, 

A?_I +A?EZ+, m=2r>4, 

where Z + is the set of non-negative integers. The subsidiary 

I 

A-

The Z gradation of osp( ml2n) naturally imparts a Z grada­
tion on this module consistent with the Z2 gradatioin. 

B. Intrinsic highest Z grade module for no 

Let M A" (A 0) be the highest Z grade subspace with re­
spect to the Z gradation, i.e., the subspace of weight vectors 
in M (A 0 ) of homogeneous highest Z grade max (A 0 ), 

" rna1f.(Ao) = L u~, _ (3.3) 
a=1 

annihilated by the subalgebra of raising operators 
n+ = D+I E&n+ 2: 

(3.4) 

requirements9 (see also Sec. VI C) 

AOo =Ao = ... =..t°=0 
U n + 1 a~+2 r (3.Sb) 

must also be imposed when m>3 and u~ <r = [mI2]. 

C. Intrinsic modules for go 

Besides the intrinsic highest Z grade Do module defined 
above, there exist other subspaces of importance for the pres­
ent study. They are defined as the subspaces M(A)(Ao), 

r " 
A = L A;€; + L ual5a, m = 2r+ 1 (3.6) 

;= 1 a= J 

[compare to (3.1) ], of homogeneous Z grade z( A), 

" zeAl = L ua , (3.7) 
a=1 

now annihilated by the subalgebra ofn+2 raising operators 
only, 

(A) ° {I) AO h h ZI1/)=z(A)I1/) } 
M (A) = 1/ eM( ) suc t at A I ) _ ° uA ' 

afJ 1/ - , v apEn+2 
(3.8) 

and carrying generally reducible highest weight representations (A) = [A] :{u} of the stability algebra Do = so(m) E& u(n). A 
Do submodule M (A) (A 0 ) is isotypic in the sense that it is a direct sum of a set of equivalent irreducible Do submodules. It is an in­
trinsic module in the same sense as above for a generally reducible Ko representation in the decomposition 

where m A = m .<,0" is the multiplicity of occurrence of a given 
irrep(A) = ([A ]:(u» of Ko =so(m) E&sp(2n). From a 
knowledge ofthe representations of so(m) E& sp(2n), an ir­
reducible module for a representation (A) of 
so (m) E& sp (2n) can be induced from an irreducible intrinsic 
module for so(m) E& u(n). It follows that the module for an 
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(3.9) 

irrep ofosp(mI2n) is uniquely identified by specification of 
the irreducible components ofthe various M(A)(Ao). 

IV. VCS THEORY FOR osp(ml2n) 

The vcs theory of osp(mI2n) is similar to that for 
gl(mln) (Le Blanc and Rowe6

), the main difference stem-
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ming from the fact that the raising nilpotent subalgebra n + 

= 0+ 1 Ell 0+2 is non-Abelian, that it is reducible under 110, 
and that it contains part ofllQ, namely, 0+2' Consequently, 
the supercoset GINo must be parametrized by both bosonic 
(Bargmann) and fermionic (Grassmann) variables (see 
also Refs. 7 and 10). 

A. Embedding of an Irreducible module In a vector­
Grassmann-Bargmann Hilbert space 

An important aspect ofVCS theory is the embedding of 
an irreducible graded highest weight g module M(Ao) in a 
vector-Grassmann-Bargmann (VGB) space. I

,4,6 For the 
classical Lie superalebra osp(mI2n), the VGB space is the 
tensor product space V ® Gr ® Bg, where we have the follow­
ing. 

(i) Vis the intrinsic no module V=M(J\")(AO) defined 
by Eq. (3.4). We recall that it carries a unitary irreducible 
finite-dimensional representation of the stability albegra 110. 
Let !!lJ v = {I TJ) } be an orthonormal basis for V with respect 
to the inner product on Vand let { ( TJ I} be a dual basis satis­
fying (TJITJ') = 87J1'/" 

(ii) Gr is the space of polynomials in the mn 
( = dim 0+ I) anticommuting [we have assigned a Z2 grade 
T to the variable Baa; the commutator in ( 4.1), interpreted as 
a graded commutator, thus stands for an anticommutator] 
Grassmann variables {Baa; l..;;a..;;m, l..;;a..;;n}; 

(Baa ,BbP ) = 0. 

Equation (4.1) implies 

(Baa)2 = 0; 

(4.1 ) 

(4.2) 

the Grassmann space Gr is thus 2m
" dimensional. It is iso­

morphic to the antisymmetric (exterior) tensor algebra over 
~ mn, and has a natural inner product for which the nonzero 
polynomials 

{)l}t (Baa)"aaITJ); naa =0,1; ITJ)E!!lJv} (4.3) 

form an orthonormal basis for the vector-Grassman 
VG = V ® Gr space. The space Gr carries an irreducible rep­
resentation of the Grassman algebra Gr(mn), 

Gr(mn) = span{Baa,Jaa =~ ,1; l..;;a..;;m, l..;;a..;;n}, 
JBaa 

defined by the anticommutation relations 

(Baa,Bbp ) = 0, (Jaa,Jbp ) = 0, 

(Jaa,Bbp ) = 8ab8ap· 

With respect to the inner product on Gr, we have 

(4.4) 

(4.5) 

(Baa)t = Jaa , (Jaa)t=Baa' (4.6) 

The Grassman variables and their derivatives can be inter­
preted as fermion annihilation and creation operators; Gr is 
thus isomorphic to a fermion Fock space. In terms of the 
inner products on Vand Gr, the VG space V ® Gr becomes a 
Hilbert space K vo. 

(iii) Bg is the space of polynomials in the 
dim n(n + 1 )/2 = 0+2 Bargmann (complex) symmetric 
variables {zaP = zPa; l..;;a,p..;;n}. The Bargmann space Bg is 
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infinite dimensional. It is isomorphic to the symmetric ten­
sor algebra over ~"(" + 1)12, and has a natural inner product 
for which the nonzero polynomials 

II II py (Baa )"aaI TJ ); 
{

" m (z )"PY 

a,fJ,y= 1 a= 1 ~ (1 + 8py )Mpynpy! 

naa = 0,1, npy = 0,1,2, ... ; ITJ)E!!lJ v} (4.7) 

form an orthonormal basis for the full VGB space. The space 
Bg carries an irreducible representation of the Heisenberg­
Weyl algebra hw(n(n + 1 )/2), 

hw(n(n + 1 )/2) = span{ za{3,VaP =~ ,1; l..;;a,/3..;; n } , 
Jzap 

defined by the commutation relations 

(zaP'zl'v) =0, (Va{3'Vl'v) =0, 

(Vap,zl'v) = 8al'8pv + 8av8pI" 

With respect to the inner product on Bg, we have 

(4.8) 

(4.9) 

(Z;a)t= V;a' (V;a)t=z;a' (4.10) 
The Bargmann variables and their derivatives can be inter­
preted as symmetric boson annihilation and creation opera­
tors. 12 In terms of the inner products on V, Gr, and Bg, the 
VGB space V ® Bg becomes a Hilbert space K VOB' 

The dimension of the VG basis (4.3) is 2mn times the 
dimension of the intrinsic 110 module V. Levels can be defined 
on this basis in terms of the eigenvalue no of the B-number 

A 

operator N (0) = Baa J aa' There are mn + 1 such levels. The 
number ofVG states on a given level is (':8") times the dimen­
sion of the intrinsic module. The Z grade of a VG state is 
defined by 

(4.11 ) 

consistent with the definition (2.11) for the grading opera­
tor, Eq. (3.4) and Eq. (4.2Od) below. Now, if the intrinsic 
space is assigned a Z2 grade 6, consistency requires us to 
identify the even (odd) subspace of K VB with the set of all 
VG states with no even (odd). The Z2 grade ~ of a state is 
then given by 

~ = no mod 2. (4.12a) 

Conversely, if the intrinsic space is assigned a Z2 grade T, we 
identify the even (odd) subspace of K VB with the set of all 
VG states with no odd (even). The Z2 grade ~ ofa state is 
then given by 

~= (no + 1)mod2. (4.12b) 

The dimension of the even subspace of K vo is equal to the 
dimension of its odd subspace since 

L (mn) = L (mn) 
"8 even nO "8 odd no . 

Levels can be also defined on the VGB basis (4.7) in 
terms of the eigenvalues no and the even eigenvalues nz of the 

A 

operator N (z) = za{3 Va{3' We define the Z grade of a VGB 
state by 

(4.13) 

This definition is again consistent with the definition (2.11) 
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for the grading operator, Eq. (3.4) and Eq. (4.2Od) below. 
Obviously, the Z2 grade of a VGB state is the Z2 grade of its 
underlying VG state: 

~ = (max - ne - nz ) mod 2 = (max - ne ) mod 2. 
(4.14 ) 

The ves embedding (this embedding could be consid­
ered as a superalgebraic generalization of the development of 
superfunctions7,10) M(Ao) ..... JYYGB is defined by 

I",) ..... ",(O,z) = L 111)(11lexp Y(O,z) I",), 111)e.@ v' 
'f/ 

where 

1 
Y(O,z) = O'D + -z'A 

2 

(4.1Sa) 

m n 1 n 

= L L OaaDaa + - L z/JvA}w' (4.1Sb) 
a=la=l 2/J,v=1 

This embedding invokes a projection M(Ao) ..... M(A")(Ao) 

in which 

I~) = exp Y(O,Z) I",> 

projects to its highest Z grade component 

I~) ..... ",(O,z) = L 111)(111~) 
'f/ 

and which, since M( A 0) is a direct sum of graded subspaces, 
is well defined without the necessity of assuming that M (A 0 ) 

is a Hilbert space. 

B. The ves expansion for osp(mI2n) 

The ves realization reX) of an arbitrary generator 
Xeosp(m/2n) is defined by 

r(X)",(O,z) 

= L 111)(11lexp(Y)XI",) 
'f/ 

= L 111)(111 (X + ~ (y,x) 
'f/ 11 

+ ~(y,(Y,X» + ... )xexP(Y) I",). 
2! 

( 4.16) 

Because the variables 0 aa and z/Jv belong to algebras that are 
independent of the superalgebra osp(m/2n), we have that 
all ofthe following (graded) commutators vanish: 

(Oaa,x) = (z/Jv,x) = 0, VXeosp(m/2n). (4.17) 

For example, the set {O aa} of Grassmann variables anticom­
mutes with the set of odd raising and lowering operators 
{Daa} and {Eaa }, and (4.16) should be developed accord­
ingly. 

The operator reX) can be expressed as a differential 
operator on the superfield ",( O,z). First note that, since 111) 
belongs to the highest weight Ko submodule M (A") (A 0), 

(11IBa,8 exp(Y) I",) = 0, VBapEn_2; (4.18) 
this is easily verified by considering the Z graded structure of 
the highest weight module M(A 0) with the understanding 
that states of different Z grade are orthogonal. We also de­
fine 
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L H~A")I11) (11lexp(Y) I",) 
'f/ 

= L 111)(11IH ij exp(Y) I",), 
'f/ 

(4.19) 

L C~~")I11)(11lexp(Y)I"') 
'f/ 

= L 111)(11I CaP exp(Y),,,,), 
'f/ 

where span{H ijA")} Ell span{ C ~~(»} is the intrinsic 
so(m) Ell u(n) representation carried by the irreducible 
highest weight submodule M{A")(Ao). We find, with the 
usual convention (we recall that we use the convention that 
1 <;a,b, ... <;m, 1 <;a,{3, ... <;n) concerning the summation ofre­
peated indices, the following yes expansion for the genera­
tors of osp ( m/2n ) : 

where we have used the identities 

VaP exp(Y) = Aap exp(Y), 

aaa exp(Y) = exp(Y) (Daa + !OauAua)' 

( 4.20a) 

(4.20b) 

(4.2Oc) 

(4.2Od) 

( 4.20e) 

Note that in the yeS realization, the so(m) subalgebra 
consists of the piecewise sum by component of an intrinsic 
subalgebra (H ~f» and a Grassmann realization 

H~~) = (Oa/J ab/J - Ob/J aa/l) (4.21a) 

of so(m). Similarly, the u(n) subalgebra consists of the 
piecewise sum of an intrinsic subalgebra (C~~O», a Grass­
mann realization 

C~o,J = ( - OcP aca ), 

and a Bargmann realization 

(4.21b) 

C~~ = ( - zP/l V/Ja) (4.21c) 

ofu(n). Note also that the yeS expansion for the stability 
subalgebra no = so (m) Ell u (n) is Hermitian with respect to 
the VGB measure whenever the intrinsic representation is 
Hermitian (recall that a Hermitian representation of a Lie 
algebra corresponds to a unitary representation of the Lie 
group). This is an important characteristic of ves theory 
that allows one to construct (see Sec. Y) orthonormal VGB 
bases with good no transformation properties upon which 
ves states can be developed. In contrast, one sees that the 
yeS expansion for the maximal (here even) subalgebra 
no Ell n+ 2 Ell n-2 of osp(m/2n) is not Hermitian with respect 
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to the VGB measure. This is in spite of the fact that, for 
positive integral highest weight, it is known to be equivalent 
to a Hermitian representation. The concepts of adjoint oper­
ations and Hermiticity for irreducible representations of 
osp(m/2n) will be discussed in Sec. VII. For the moment, 
we simply remark that all the computations carried out be­
low exploit the inherent Hermiticity properties of the VGB 
bases under 110 transformations. 

v. ves GRADED HIGHEST WEIGHT MODULES 

The ves construction naturally exploits the observed 
fact that the restriction ofthe ves representation (4.20) of 
osp ( m/2n) to its stability subalgebra 110 = so (m) EB u (n) is 
Hermitian under the VGB inner product. This facilitates the 
construction of an orthonormal VGB basis that [unlike the 
basis (4.7)] reduces the stability subalgebra so(m) EB u(n). 
The construction is given in Secs. V B and ve below. But 
first, we must distinguish a basic ves representation, which 
is irreducible, from an extended ves representation, which, 
generally, is not. 

A. Irreducible and extended ves modules 

Starting from an irreducible highest weight representa­
tion of a subalgebra, ves theory induces (finite- or infinite­
dimensional) irreducible highest weight representations of 
the Lie algebra or classical Lie superalgebra under consider­
ation. More specifically, starting from the intrinsic module 
M(AO)(Ao), the r realization (4.20) generates, through the 
usualladdering down process, the irreducible invariant sub­
space M( A 0) of the VGB space. According to its definition, 
Eq. (4.16), thedomainofa ves operator r(X) is restricted 
to this subspace. However, the ves operators ofEq. (4.20) 
have a natural extension to the whole VGB space. We call 
the representation in which the domains of the ves r opera­
tors are extended to the whole VGB space the extended rep­
resentation and denote it by r. 
B. Basis for the VG space 

Since 

(r(Hab ),Ocu) = /)bcOal' -/)acObl" 

(r( Cap ),Oal') = -/)al' OaP' 

(S.la) 

(S.lb) 

it follows that the Grassmann variable 0 al' transforms as the 
a component of a so( m) [1] tensor and the p component of a 
u(n) { - 1} tensor. The set {Oaa} thus transforms contra­
gradiently to the set of raising operators {D aa}, which has a 
ves realization involving the set of partial derivatives {aal'} 
comprising a [1]:{ - 1} so(m) EB u(n) tensor. 

More generally, a basis of fully antisymmetric polyno­
mials of higher rank in the Grassmann variables, orthogonal 
with respect to the Grassmann inner product, and having 
good 110 transformation properties, can be constructed by 
considering tensor products of the fundamental Grassmann 
tensor 0 p~ l}' We shall denote these polynomials by 

e[K](m.) (0) 
{-T}(m_

T
) , 

(S.2) 

where (m K) and (m _ T) stand for basis labels for the so(m) 
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and u(n) irreps [K] and {- d, respectively. 
The 110 ranks of the polynomials that one can construct 

in this way are given by noting that the polynomials of degree 
N in the Grassmann variables span a fully antisymmetric 
irrep {IN} ofa u(mn) algebra, 

u(mn) = span{Oaa ab{3' 1 <a,b<m, 1<a..B<n}.(S.3) 

This fully antisymmetric irrep decomposes, under the re­
striction u(mn) J,u(m) EB u(n), into the sum ofirreps 

u(mn)J.u(m) EBu(n) : {1N}J, L {T}:{ - T} 
T 

where the u(m) algebra 

u(m) =span{~ab = vtl Oavabv' l<a:b<m} (S.4a) 

is said to be complementary to the u (n) algebra 

u(n) = span{cl'v = - a~1 Oav aal" 1 <p,v<n} (S.4b) 

in u(mn), where the partition {r} has n rows oflength Ta in 
the range 0< T a <m, where { - T} 

= {- Tn' - Tn_H'''' - TI}, and where, as a result of the 
antisymmetry of the polynomial, {T} is the partition conju­
gate to {T} having n columns of respective height Ta' Neces­
sarily 

m n 

L fa = L Ta = N. (S.S) 
a=1 a=1 

Since the so(m) irreps contained in a u(m) irrep {T} are 
given by the decomposition 13 

{T}i} [US], 
teb 

(S.6) 

where D is the set of partitions having even parts 
(U} = UIS2· .. },Sa even), we determine thatthe polynomi­
als of degree N in the Grassmann variables span the 
so(m) EB u(n) irreps given by the decomposition 

u(mn)J.so(m) EB u(n) : {IN} J, L L [f/S]:{ - T}. 
T sED 

(S.7) 

The construction of orthonormal bases for the (generally 
non-multiplicity-free) decomposition 

u(m)J.so(m) : {T}i L [US] == [K], 
sED 

[K] = [KIK 2'''Kr ], r= [m/2], (S.8) 

using ves techniques is given in Ref. 14. 
Now, an orthonormal basis for the VG space, which 

reduces the stability subalgebra 110, is defined by the coupled 
products 

It!:UK2[~~~}t~,,» = [etK~T} (0) X It!~P ]~!n;:s, (S.9) 

where (i) the polynomials e(O) have been defined above; 
(ii) the kets 

I.,..,) 1[..t°](mA") ) (S.10) ., = {uO}(m",,) 

span the intrinsic highest Z grade 110 module defined in Sec. 
III A (see also Sec. IV A); and (iii) the square brackets 
[ ... X ... ] referto a so(m) EB u(n) (upper and lower) cou-
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pling of the E> polynomials with the intrinsic basis. (All cou­
plings in this manuscript should be understood to be going 
from right to left. Also all mUltiplicity indices resolving the 
possible multiplicites arising from the various Kronecker 
products are implicitly understood but explicitly ignored for 
the sake of notational simplicity.) 

Now, observe that all states of the VG subspace of the 
VGB space have no dependency on the Bargmann variables 
and therefore satisfy the equation 

r(Aall ) It!~)};t'~[;}){~}1~,,) ) = 0, 1 <a'p<.n. (S.l1) 

In accord with Eq. (3.8), we conclude the irreducible Do 
subspaces of the VG space defined by Eq. (S.9) form a basis 
for the Do highest weight (intrinsic) subspaces M(A)(Ao). 

This fact will be highly relevant to the computation of 110 -
reduced matrix elements in Sec. VI. 

c. Basis for the VGB space 

The construction of an orthonormal basis for the VG 
space is easily extended to the full VGB space by observing 
that, since 

(r(Hab ),z!-'v) = 0, (S.12a) 

(r(Call),z!-,v) = - 8a!-'zllv - 8avz!tII, (S.12b) 

the Bargmann variable z!-'v transforms as a [0] tensor under 
so(m) and as the (fJ-v) component ofa u(n) {- 2}tensor. 
The set {z!-'v} thus transforms contragradiently to the set of 
raising operators {A!-'v}' which has a VCS realization given 
by the set of partial derivatives {V!-'v}; thus it comprises a 
[0] :{2} so(m) E9 u(n) tensor. 

A basis of fully symmetric polynomials of higher rank in 
the Bargmann variables, orthogonal with respect to the 
Bargmann measure, and having good Do transformation 
properties can be constructed12 by considering tensor prod­
ucts of the fundamental Bargmann tensor zt°.!.. 2}' We shall 
denote these polynomials by 

(5.13) 

where (m _ s) stands for basis labels for the u (n) irreps 
{ - s} with sED, the set of even partitions. 

An orthonormal basis for the whole VGB space, which 
reduces the stability subalgebra Do, is defined by the u (n ) 
coupling of the basis of Bargmann polynomials (S.13) with 
the orthonormal VG basis (S.9): 

ILA 0) LK)[A 1 [O)[A )(m..t) ) 
{aO};{ - T}{a};{ - sHw}(mw ) 

= [Z to.!.. s} (z) X It!~)UK.!..[~}){a})] t:~::~~ 

= [Z to.!.. s} (z) X [E>tK.!.. T} (0) X It!~)~) ] t!~ ] t:~::~~· 
(S.14) 

VI. r-MATRIX REPRESENTATIONS FOR osp(m/2n) 

A. Identification of the Irreducible submodule of the 
VGBspace 

Considerable economy in the expression of the matrix 
elements of an algebra's matrix representation can be gained 
by exploiting the Wigner-Eckart theorem. Furthermore, if 
one assumes a complete knowledge of the subrepresenta-
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tions of the Lie subalgebra 110 contained in a given represen­
tation of a Lie superalgebra g, it is then sufficient to deter­
mine the 110 -reduced matrix elements of the odd tensors of g 
to obtain a full knowledge of the superstructure of the repre­
sentations under consideration. We show in this section how 
such a program is implemented within the VCS framework. 

The irreducible osp(m/2n) moduleM(Ao) can be con­
structed by laddering down from its highest Z grade Do-in­
variant intrinsic module M (AO) (A 0). The VCS implementa­
tion of this laddering-down process is achieved by 
performing a Do coupling of polynomials E>(f'(E» in the 
VCS lowering operators f'(E) with the states of M(AO)(Ao) 

[E>tK.!.. T} (f'(E»X It!~)~) ] t:~::::S 
[compare to (S.9) where we have substituted O ..... r(E)]. In 
this way, M(Ao) is generated as a direct sum of Do-invariant 
submodules. However, since we assume a complete knowl­
edge of the irreps of 110, it is more economical to represent 
M(Ao) as a direct sum ofllo-invariant submodules each of 
which contains, and is characterized by, an intrinsic (Do­
invariant) highest Z grade subspace M(A)(Ao). We there­
fore seek to identify these intrinsic no-invariant subspaces to 
characterize completely M (A 0 ) • 

The identification of the intrinsic Do-invariant subspaces 
M (A) (A 0) is grately facilitated by the use of projector opera­
tors. The introduction of such operators is necessitated by 
the fact that the subalgebra n_ 1 is not super-Abelian; anti­
commutators of generators belonging to n_ l lie in n_2' the 
set oflowering operators for sp (2n ) . Let P denote the projec­
tion operator that projects each 110 module in the VGB space 
onto its intrinsic Do subspace M (A)(Ao). If 1t,6) belongs to a 
110 module of highest weight ( A) = ([A.]:{ u} ) , then 
P 1t,6)EM(A)(Ao). Consequently, the intrinsic Do submodules 
M (A) (A 0) contained in M(A 0) are spanned by the states 

P [E>tK.!.. T}(f'(E»X It!~)~) ] t:~::::S· 
These states can be expanded on the VG basis (5.9); 

P [E>tK.!.. T}(r(E»X It!:),~) ] ~:n::::~ 
_ &ILAO) .[K) [A)(m..t» 
- {aO} ,{ - T} {a}(m,,) 

(6.1 ) 

The matrix & of expansion coefficients is computed using 
the recursion formula (double bars indicates Do-reduced ma­
trix elements throughout) 

(t!:~ ;t~ T'} t!',} II & 0 IIt!~)} ;tK.!..[~}){a} ) 

= (t!~)U~T'}t!"}lIpr(E)&lIt!~)};l'~!T}t!~). (6.2) 

easily obtained from (6.1) using straightforward recoupling 
techniques. 

The projector P can be written 

P= 1- ~ r(Ball)r(Aall ) ... 
7' (Ylr(Ball)r(Aap)ly) IY)(yI- (6.3) 

[the extra terms, ofhigherorderin f'(A) and f'(B), are not 
needed here]. When this expression for Pis introduced in the 
recursion formula (6.2a), the latter becomes 
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where 
-(0) () (Ao) () a r (Eaa) = ap. (C /'Q - ~ ca Cit) 

+ (}ca(H~~O) + ~«(}au a cu - (}cu aau), 

f(I)(Eaa) = Zau aau' 

-(0) _ (Ao) () () a r (BaP ) - - ~(}ca (}cu C ufJ + ~(}ca cu dfJ du 

(6.4a) 

(6.4b) 

(Ao) Q 6 
- ~(}da(}efJH de + (a-,.,), ( .4c) 

f(I)(BafJ ) = Zau (C ~O) - (}cfJ a cu - ¥fJs V su) + (a-fl). 
(6.4d) 

The various partial expansion f(O) and f(l) in (6.4) are ex­
tracted from the expansion (4.20) and stand for their 'j;<Z) -
invariant [z-number operator, Eq. (6.5i) below] and their 
A 

!tZ) -increasing components, respectively. It is appropriate 
to set 

[A. OJ [A. OJ 
d({uo};{u"}) = 1 

as a starting point for the solution of the recursion formula 
(6.2) since the states of M(AO)(Ao) are unchanged by the 
projection operator. 

Matrix elements involving f(O)(E) are easily computed 
by means of the matrix element equality 

(l!~)} ;~~ r} l!',} 11f(0) (E) IIl!~)} ;tK2 r} t!) 
= (l!~)} ;l~ r} l!',} II (.G,(}) Ilt!~)} ;tK2 r} ~!) (6.5a) 

where 
A _ A _ A _ A (/1) IA (/1) lA (z) n - ~1so(m) ~1u(n) !I so(m) + 41 u(n) + 41 u(n) 

(6.2') 

A A 

- [em - n -I)/4]N(/1) + [en + 1)/4]N(Z) (6.5b) 
A 

is a Do-invariant operator with (i) 1 so (m) theso(m) quadrat-
ic Casimir operator 

A _ _ 

1so(m) = ~r(Hab)r(Hab); (6.5c) 

(ii) I!:lm) the quadratic Casimir operator for the Grass­
mann realization of so (m) [seeEq. (4.21a)], 

1A (/1) -lH(/1)H(/1) 
so(m) -:2 ab ab , 

(iii) lu(n) the u(n) quadratic Casimir operator 

lu(n) = f(CafJ)f(CtJa ); 

(6.5d) 

(6.5e) 

(iv) I~f~) the quadratic Casimir operator for the Grass­
mann realization ofu(n) [seeEq. (4.21b)], 

1(/1) - C(/1)C(/1)· (6.50 
u(n) - afJ tJa , 

(v) 1 ~(~) the quadratic Casimir operator for the Bargmann 
realization ofu(n) [see Eq. (4.21c)], 

fA _ C (z)C (z). 
u(n) - afJ fJa, 

A 

(vi) !t/1) the Grassmann number operator 

N(/1) - () a . 
- aa aa' 

(vii) 'j;<Z) the Bargmann number operator 
A 

(6.5g) 

(6.5h) 

N(Z) =ZaPVtJa. (6.5i) 

Similarly, matrix elements involving f(J)(B) are easily 
computed by means of the matrix element equality 

(6.5j) 

Finally, matrix elements involving f(J)(E) are easily computed by noting that 

f(I)(E) = ~[ZtO~2} Xam ]P~ I}' (6.5k) 

Eigenvalues ofthe Do-invariant operator.G [Eq. (6.5b)] on the VBG basis (5.14) will be noted 

t=li1[A.oJ .[KJ LA.]. [oJ [A.](m~» _ n ( [A.0J .[KJ [A.l.LoJ [A.]) I[A.°J .LKJ [A.J.[oJ [A.](m.,» 
u {UO} ,{ - r} {u} ,{ - s} { ... }(mw ) - {UO} ,{ - r} {u} ,{ - s} { ... } {UO} ,{ - r} {u} ,{ - s} { ... }(mw ) , (6.6a) 

where 

n<t!~)UK2r}t!);t02s}t~t ) = Vso(m) ([..t ]) - !1u (n) ({w}) - !/so(m) ([K]) + !1u (n) ({ - 'T}) + !1u (n) ({ - t}) 

_(m-n-l) ±'T
a

+(n+l) iSa, 
4 a=l 4 a=l 

(6.6b) 

or, more simply, 

.G I LA. OJ [KJ LA. J ) LA. oJ LKJ [A. J I LA. oJ [KJ [A. ](m,,) ) 
{uO};{-r}{u} = n({uO};{-r}{u}) {uO};{-r}{u}(mu ) , (6.6c) 

when S = 0 ({w} = {oJ). 
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B. r -matrix representations for osp(ml2n) 

For m=l=2, the odd elements of the osp(m/2n) superal­
gebra tranform as the components of a single irreducible 
tensor of rank [ 1 ] : ( 1 ) under the Lie subalgebra IJo 
= so(m) Eflsp(2n). This tensor, denoted F, comprises the 
irreducible [1]:{ I} and [1]:{ - I} Do tensors D and E, re­
spectively [cf. Eqs. (2.15)]. For m = 2, F is the sum of two 
irreducible tensors of rank [ ± ]: (1), which, respectively, 
comprises the Do tensors [± ]:{t} and [± ]:{ -t}. To cal­
culate IJo -reduced matrix elements of F in the r representa­
tion, one clearly needs a basis for the representation that 
reduces the go ::Jno subalgebras. Since the basis (5.14) only 
reduces the Do subalgebra, we introduce another basis that 
also reduces go. The latter basis states can be expected to 
have complicated expansions in terms of the VGB basis 
(5.14). However, we shall show that, since we presuppose a 
knowledge of the go-irreducible representations, the explicit 
construction of the latter basis can be avoided. 

Suppose that a basis for the VGB space that reduces go 
::J no is given by a set of states 

I
_I. ( [A oJ [KJ [A J [OJ [A j(m"l ) ) 
'I' (UO) ;{ - T} (u) ;{ - sJ {",}(mw ) • (6.7) 

Note that, as distinct from the notation used in defining the 

and 

(J.([A"J.[K'J [A'J.[OJ [A'J)llr(E)II_,.([A"J .[KJ [A].[OJ [AJ» 
'I' (u") ,{ - T'} (u') ,{ - s'} {",'} 'I' (UO) ,{ - r} (u) ,{ - s} {"'} 

VGB states that do not reduce 1Jo, here we use angle brackets 
to designate the irreducible representations (0) of sp (2n ) 
contained in the irreducible representation 
(Ao) = ([A. 0] :(UO» ofosp(m/2n). (Recall that we restrict 
consideration to representation of IJo equivalent to Hermi­
tian representations of the compact real form of the Lie alge­
bra.) We also assume that the matrix elements for these Her­
mitian representations are known. I

-
5 It will be noted that, 

since the (extended) V CS representation r is not Hermitian 
with respect to the VCB inner product, the basis (6.7) is not 
orthonormal with respect to the VGB inner product. It is, in 
fact, orthonormal with respect to an alternative inner prod­
uct, previously referred to as the VCS inner produce (see, 
also, Sec. VII below). Since we assume full knowledge of the 
IJo representations, these questions need not concern us here. 
Instead, we simply introduce the orthorgonal dual states 

( J.( [A "J [KJ [A J [OJ [A j(m,,) I 
'I' (u");{ - T} (u);{ - ,;} {",}(m,.) ) 

to the basis (6.7). 

(6.8) 

Observe now that we can, in this go -reducing basis, safe­
ly use the Wigner-Eckart theorem to define go -reduced (tri­
ple-bar) matrix elements of the go tensor r(F) in terms of 
Do-reduced (double-bar) matrix elements of r(D) and 
r(E) according to the equalities 

(6.9a) 

= «u){ - sHw};[ 1]{ - 1}1I (u '){ - s'Hw'}) (~(\!~~ ;t~ T'} \!:~ Illr(F) 1111/!(\!~~ ;tK2 T} \!~», (6.9b) 

where «u){ - sHw};[ 1]{ ± t}1I (u '){ - s 'Hw'}) are sp(2n) ::J u(n) reduced Wigner coefficents. From a knowledge of 
these go-reduced matrix elements and the appropriate Wigner coefficients, one can retrieve all the matrix elements ofr(D) 
and f(E) between states belonging to Hermitian representations of the IJo algebra. 

To determine the go-reduced matrix elements in the right-hand sides of (6.9), it is sufficient to determine only the no-

reducing highest weight states 11/!( l!::l ;tK2 T} l;//::::» and to use the relationships 

( J. [A oJ [K'J [A 'J 11- 11_"[..1 "J [KJ [A J ) '1'( (u");{ - T'} (u'» r(D) 'I'(u");{ - T} (u) ) 

= «u){u}; [1 ]{t}1I (u '){u '}) {~n!~·Lt~ T} \!',~ ) 111'f(F) 1111/!(\!~·UK2 T} \!~», (6.lOa) 

when u'>u, and 

( J.([A").[K') [A') )llr(E)II-,.([A").[K) [AJ» 
'I' (u") ,{ - T'} (u') 'I' (u").{ - T} (u) 

= «u){u};[ 1]{ - t}11 {u '){u '}) {~(\!~·Ll~ T'} \!',~ ) Illr(F) III1/!( \!~)Ll~ r} \!~», (6. lOb) 

whenu' <u. 
Now, since the no-reducing states (5.9) provide a natural and convenient basis for the intrinsic modules M(Al(Ao) 

defined by Eq. (3.8), we are allowed the identification 

1
_,.([..1°) .[K) [Aj(m,,») _I[AO).[K) [Aj(m,,» 
'I' (UO) ,{ - T} (u)(mul - {UO} ,{ - T} {u}(mul 

between the subset ofthe highest grade lJo-reducing basis and the VG basis. 
The dual states 

( J.([A"J [K) [Aj(m"l) I 
'I' (u");{-T}(u)(mul 

(6.11 ) 

are not immediately identifiable in this simple way, However, for any state 1'11) in the VGB space, we have the identity 
( J.([A"J [KJ [Aj(mA»I,T') ([A"J [KJ [Aj(mAlIPI'T') 61 

'I' (u");{-T}(u)(mul T = (u");{-T}{u}(mul T, (.2) 

where P is the projection operator Eq. (6.3) that projects any go state to its highest weight component. We therefore obtain 
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(6.13) 

where X stands for either D or E. Note that we suppress for sake of notational simplicity the symbols r/J. '" in equations like 
(6.13) [see also Eq. (6.14) below] in the following since the use of angle bracketsoflabel theirreps [A.] :<u) of~ is sufficient 
to distinguish the ~ -reducing basis. 

In terms of matrix elements of the operator tJ defined by Eq. (6.1), and of the Bargmann tensor () and its Grassmann 
conjugate a in the VG basis (5.9). we finally obtain the ~-reducing matrix elements 

<[A':I.["'I W) Illr(F)III[A~I.lKI [AI) = <1!:~;~~T'}I!"~lIr(D)III!:~;IK2T}I!i) 
(u )'{-T'}(u) (u )'{-T}(U) «u){u};(1){t}II<u'){u'}) 

<~!~.~ ;1~ T'} l!',} lIa IIl!~} ;lK2 r} l!i) 
= «u){u};(1){t}II<u'){u'}) • (6.14a) 

for u' > u, while, for u' < u, Eqs. (6.1) and (6.2a) give 

< [A~.I .l"'l [A'.llllr(F)III{A:I.[KI [AI) = <t!:};1~T'}I!'·~lIpr(E)lIt!:};lK2T}t!1) 
(u }>(-T'}(u) (u H-T}(U) «u){u};(1){ _ t}1I<u'){u'}) 

<~!~~ ;t~ T'}t!'·~ II tJ ()tJ -1111!':~ ;lK2 T}t!i) (6.14b) 
«u){u};(1){ - t}1I<u'){u'}) 

These reduced matrix elements obey ~ -reduced commutation relations, examples of which will be given in Sec. IX. 

c. Subsidiary conditions for finite-dimensionality of 
representations 

Necessary and sufficient conditions for the finite-di­
mensionality of a representation of any semisimple Lie alge­
bra ~ are given by15 

(X_ a )c+lIAO) =0, c=2(Ao,a)/(a,a), (6.15) 

where lAO) is the highest weight state with weight A 0, and 
X _ a is an element of ~ associated with the root - a, where 
aEllo is a positive simple root. As seen in Sec. II D, the set 
110 for ~ corresponds to the distinguished set II of simple 
root for osp (m/2n) except for its (even) simple root 20 n , 
which is replaced by the single odd root of II. Thus, except 
for the special case a = 20n , which, as just argued, is not a 
simple root of osp (m/2n), Eq. (6.15) yields the usual condi­
tions [Eq. (3.5a)] for finite-dimensionality of representa­
tions of the Lie algebra ~. The VCS formalism provides the 
following rationale for the subsidiary requirements (3.5b) 
stemming from consideration of the special case a = 20n in 
(6.15 ). 

We want to find the conditions for which 

(X_2/)U~+IIAO) =0, 

whenever 

u~ = 2 (AO,20n )/(20n,20n ),r = [m/2]. 

For X _ 2/)" - Bnn, we easily verify that 

(r(Bnn W lAO) = (ax + b)k lAO) 

(no sum on n), where 

a = 2znn, 

x = u~ - (Jcn acn - ~znn Vnn , 

b= -(Jdn(JenH~~O). 

By recursion, we obtain 
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( 6.16) 

(6.17a) 

(6.17b) 

which, for 1= u ~, yields the simple expression 

(r(Bnn)r~+IIAO) = (-(Jdn()enH~~O»u~+IIAO), 
(6.18 ) 

an expression fully antisymmetric in the Bargmann variables 
upon expansion. Using a standard Clifford representation 
for the intrinsic orthogonal algebra H(A

O

) , one can ascertain 
that necessary conditions for the vanishing of the right-hand 
side of (6.18) are given by the subsidiary conditions (3.5b) 
( that they are sufficient has been concisely argued by Kac in 
Ref. 9). 

D. VCS expansion for go highest weight Irreps 
A=Ao-P. PEAt 

It is interesting to look at the VCS expansion of states 
obtained from the intrinsic highest Z grade module 
M(AO)(AO) by lowering once with the operator reEl in Eq. 
( 6.1 ). The possible ~ representation labels are then given by 
(A) = (Ao-P),{JEA{,andeachsuch ~irrepappearsin 
a multiplicity-free fashion. The recursion formula for the 
expansion of these states on the VG basis then simplifies to 
the first term on the right-hand side of Eq. (6.2b). Setting 
first P to P = ± Ej + oaE X{ [cf. Eq. (2.20)] and using 
(6.5) and (6.6), we readily derive [in (6.19), AU) is, e.g., a 
partition having null entries everywhere except for unity in 
the I th entry] that 
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[A 0] [A "Of .1(i)] C' ({U O} ;{u" _ .1(a)} ) 
[A"] [I] [A"Of.1W] n([A"] [0] [AO]) = o ({u"} ;{ _ n {u" - .1(a)}) -.u {u"} ;{D} {UO} 

=(AD+p.±Ei +8a ). (6.19) 

in terms of the supersum p defined by Eq. (2.22). and the 
invariant bilinear form defined on the root space by Eq. 
(2.23). For completeness, we also derive for P=8at~t 
that 

[A 0] [A 0] C' ({UO}{U O _ .1(a)} ) 

= O<t!:}t~ n{!:]-.1(a)}) - 0 ( t!:HgH!:~ ) 
= (AD+p.8a ) -~. (6.20) 

Equation (6.19) conveniently summarizes for osp(m/2n) 
the content of Theorem 3 and Lemmas 5 and 6 of Thierry­
Mieg,1O which state that the iii -invariant su~paces identi­
fied by the highest weights A = AD-Pi Piellt, such that 
(AD + p. Pi) = 0, decouple from the highest weight irredu­
cible representation (AD) of 110 = osp(m/2n). 

Irreducible highest weight representation (AD) for 
which 

(AD +P,{3i) = 0, Pie!). (6.21) 

have been qualified atypical by Kac9
; otherwise, the repre­

sentations are called typical. [Note that if (AD + p, Pi) = 0, 
we also have (AD - Pi + p,{3;) = 0 as a consequence ofEq. 
(2.24).] As discussed in Sec. V A. r -matrix representations 
of typical and atypical representation are alwa~ irreducible. 
The same does not hold true for the extended r -matrix rep­
resentations defined in Sec. V A when the representation un­
der consideration is atypical: the extended representation is 
then reducible.but not fully reducible. i.e .• indecomposable. 
This is exemplified in Sec. IX. 

VII. STAR AND GRADE STAR REPRESENTATIONS 

One can define two types of adjoint operations8 for an 
irreducible representation r of a classical Lie superalgebra g 
on a Hilbert space. 

(i) The star adjoint rt (X) of an operator reX) for Xeg 
is defined by the usual Hermitian adjoint rule 

(xlrt (X) Iy) = (r(X)xly)· (7.1a) 

A representation r of a Lie classical superalgebra g is then 
said to be a star representation if. for every Xeg. there is some 
Z xeg for which 

rt(X) = ±r(Zx). rt(Zx) = ±r(X). (7.1b) 

A star representation of a classical Lie superalgebra corre­
sponds to a Hermitian representation of a standard Lie alge­
bra. 

(ii) A grade-star adjoint is defined by 

(xlr (X)ly) = ( - l)~(XH·(Y)(r(X)xly). (7.2a) 

where t(X) is the Z2 grade ofthe element Xeg and t( y) is 
the Z2 grade of the ket Iy). A representation r of a classical 
Lie superalgebra g is then said to be a grade-star representa­
tion if, for every Xeg, there is some Zxeg for which 

r (X) = ± r(Zx)' r (Zx) = =+r(X). (7.2b) 
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Since we are considering finite-dimensional irreducible 
representations of osp(m/2n), we require the star and 
grade-star adjoint operations to be compatible with the Her­
mitian adjoint operation 

(Hij)t = ~i' (Cap)t = CPa' 

(Aap)t = Bap. (BaJj)t = A ap , (7.3) 

on the compact real form of (the complexification 00 110. 
There exist for (finite-dimensional representations 00 

osp (m/2n) two possibilities (up to equivalence) for the 
grade star (t) adjoint operation: we have 

(Daa)t = ± Eaa, 

(Eaa)t = =+Daa' 

(7.4a) 

(7.4b) 

There also exist, for the special case m = 2, two possibilities 
for the star adjoint operation: we have 

(D1a)t = ±iE2a , (E2a )t = +iD1a , 

(E1a)t = ± iD2a , (D2a )t = =+ iE1a · (7.5) 

The conditions for a star or grade-star representation 
can be expressed succintly for an arbitrary representaiton r 
of osp (m/2n) by the equation 

(xlrt(X)ly) = ± (-l)t,6(Y)·~(X)(xlr(Zx)ly). (7.6) 

If a solution to this equation exists for every Xeg, then the 
representation r is a star representation if t{J( y) = 0 and a 
grade-star representation if t{J( y) = t( y). 

To bring the irreducible ves representation r into a 
form in which we can apply this criterion, we seek a K map­
ping from the VGB space to the irreducible subspace such 
that the given VGB basis maps to a basis that reduces the 
osp(m/2n) ::Jso(m) Ell sp(2n) ::Jso(m) Ell u(n) subalgebra 
chain. 

The similarity transform K can be equivalently defined 
by 

K: reX) .... r(X) = K -lr(X)K, Xeosp(m/2n). (7.7) 

Since the ves representation r is, by construction, Hermi­
tian with respect to the VGB measure on restriction to the 
stability algebra 110, it is convenient to require that K com­
mute with the ves representation of the stability algebra, 
i.e., 

r(X)K = Kr(X), VXEDo. (7.8) 

The K operator, diagonal in 110, can be defined in terms of its 
matrix elements, 

( [A
O

] .[K'] lA.'] .[0] [A']I I[A O
] .[IC] [AJ.LD] [AJ) - 0 

{u"} ,{ - r'} {u'}.{ - s'} {.,} K {U O}.{ - r} {u}.{ - s} {.,} - , 

for u '>u, (7.9) 

between VGB 110 submodules. One need not compute K on 
the whole VGB space; rather, it is sufficient to know the 
value of its restriction 

% <l!~H!1 ) fK2. r}f"'~ T} 

= (t!~LIIC,: r} 1!11K It!~} ;t~ r'} t!1), (7.10) 

for the M (A) (AD) subspaces defined in Sec. III e. It is con­
venient to require that the restriction % be Hermitian. It is 
also convenient to set 

[A"] LA"] 1 %({u"};{u"}) = . 
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Following a projection procedure similar to the one in­
voked in Sec. VI A, one easily derives from the definition of 
the r representation that 

p [E>tK2. '-}(r(E»X It!:}) H!J::~~ 

= P [E>fK2. r}(K -1r(E)K)x If!:}) ]~!~~::::~ 

= %-I<t!:}f!~)P [E>fK2. r}(r(E»X If!:})] ~!~~:S' 
(7.11a) 

where P= K -lpK. Similarly, from Eqs. (7.4)-(7.6), one 
finds that 

P [E>tK2. r} (r(E» X I t!~,} ) ] ~!~~:::S 
"6- 1 

= ( ± l)"e( _ l)1:;~0 4>(;) 

XP(f!~ [E>tK2. r}(Kt rt (D)K -It)X Il!~'})] ~!~::::S 

(7.11b) 

where ;(i) either stands for ;(i) = 0 for a star equivalent 
representation,orfortheZ2 grade;(i) = t(Ao) - iofa VG 
state of rank i in the Grassmann variables for a grade-star 
equivalent representation and where ne is the rank of the 
polynominal E>. Equating the right-hand sides of Eqs. 
(7.11a) and (7.11b), we thus obtain 

P [E>lK2. ,-} (r(E» X If!:} ) ] ~!j~::::: 
"9- 1 = ( ± 1)"e( _ 1 )1:;_0 4>(i) 

x%2<t!:H!~) If!:UK~ T}~!j::::S) (7.12) 

, 

thus. more simply. by 

from which one could derive the following recursion for­
mula for the square of the Hermitian restriction % of K 
[Eq. (7.10)] 

(f!:} ;fK~ T} f!:} 11%20 IIf!:} ;tK2. r} t!}) = ± ( - 1) 4>(A) 

X (t!:};tK~ T}t!:} IIpr(E)%2I1f!~'} ;fK2. r}f!~). (7.13) 

Actually, it is not necessary to solve (7.13) as (6.1) and 
(7.12) readily imply that 

(7.14a) 

which, for star equivalent representations, simplifies to 

%2 = (± l)n8d, (7.14b) 

and. for grade-star equivalent representations. to 

%2 = ( ± ( _ 1);(A"> )n8( _ 1 )"e(n8-1)/2 d. (7.14c) 

Equation (7.14) provides us with the means to identify the 
classes of finite-dimensional representations (A 0 ) of osp (m/ 
2n) which can be declared equivalent to star or grade-star 
representations (this will be demonstrated in the next two 
sections); simply, it is sufficient to identify the representa­
tions for which the right-hand sides of Eqs. (7.14b) and 
(7 .14c) define positive-definite operators %2 as requested 
by the definition of the latter. 

Finally, we derive from Eq. (6.14) that Ko - reduced ma­
trix elements for the r representations are given. for u ' > u. 
by 

(7.15a) 

( [A") [K'J [A'I III F)111(A"1 [K) (AI) «(A"J lK'1 (A'J III "Y/-l QY'111[A"1 [KJ [AI) 
(u");{ - T} (u') Y( (u");{ -,-} (u) = (u");{ - T} (u') Jl r(F)Jl (u");{ - T} (u) , (7.15b) 

For u ' < u. the elements are given by 

«(A:I.lKJ (A:llllr(F)III(A:I.lKI (AI) = (f!:};f~T}f!:}IIPr(E)lIf!:};fK2.r}f!l) 
(u ).{ - T} (u ) (0- ).{ - r}(O") «u){u};(1){ _ HII (u '){u'}) 

= ± (_1)4>(A) (t!:};t~T}t!:}II%O%-llIt!:LtK.!.T}t!1> . 
«u){u};(1){ - t}1I(u'){u'}) , 

(7.16a) 

or. more simply. by 

( [AoI.[K'1 [A'llllr(F)III[AO) .[KI [AI) = ± (_I)4>(A)([A"I.[K'1 [A'IIII QY'-lr(F) "Y/III[Aol.(KI (AI) 
(uo).{ - T} (u') (UO) ,{ - r} (0") (uo) ,{ - T} (u') Jl Jl (Uo).{ - r} (u) • (7.16b) 

VIII. THE LIE SUPERALGEBRA osp(1/2n) 

We consider in this section the superalgebra osp ( 1/2n ). An irrep of osp ( 1/2n) is finite dimensional if the highest weight 

" AO=u o = ~ u°l) 
~ a a (S.la) 

a=l 

is such that 

(S.lb) 
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[cf. Eq. (3.5)]. Since the partitions { - 1'} for the Grassmann polynomials 0{_ r} (9) restrict to the set { - l}k, O<k<n, we 
conclude that representations of osp ( l/2n) are multiplicity-free on restriction to Ko [here sp (2n) ]. This can be easily verified 
by noting that the u(n) couplings 

{O'O}X{ - lk} ..... {O'O -l1(j)} = {0'0 -l1(jl,j2, ... ,jk)} = {O'} (S.2) 

[where l1(jl,j2, ... jk)' l<jl <j2 < ... <jk <n, is a null n vector except for the numerical one is its (jl'j2' .... jk) entries] in Eq. 
(5.9) are multiplicity free. 

The ves expansion (4.20). with 9a = 91a • simplifies to 

r(Aa,8) = Vap• 

r(Da) = aa - !9,. V pa' 

r(Ca,8) = C~O) - 9p aa -zpJJ V,.a, 

r(Ea ) = 9,. (C :!O) - ¥aa VaJJ - !9a a,.) + Zaa aa' 

r (AO) Ll a Ll Ll C (AO) {3 (Bap) = Zaa (C afJ - Up a - ¥Ps V sa) - !ua Ua afJ + (a- ). 

(S.3a) 

(S.3b) 

(S.3c) 

(S.3d) 

(S.3e) 

We find that r(O)(B), the term quadratic in the Grassmann variables in (S.3e). here can be rewritten more simply as 

r(O)(B{_l}) = H 9{_ t} X (Ju(n) - I~~!),9{_ t}) ]{-2}, (S.4) 

where the product [9 X ( ... ,9 ) ] stands for a u (n) coupling, and where the quadratic Casimir operators I have been defined in 
Eq. (6.5). 

The recursion formula (6.2) for the coefficients of expansion & for the ves submodules M (a) (0' 0) can be written 

({O' O}{ _ l k}{O'}II&911{O'O}{ - lk-I}{O'+ l1(jd)}) 

= ({O' O}{ - l k}{O'}lIr(O)(E)&II{O'O}{ - lk-I}{O' + l1(jd)}) 

n ({O' O}{ - 1 k}{O'}U r(O) (B) II{O' O}{ - l k- 2}{O'+ l1(jc,jd)}) 

- jc~l ({O' O}{ - 1 k-2}{O' + l1(jc,jd)}{ - 2}{O'}llr(1) (B) II{O' O}{ - 1 k - 2}{O' + l1(jc,jd )}) 
#jd 

X ({O' O}{ - 1 k- 2}{O' + l1(jc,jd)}{ - 2}{O'}lIr(\) (E) &II{O' O}{ - 1 k-l}{O' + l1(jd )}), (S.5) 

which yields 

& ({O' O};{O'}) = {PZn - k - I +.!. .f ~P1n -opJ~) Ii 
2 2 lc = 1 (Picn + Pj~ + 1) 1 = I 

#jd #c 

and which has for a solution 

O{ [k 0] [k (pJ,n+Ptn)] 
&({O' }; O'}) = II Pjl" X II ° ° ' 

1=1 km (Phn +Pjmn + I) 

where P?n is the so-called partial hook 

P?n = p? + n - i. 

In particular, for k = 1, we obtain 

&({O' O};{O' ° - a(jl)}) = (A + p'/)it ) - ! = Phn 

(S.7) 

(S.S) 

[see Eq. (6.20)]. Under the restrictions (S.I), we conclude 
that these coefficients of expansion are semi-positive-defi­
nite. In fact, they are strictly positive definite except for the 
coefficients associated with the partitions {O'} defined by 
(S.2) withA = n andp~n = O'~ = O. 

Equations (S.6) and (8.7) and very strong analytical 
results since they can allow one to compute in principle the 
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(S.6) 

sp(2n)-reduced matrix elements (6.14). This would 
amount to an explicit construction ofthe representations. In 
order to carry out this program successfully, one needs only 
the relevant sp(2n) :::>u(n) Wigner coefficients. 

Only the grade-star adjoint operations (7.4) can be de­
fined on osp ( 1 /2n) when we restrict our attention to the real 
compact Lie subalgebra sp( 2n) of osp( l/2n). We therefore 
seek to identify the possible classes of grade-star equivalent 
representations of osp(l/2n). From Eq. (7.14c). we know 
that the restriction %2 is given by 

%2({O' O};{O'}) 

= ( ± ( - 1 )~(a")t( - 1 )k(k - \)12& ({O' O};{O'}). 
(8.9a) 

But the positive definitiveness of %2 requires that 
± ( - l)~(UO) = + 1, for k = 1. This determines which one 

of the two possible grade-star operations (7.4a) is compati­
ble with the Z2 grade of the highest Z (intrinsic) subspace. 
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Equation (S.9a) then simplifies to 

,%"2({U O};{o}) = ( _ 1)k(k-I)/2 t7'({U O};{u}). 
(S.9b) 

Since the various quantities t7' ({u O};{u}) are semi-positive­
definite, we conclude that they must actually vanish when­
ever the phase ( - 1) k(k - \)/2 is negative for the representa­
tion to be grade-star equivalent. For example, consider the 
osp( 114) case: we have, from (S.7) and (S.9b), 

,%"2({u?un;{u?un) = 1, 

,%"2({u?un;{u? - l,un) = u? + 1, 

,%"2({u?un;{u?,u~ -1}) =u~, 

,%"2({u?un;{u? - l,u~ -1}) 

[ ° ° 1 ] ° ° U I +U 2 + 
=-U2(UI+l) ° ° ' 

u l +u 2 +2 
(S.10) 

from which we conclude that a representation of osp ( 1/4) is 
grade star if and only if the u ~ vanish (see, also, Ref. 16). 
More generally, only a very restricted set of representations 
of osp( 1I2n) can be realized as grade-star representations 
for n > 1. The case n = 1 is studied in more depth in Sec. IX. 

IX. THE LIE SUPERALGEBRA osp(m/2) 

In this section, we intend to study the compact classical 
Liesuperalgebraosp(m/2),form = 1,2,and3. Thesealge­
bras have been studied to a large extent in the literature. We 
nevertheless choose, in addition to the computation of new 
closed analytical results, to rederive some known results 16-18 

in order to show that the somewhat disparate approaches 
found in the literature can be encompassed in the present 
unifying framework. These low rank subalgebras have been 
chosen, first and foremost, because the Wigner-Racah cal­
culus for sp(2) - su (2) is well known; and since Kronecker 
products in su(2) are multiplicity-free, we are able to carry 
out explicitly all the computations. Also, in going from 
m = 1 to m = 3, the tensorial structure of the Lie superalge­
bras osp(m/2) increases in complexity. The case m = 2 is 
notable for the fact that the odd subalgebra ill is reducible 
under Ko, while the case m = 3 presents all the complexities 
of the general problem except for the fact that the 
Ko = so(3) Ell sp(2) algebra is isomorphic to su(2) Ell su(2), 
thus allowing us once more to give fully analytical results. It 
should be noted, though, that the corresponding ves alge-

I 
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braic manipulations do not significantly increase in com­
plexity with increasing m; the relevant information concern­
ing the superstructure of the algebras and their 
representations is concisely carried by a few 110- and Ko-re­
duced quantities easily computed within the present frame­
work. This results in a large economy for the more general 
situation, especially as the ranks of the algebras increase. 

A. Tensorlal structure of osp(1/2), osp(2/2), and 
osp(3/2) 

First, we slightly modify the notation to take advantage 
of the sp(2) -su(2) isomorphism and of our knowledge of 
the Wigner-Racah calculus for su(2). In terms ofthe basis 
{All> Cll> BI\} for sp(2) (Sec. II A 2), we define the 
sp(2) -sUJ (2) angular momentum algebra, 

J + = ~ll> Jo = ~Cll> J _ = ~Bll> 
with the ususal commutation relations 

(Jo,J±)= ±J+, (J+,J_)=Uo' 

(9.1a) 

(9.1b) 

Also, forosp(2I2), the Liesubalgebra so(2) -UB (1) will be 
generated by the "baryonic" operatorl7 

B = Ctf 1\/2 = - iHI2/2 (9.2) 

(this redefinition should not give rise to any confusion with 
the symplectic generator Bap in the following), while, for 
osp(3/2), the so(3) subalgebra will be generated by 

L+ I = f/fll = (lI{l)(H\3 + iH23 ), 

Lo = Ctf II = - iH12' (9.3) 

L_I = ~ 1= (1I{l)(HI3 - iH23 )· 

We also have 

osp(1I2): lIo=uJ (1), Ko=suJ (2), 

osp(2I2): IIo=UB (1) Ell uJ (1), Ko =UB (1) Ell suJ (2), 

osp(3/2): lIo=so(3) Ell uJ (1), Ko =so(3) Ell suJ (2). 
(9.4) 

The grading operator Z is here given by the weight oper­
ator Uo, spanning the uJ ( 1) CsuJ (2) subalgebra. We thus 
have that the tensorial sets n+ I = span{D} and 
B_1 = span{E} are, respectively, the spin-up (+ p and 
spin-down ( - p components of a (reducible for m = 2) 
spinorial (J = P tensor {F} = {D}U{E}. More precisely, 
we have 

(9.5) 
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i.e., 0+ I is no-irreducible for osp( 1/2); Do-reducible for 
osp(2/2) (with FI++I~2] a B eigenvector of eigenvalue 
b = +~, FI+-I~21 of eigenvalue b = - !); and Do-irreduci­
bleforosp(3/2) [withFI!11/2 anL = 1 so(3) teosor]; with 
similar conclusions for 0_ 1, We also have that 
gT = 0+ I E9 0_1 is go-irreducible for osp(1/2) (with Fa J 
spinor); go-reducibleforosp(2I2) (withFI + 112] ab =!J 
spinor, FI - 112] a b = -! J spinor); and IIQ-irreducible for 
osp(3/2) (withFI I] aL = 1 Jspinor). 

We shall make the substitutions 

v = !Vl1 , Z=Zl1' 

in the VCS expansion (4.20) so that 

(V,z) = 1. 

Also, the UJ (1) intrinsic subalgebra 

J (AO) - le (An) ° -:2 11 

is defined such that 

(9.6a) 

(9.6b) 

(9.7a) 

J~An)lJ~n](m~» =jOIJ~n](mA"»; 2r = u~, (9.Th) 

where {IJ~ O](m,,»} spans a basis for theM (An) (A 0) Do-intrin­
sic module, and the set {(mAo)} spans a basis for the so(m) 
intrinsic irrep [...t 0]. 

The label [...t 0] is redundant for m = 1. For m = 2, we 
set 

(9.Sa) 

(irreducible representations [b 0] ofso(2) -UB (1) are one 
dimensional) such that the intrinsic operator B (AO) is de­
fined by 

B (A
O)IJe"]) = bOIJe"]). (9.Sb) 

For m = 3, we set 

[...t 0] (m~) -+ [/O]m (9.9a) 

such that the intrinsic angular momentum algebra L (An) acts 
on the intrinsic basis according to the transformation law 

L ~~o)lJ!.nlm) = (/ Om;lm'l/om + m')~/°(lO + 1) IJ!."]m+m,), 
(9.9b) 

where (/ Om;lm'l/om + m') is the usual su(2) coupling 
( Clebsch-Gordan) coefficient. 

2. The Lie superalgebra osp(1 12) 

In this section we examine the finite-dimensional repre­
sentations of the Lie superalgebra osp( 1/2) with highest 
weights 

(9.10) 

We find, in angular momentum notation, the following 
commutation relations for osp( 1/2): 

(9.11a) 

(Ja,F,J = "l (~; lal!v)Fv ' 

(Fa,Fp) = :Zv'2(V1;!allm)Jm • 

(9.11b) 

(9.11c) 

The VCS expansion (4.20) (with 011 = 0) simplifies to 

r(J+) = V, (9.12a) 

r(F+ 1/2)=a-OV, (9.12b) 

r(Jo) = J~AO) - !Oa- zV, 

r(F_ 1/2 ) = O(U~AO) -zV) +za, 
r(J_) =z(U~An) - Oa-zV). 

(9.12c) 

(9.12d) 

(9.12e) 

The VOB basis I j O;j) for mJ = j states is given by 

Ir;jO) = IjO), (9.13a) 

Ir;r -!> = 0ljO). (9.13b) 

From (6.1) and (6.2), we find the following values for the 
coefficients of expansion of the ves basis on the VO basis: 

d(r;r) = 1, 

d(r;r-!) = (Ao+p,l5 l ) -!=2r, (9.14) 

also given by (S.7) with k = n = 1. 
We find, in the ordered VO basis (9.13), the following 

go-reduced r-matrix representation: 

(r;lIIJr(F)lllr;j) = Cr [(2r: 1)/1Jop12 ~). 
(9.15) 

We verify that it obeys the reduced-commutator algebra 

~ uV' ! ./, ! ;rl) 
J 

X (r;llllFllljO;j")(r;j" 1IIFIIliO;j) 

= l5il~2j(j + 1), (9.16) 

easily deduced from Eq. (9.11c). 
Only the two grade-star adjoint operations 

(Fa)t= ±(_1)1I2-aF_a (9.17) 

are possible for osp( 1/2) whenever we restrict our attention 
to its real compact Lie subalgebra sp(2). Accordingly, we 
find the following values for the restrictions %2 [Eq. 
(7.14c) ]: 

%2(r;r) = 1, 

(9.1S) 

The positive-definitiveness of %2 implies that 
± ( - 1 )WO) = + 1, which determines which one of the 

two grade-star adjoint operations in (9.17) is compatible 
with the Z2 grade of the highest weight state. We conclude 
that the irrep j ° of osp ( 1/2) is a grade-star representation 
foraUr>O. 

The go-reduced r-matrix representation of the odd ten­
sor ofosp(1/2) equivalentto (9.15) is given, in the ordered 
basis (9.13), by 

[± (_I)W
O

)(2r )P/2) 
o ' (9.19) 

which also verifies (9.16). These sP(2)-reduced r-matrix elements obey the grade-star conjugation rule 
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(r;llllr(F)llliO;j) = ± (-l),"(Jl( -l)i+I12-Jl[dim(j)/dim(/)J1I2(;0;jlllr(F)lllio;f) (9.20) 

easily derived from ~s. (7.2) and (9.17). These results reproduce concisely the analysis ofScheunert et al.17 

c. The Lie superalgebra osp(2/2) 

In this section we examined the finite-dimensional representations of the Lie superalgebra osp (2/2) with highest weights 

AO =,1. ~EI + u~81 = 2boEI + 2r81, 

with b ° here a real number. From Sec. II, we find the following commutation relations in su(2) coupled form: 

(Ja.Jp ) = ~(1p;lallr)Jr' 
(Ja,F1± 1121) = .Jl(~;lal!v)F~ ± 112), 

(B,F1 + 112) =!F1 + 112), (B,F1- 112 ) = - !F1- 112 ), 

(F1 + 112),F1- 112 ) = - 2~(!p;!allr)Jr - 2~(!p;!aIOO)B. 

The ves expansion for the superalgebra is given by 

r(J+)=v, 

rcFIll~2) = - a~ - (J ± V, 
(A

O
) (J a (J a reB) = B +! + + -! _ _, 

(An) (J a I(J a V r(Jo) = J ° -! + + - l _ _ - z , 

r(FI!=I~2) = (J ± (2JbAn
) ± 2B (N') - zV - (J~ a~ ) - Za~, 

r(J_) = z(2JbAn
) - (J+ a+ - (J_ a_ - zV) + 2(J_(J+B (An). 

The substitutions 

(J+-(J_, B(An
) ..... _B(An

), 

clearly reflect the superalgebra automorphism 

F I+ I /2) FI-1I2) B B J J 
± 112 - ± 112' ..... -, a..... a' 

The orthonormal BG basis of mj = j states is defined by 

I
lbn).lb n) _llbn) 
jn ,pI - jO , 

I
lbO).[b

n
+ l1 ) _ (J Ilbn) 

jn 'P'-f - + jf) , 

I
lbndbn-ll) _ (J Ilb n) 
jO 'io _ f - _ jn , 

I
lbn).lb n) ) - (J (J I Ibn) 
jO 'jO _ 1 - _ + jO • 

(9.21) 

(9.22a) 

(9.22b) 

(9.22c) 

(9.22d) 

(9.23a) 

(9.23b) 

(9.23c) 

(9.23d) 

(9.23e) 

(9.230 

(9.24a) 

(9.24b) 

(9.25a) 

(9.25b) 

(9.25c) 

(9.25d) 

From (6.1) and (6.2), we find the following values for the coefficients of expansion of the ves basis on the V G basis: 

IJ (Ib"). Ib"l) - 1 
(/ jO 'iO -, 

IJ Ib") [bo+ll A O 8) 2(j0 b O) 
(/(j" ;j"-f )=( +p,-EI + 1 = + , 
d<J~O);J:~f!]) = (AO+p,E1 +81) =2(r-bO), 

d(J~O);J~~ I) = 2(2r - 1)«bO)2 - (r)2)!r 

(9.26a) 

(9.26b) 

(9.26c) 

(9.26d) 

(notethatp = Ohere). Vanishing of the coefficients (9.26b) or (9.26c) gives us theatypicality conditions for osp(2I2). Note 
thatEqs. (9.26) also provide us the branching rule (3.9) forosp(212), e.g., it is clear that whenjO = bOthestates (9.25c) and 
(9.25d) do not belong to the representation. 

We find, in the ordered basis (9.25), the following ~-reduced r-matrix representation: 

0 -1 

~I) 0 0 

0 0 o ' 
0 - 2(r + b 0)[ (2r - l)12rJ 1/2 0 

(9.27a) 
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-1 0 

V 
0 0 

0 0 

- 2(b ° - r)[ (2r - 1 )/2rp/2 0 

(9.27b) 

We verify that it obeys the reduced-commutator algebra 

~ U(J' ~ j' ~'J·"O)(lbOI.lb'l IIIFI + 1121 III !h')!.lb"l) (!bol.lb"1 IIIFI - 1/21 III !h')I.!b I) 
~ "" jf) 'I )0 'J" J

O 'r In 'J 
b",r 2 2 

~ U(J' 1 J' l'j'"0)(lbOI.lb'IIIIFI-1I21111IbO!.lb"I)(lbOI.lb"IIIIFI+1121111IbOI.lbl) - _ i: i: 2 fi\2b - ~ , -, ,-, jO,! jO 'i" jO 'jlt P' 'i - Ubb,Ujl v~ , 
b",r 2 2 

(9.28a) 

~ U(J' ~ J' ~'j·"I)(!bOI.lb'IIIIFI+1/21111!bO!'!b"I)(!b')!'!b"IIIIFI-1I21111!h')I.!bl) £. "" J () 'l J () 'i' ) 0 'J" } II 'J 
b",r 2 2 

+ )2." u(j, ~ ,j,+;j"I)(J~OI;Jb'IIIIFI-1I21111J~OI;J.b"I)(WI;J!'"IIIIFI+II2111IJ~oIJbl) = -8bb'8jj2~2j(j+ 1), 

.} (9.28b) 

easily deduced from Eq. (9.22d). 
The matrix representation (9.27) reproduces very concisely the analysis ofScheunert et al. 17 For example, we see that, for 

b ° = jO, the (extended) f-matrix representation is of the form 

(~ ~), 
i.e., it is reducible but not fully reducible with A the left upper 2 X 2 matrix. Similar conclusions can be drawn for the case 
b ° = - j ° to within a reordering of the basis (9.25). 

Two star and two grade-star adjoint operations can be defined on osp (2/2) (see Sec. VII) upon restriction of its Lie 
subalgebra to the compact real form so (2) Ell sp (2): from (7.5) and (9.5), we find 

(F~ + I12I)t = ± (_ 1)1I2-aFI_-al12l , (F~ -1I21)t = + (_1)1I2-aFI_+aIl21, 

for the star adjoint operation and, from (7.4) and (9.5), 

(9.29a) 

(F~ + 1/21)t = + ( _ 1) 112 - aFI_-aI/21 , (F~ - 1121)t = + ( _ 1) 112 - aFI_+aIl21 , (9.29b) 

for the grade-star adjoint operation. 
We first seek to identify the star equivalent representations. From (7.14b), we find the following values for the restric­

tions %2: 

%2(J~ol;Jf'l) = 1, 

%2 (J~OI;}::+n ) = ± 2(bO + r), 

C}'/2 (lbOdbO-~l) _ ±2(bO_j'0) 
tA jn 'jO-f - , 

%2 ( Jf'I;J~~ I ) = 2(2r - l){(b 0)2 - (j 0)2)!r. 

(9.30a) 

(9.30b) 

(9.30c) 

(9.3Od) 

Positive definitiveness of %2 forces us to conclude that we have a star representation whenever ± b o>j 0. In the ordered basis 
(9.25), we then find, for the star equivalent ~-reduced r-matrix representation, 

(J~ol;Jb'l Illr(F 1+ 1121) IIIJ~ol;Jb I) 

( 

0 0 -[±2(bo-r)]1/2 

= ± [ ± (bO + r~o(2jO + 1)lrpl2 ~O ~ 

+ [ ± 2(b O + r)]1/2 

(J~'\~b'l Illr(FI - 1121) IllJf)I;Jb I) 

( 
° _[±2(bO+jO)]1/2 ° 

= + [± (bO - r~o(2r + l)!r]1/2 ~ ~ 
+ [ ± 2(b ° - r) p/2 0 

which verifies (9.28). These ~-reduced r-matrix elements (9.31) obey the star adjoint condition 

(J~'\~b'llllr(FI + 1121) IIIJ~ol;Jbl) = ± ( - 1)H 1/2 -I [dim(j)/dimCl) ] II2(J~ol;Jbl Illr(FI - 1121) IllJf'I;Y'I), 

easily derived from (9.29a). 
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From (7 .14c), we find, for the grade-star adjoint operation, the values for restrictions %2 of the K operator; 

%2(J~O];J~O]) = I, (9.33a) 

(9.33b) %2(J~O];J:~fH) = ± ( _ I)w
O)2(b o + jO), 

'Y.r2([bO].[b O -H) _ ± ( 1)~UO)2UO bO) 
./l jO 'j"-i- - - -, (9.33c) 

(9.33d) 

from which we conclude that a representation ofosp(2/2) is grade-star equivalent if and only if ± ( - 1 )wuJ = + l,j ° = !, 
and -! <bo <!. The state (9.25d) then has null ves norm and one must truncate (9.27) to its left upper 3X3 matrix. We 
then find for the grade-star ~ -reduced y-matrix equivalent representation 

<jI"';}"'lllr(F' + "'1>1 I I)!"';j") ~ ( ± ( - l)W"'[ ± ( -:l)W"'20 + 2b"> I '" ~ 
_ [ ± ( _ l)w")(1- 2b o) P/2) 

o , 
o 

(9.34a) 
- [ ± ( -l)WO)(1 + 2bO)] 1/2 0) 

o 0 , 

o 0 
(9.34b) 

which verifies the reduced-commutator algebra (9.28). These ~-reduced y-matrix elements obey the grade-star adjoint 
condition 

(J~"];Jb']llly(F[+1/2])IIIJ~'\~b') = ± (_I)WJ( -1)j+1/2-I[dim(j)/dim(t)]1/2(Jr];Jb]llly(F[-II2I)IIU~ol;Jb' I), 

(9.35) 
easily derived from (9.29b). 

D. The Lie superalgebra osp(3/2) 

In this section we examined the finite-dimensional rep­
resentations of the compact Lie superalgebra osp(3/2) with 
highest weights 

(9.36) 

From Sec. II, we find the following commutation rela-
tions in angular momentum coupled form: 

(Ja,Jp ) = J2(lP;lally)Jy, (9.37a) 

(Ja,FW~)I') = v'I(~;lal!v)Fg~~)v' (9.37b) 

(Lm,F!n~;I') = J2(lm';lmllm")Fg~~;I" (9.37c) 

(FW~)I',FW~;v) = - 2~(lm';lmIOO)<!v;!Ulla)Ja 

+ 2(lm';lmllm") qv;!UIOO)Lm ". 

(9.37d) 

In angular momentum coupled notation, the ves expansion 
(4.20) simplifies to 

r(J+)=v (9.38a) 

a- = (_l)l-m~ 
m aO

m 
' 

(9.38b) 

r(Lm) = L <,.,A
O

) _ ~[O Xa] Im=.L <,.,AO) + L <,:), (9.38c) 

r(Jo) = J~/') - Vr(J - HZ, H(J = L Om am' 
m 

(9.38d) 

- J2[O xL (AU)pm + [0 X [0 Xa] l]1m, 
(9.38e) 
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r(J _) = Z(2J~AO) - H(J - Hz) - ~[[O XO] I xL (AO)]O, 

(9.38f) 
where the square brackets represent so(3) couplings, e.g., 

[OXO]lm = L (lm l;lm2 11m )Om,Om, 

The (23 = 8) fully antisymmetric orthonormal polyno­
mials 0[~!;~ (0), which can be constructed in terms of the 
Grassmann variables {O_I,OO,OI}' are defined by 

0bO]0(O) = 1, dim = 1, 

0[2.1:/2 (0) = Om' dim = 3, (9.39) 

0[2.];"(0)= -(1/J2)[OXO]lm' dim = 3, 

0[~]:t2 (0) = - (1/~)[O X [0 xO] If, dim = 1. 

The orthonormal BG basis of mj = j states (with 
j = j ° - n(J/2) is defined by 

1
[/Ol.[/]m ) _ [",,[I] (O)XI[/O])][/]m 
jO 'jO _ f - '=' _ 1/2 jU , 

1
[/°l.[/lm) _ [",,[I] (O)XI[/O])][/]m 
jO,j_1 - '='-1 j" , 

I [/°l.[/O]m) - ",,(0)0 (0) I [/O]m) 
jn 'i--r - \:.1_3/2 jU • 

(9.4Oa) 

(9.40b) 

(9.40c) 

(9.4Od) 

One notes the emergence of the (multiplicity-free) j[l] 
weight diagram IS, 17 

j \{l] [/°-1] [/0] [/0 + I] 

r • (n(J = 0) 

r-! • • • (n(J = I) 

r-l • • • (n(J = 2) 

, ° ~ J - • (n(J = 3) 
(9.41 ) 

R. Le Blanc and D. J. Rowe 33 



                                                                                                                                    

from the L couplings in (9.40). Of course, angular momen­
tum forbidden coupled states (1<0) should be ignored. 
Also, states withj";;O will be truncated by the ves expansion 
itself in accordance with the conditions (3.5) [see Eqs. 
(9,42) below]. 

From (6.1) and (6.2), we find the following values for 
the coefficients of expansion of the ves basis on the VO 
basis: 

& (JI,"I;Jf.°I) = 1, (9.42a) 
,fi [/"1 [/°+ II AO £ 2. 0 [0) v(j" ;j"_j- )=( +P,-€I+UI)=('J + , 

(9.42b) 

,fi [/°1 [/°1 AO £ • ° 1 v(j" ;jO_j-)=( +p,uI)-!=(2j - ), (9,42c) 

1/ [/"1 [/ 0 -11 AO £ 2'° [0 1 v (jO ;j"_j-) = ( +P,€I +UI) = ('J - -), 

(9.42d) 

& (jf."I;Jf.':"'+III) = (2jO - 1)(2jO + [0), (9,42e) 

&(Jf,"I;J!.'~ I) = (2r _[0 - 1)(2r + [o)(~o -1)/(~0), 
(9,42f) 

&(jf'l;jr~/I) = (2r - 1)(2jO _[0 - 1), (9,42g) 

&(jf."I;J!.'~-1-) = (2r - 2)(2r _[0 - 1)(2r + [0). 

(9,42h) 

Equations (9.42) give explicitly the branching rule osp(31 
2)lso(3) esp(2): the vanishing of any of the above coeffi­
cients & indicates that the corresponding [I]:j multiplet of 
so ( 3) e sp (2) does not belong to the irreducible representa­
tion. 

The extended f-matrix representation of osp(3/2) in 
the ordered basis 

j\[I] [10 - 1] [10] [/°+1] 

r (ne = 0) 

. ° ! j - 5 2 3 (ne = 1) 

jO -1 6 7 4 (ne = 2) 

r-~ 8 (ne = 3) 
(9.43) 

is given by the matrix 

TABLE I.ao-reduced r submatrices for osp(3/2) [see Sec. IX D, Eq. (9.44)]. 

0 _ [210 + 3 r12 

21° + 1 
0 

(2jO _ 1)[ 2j~; 1 r2 
0 0 [ 10( 21° + 3) r2 

A= 
- (/0 + 1 )(2/° + 1) 

(2'0 + 10)[ 2jO + 1 r12 
0 0 _ [10 + 2 r12 

'J 2jO 1° + 1 

0 (2'0+/0) J [ 2/°'° r2 

'J (/0 + 1)(2r-1) 
[2r (2jO _ 1)(/° + 2) ]'/2 

(/0 + 1) 
0 

[21° - 1 r12 

21° - 1 
0 0 0 

0 [(10 + 1)(2/° - 1) r2 
0 

B= 1°(21° + 1) [/0(10 + 1) ]'/2 

0 0 [ 1° r2 

(10 + 1) 
0 

0 0 0 -1 

[2
jO + 1 r2 

2r 
0 0 0 

0 _ [ 2/(1° - 1) r12 
0 0 

C= (2r-/0-1) 
10(2r-1) 

0 
_ (2j0 + 10) _ [ (2r - 1)/°(2/° + 3) r12 

0 
(2r(2r - 1)/°(1° + 1) 1/2 2j°(l°+ 1)(2/°+ 1) 

0 0 0 [(2r - 2)(2/° + 3) r2 

(2jO-l)(2/°+ 1) 

0 _ [ (1°/-;; 1) r2 

_ [(l°/! 1) r12 
0 

[2jO(2r -/~) UO - 1) r2 
0 0 -1 

D= 
(2'0+/O)[(2r-1)(l0+ 1)(2/°-l)r12 

'J 2/fjo(2/0 + 1) 
0 0 -1 

0 (2'0 + [0) [(2r - 2)(21° - 1) r2 

'J (2r - 1)(21° + 1) 
_ 4joUo_l) [2r-1 r12 

(2r-1) 2r-2 
0 
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<;::;Yllli'f(F(lI)llljI.ClI;YI) = (~ ~) (9.44) 

where A, B, C, andD are 4 X 4 matrices given in Table I. 
Under the assumption that 2r>0 and 1°>0, the ([l°lio) 
representation of osp(3/2) is found to be atypical only if 

(9.42d) vanishes. The (extended) f-matrix representation 
(9.44) is then reducible but not fully reducible as the lower 
left submatrix C vanishes. 

One easily verified that the KQ-reduced f-matrix repre­
sentation obeys the reduced commutator algebra 

I 

~ U(/ 1/'1;1 "0) UV+ l ~ ;j"1 )<JI,ol;)"IIIIFIIIIIIJI:I;Y'I)< jl.'\Y·IIIIFI1IIII}I.'\jll) . 

= - 811'8i1~6j(j + 1), 

and 

)' U(/ 1/'1;1" 1) U(j .!.l.!. ;j"0) <j!.ol;),,1 I 1IF(lII IIJ!.'\U"I) <j!'"\U"IIIIFIIIII I}r.-WI) 
~ ~ 2 2 

=811'8i1~/(l+ 1), 

easily obtained from (9.37d). 

(9.45a) 

(9.45b) 

Only two grade-star adjoint operations can be defined on the superalgebra whenever one restricts one's attention to the 
real compact Lie subalgebra so(3) fDsp(2) ofosp(3/2): from (7.4) and (9.5), we find 

(F11Im)t = =+= (_I)I12-a( -1)I-mFI~la-m. 

We find the following values for the various restrictions %2: 
CV"2(II Cl I.1 10I) _ 1 

t.A jn ,jn -, 

%2(J1,ol;J!,'~+/I) = ± ( - 1)WCI)(2r + 1°), 

%2(jl."l;J!.'~f) = ± ( - 1),,(jO)(2jO - 1), 

%2(jl."l;J!,'~-p) = ± (-1)"(j")(2r _1° - 1), 

%2(J1,ol;jl.'~~ II) = _ (2r - 1 )(2r + 1°), 

%2<JI,OI;jl,'~ I) = - (2r _1° - 1)(2r + 10)(2r - 1)/(2jO), 

%2(jl,ClI;jl"~-III) = _ (2r - 1)(2r _1° - 1), 

%2(jl.°I;J!.'~1) = =+= ( - 1)W O)(2r - 2)(2r _1° - 1)(2r + 1°). 

(9.46) 

(9.47a) 

(9.47b) 

(9.47c) 

(9.47d) 

(9.47e) 

(9.47f) 

(9.47g) 

(9.47h) 

Withr>O and 1°>0, we see that the overall sign of the various restrictions depends of the values ofthe expression 
(2r _1° - 1) and it is easy to conclude that generic representations ofosp(3/2) are not grade-star equivalent. The only two 
exceptions ls

•
17 are the cases ([/Olio) = ([OB) and (UH) [we admit spinor representations ofso(3)]. For these cases, we 

obtain, in the {[/li = [lOB, [1° + 1]0} ordered basis the 2X2 r-matrix representation 

< j!.°W'llllr(FIII) Illjl,'\yl) 

( 
0 - [ ± ( - 1)WO)(l0 + 1

0

)(2/0 + 3)/(2/° + 1) JI/2
) 

= ± ( - 1 )"U
O

) [ ± ( _ 1 )wO)2(l° + 1)] 1/2 
(9.48) 

with grade adjoint conditions 

< !1."1.11') I Ilr(FI1I)1 11!i,OJ.!II) = ± (-1)"(j)( _1)1+1-1'( _1)j+1/2- J [dim[/] dim(j) ]112 
J 'J 2 J 'J dim[/'] dim(/) 

X <jl."l;yllllr<F!II)IIUI."I;yl). (9.49) 
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The Sinai theorem is generalized to determine the transformations that preserve the critical 
concentration Pc and the critical exponent /3 in the random site problem. 

The interest in spin glass, \ polymers, and hopping con­
duction theory has increased the importance of the random 
site problem. 2 In this problem sites are distributed random­
ly. Let tij be some function of the rij' which is the position 
vector ofthejth site with respect to the ith site. The sites i and 
j are considered bonded, hence belong to the same cluster, if 
for some number t, 

(1) 

This relation is called the bonding criterion. The percolation 
threshold tc is the lower bound of t that permits the exis­
tence of an infinite cluster. The surface defined by 

tij =t/J(rij) = t, 
where t> 0, t/J is a homogeneous, increasing, and positive 
function ofthe components ofrij' is called the bonding sur­
face. An identical surface Q~ is constructed around every site 
and we increase t until t = tc' where an infinite cluster is 
formed for the first time and the bonding surfaces of two 
consecutive sites intersect with each other. This is called the 
overlapping figure construction of the random site problem. 

The problem under consideration is what are the trans­
formations that preserve tc? The first answer was obtained 
in Ref. 2 and is stated in the following theorem. 

Theorem 1 (Sinai): If a surface Q~ can be obtained from 
a surface Q~ via a linear transformation of the coordinates 

(2) 

(we are using the Einstein summation convention), where 
the constants Akl involve both rotation and dilatation, then 
sc for the two surfaces are identical. 

This result has been generalized Ref. 3 in two dimen­
sions to the following theorem. 

Theorem 2: If a curve Q ~ can be obtained from the curve 
Q~ via a conformal transformation 

z' =f(z), (3) 

where z' = x' + iy', z = x + iy, then tc and the critical expo­
nent /3 are identical for both cases. The critical exponent /3 is 
defined via the percolation probability pet) (the probability 
that a given site belongs to an infinite cluster) by 

pet) - (t - tc )p, as t ~ t c+ • (4) 

Now the question is can we generalize Theorem 2 to 
higher dimension, especially d = 3 and 4. This question is 
related to the existence of conformal mappings and analytic 
functions in dimension d > 2. As for the conformal mappings 
it is known4 that conformal algebra exists in any dimension 
and is given by 

[D,PIl ] = - PIl , [D,KIl ] = KIl , 

[Jllv,p;.] = 'T/~Pv - 'T/v;'PIl , 

[Jllv,K;.] = 'T/~Kv - 'T/v;.KIl' 

[PIl,Kv ] = 2('T/llvD - Jllv)' 

(5) 

[JIlV,JpU ] = 'T/llpJVU - JVP'T/Ilu - 'T/vPJllu + 'T/vuJ/lP' 

Therefore we infer that, at least locally, conformal mapping 
exists in any dimension. 

Analytic fucntions, however, are a different matter. The 
generalization of the complex variable z = x + iy to four di­
mensions is the quantemion, which we denote by 

z=xo + i\x\ + i2x2 + i3X3' 

such that 

if = i~ = i~ = i\i2i3 = - 1, 

ipiu = Epurir' p,U,T = 1,2,3; 

(6) 

(7) 

Epur is a totally skew symmetric symbol, Em = 1. To get 
d = 3 one sets X3 = o. 

Following the concepts of the two-dimensional complex 
analysis, we introduce the following definitions. 

Definition 1: There are three types of conjugations; rl), 
pI, Z(3) defined by 

rl) = Xo - i\x\ + i2x2 + i3X3' 

r2) = Xo + i\x\ - izX2 + i3X3' 

Z(3) = Xo + i\x\ + i2x2 - i3x3. 

It is clear that they commute with each other. 

(8) 

Definition 2: An analytic function in four dimensions is 
defined by 

00 

fez) = L Cn (z)n, (9) 
n=O 

where Cn are constant quatemions. 
Now we have the following theorem. 
Theorem 3: According to definitions 1 and 2 the only 

analytic function in three and four dimensions is 

fez) = Co + c\z. (10) 

Prool Denoting a laz(p) by a(p»p = 1,2,3, the general­
ized Cauchy-Riemann conditions necessary for the exis­
tence of analytic functions are 

a(l)f(z) = a(2)f(z) = a(3)f(z) = o. (11) 

Assuming 

fez) = Uo + i\ U\ + i2 U2 + i3 U3, (12) 

Cauchy-Riemann generalized conditions take the form 
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aouo - al U1 = 0, aOu1 +a1UO=0, 

aOu 2 - a l U3 = 0, aOu 3 + a1U2 = 0, 
( 13) 

aouo - a2 U2 = 0, aOu1 + a2 U3 = 0, 

aOu 2 + a2 UO = 0, aOu 3 - a2 U1 = 0, 
(14) 

aouo - a3 U3 = 0, aOu1 - a3 u 2 = 0, 

aOu 2 + a3 U1 = 0, aOu 3 + a3 UO = 0, 
(15) 

where 

ap' =.a /axll, J.l = 0,1,2,3. 

Studying the compatibility conditions of the four dimension­
al Cauchy-Riemann conditions (13), (14), and (15) it is 
straightforward, though tedious, to conclude that 

Uo=Uo(xo), U1=U1(X I ), 

U2 = U2 (X2 ), U3 = U3 (X3 ), 

as well as the condition 

(16) 

a! Up. = ° (no sum over J.l). (17) 

Equation ( 17) is reminiscent of the relation between analyt­
ic functions and harmonic functions in two dimensions, 
though it is more stringent. The only solution of ( 16) and 
(17) that is compatible with (9) is the linear function. 

This completes the proof of the theorem. 
It is interesting to notice that there is an analogous 

theoremS proved for supermanifolds. It is known that qua­
ternions are closely related to spinors. This also explains why 
the conformal algebra is infinite only in d = 2 since in this 
case it is related to analytic function.6 

Therefore, despite losing analytic functions, we still 
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have the conformal transformations. However, recalling 
that what we really need is the set of transformations that 
map intersecting surfaces onto intersecting surfaces and vice 
versa, the requirement of preserving the sense of the angle of 
intersection is a luxury we can afford to lose. Since 1-1 and 
onto transformations maps intersecting surfaces onto inter­
secting surfaces and vice versa, we have the following 
theorem. 

Theorem 4: In any dimension if a surface Q, is obtained 
from the surface Q, by a 1-1 and onto transformation then ~c 
and the critical exponent /3 are identical for both cases. 

We give some examples. The transformation 

x-ax, y-y, z-z (18) 

maps a sphere onto an ellipse; hence they both have the same 
~c and /3. The transformation 

f- -f (19) 

is a reflection through the origin that is not a conformal 
mapping; however, it preserves ~c and /3. Finally, one can 
define a 1-1 mapping from a unit circle onto a square via the 
argument {}(z=.aei8 on the circle); hence according to 
Theorem 4 both circle and square have identical ;c' This 
result has been confirmed using computer simulation. 7 
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The construction of a wavelet analysis over the circle is presented. The spaces of infinitely 
times differentiable functions, tempered distributions, and square integrable functions over the 
circle are analyzed by means of the wavelet transform. 

I. INTRODUCTION 

In this paper we want to show how to analyze fairly 
arbitrary functions over the circle T 1 with the help of a two­
parameter family g""a of functions called wavelets. They are 
labeled by a position parameter t,6eT' and a scale parameter 
a, a> 0. In standard wavelet analysis of functions over the 
real line JR, the family of analyzing wavelets is obtained from 
a single function by means of dilations and translations (e.g., 
Ref. 1). On the circle it is difficult to define a good dilation 
operator, and therefore the wavelets over the circle cannot be 
obtained by an irreducible representation of the affine group, 
as was the case in Refs. 1-4. 

As proposed before5 in the case of orthogonal wavelet 
analysis the wavelets that we will use are obtained from the 
standard ones (l/a)g«x - t,6)/a) by means of periodiza­
tion: 

() ,,1 (x-t,6+n) "k: 1 + g",.a X = ~ -g , 'f""'T, aeR . 
nEZ a a 

(1.1 ) 

This series converges whenever g decays sufficiently fast at 
infinity. The wavelet transform of a complex-valued func­
tion over T' is a function over the position-scale space, 
which is an open, infinite, cylinder Y = T' X JR + . It is given 
by the following scalar products: 

(Tg s)(t,6,a) = (g.".a's), (t,6,a)eY. (1.2) 

The wavelet transform is a sort of mathematical microscope 
where the position is fixed by the parameter b, the enlarge­
ment is 1/a, and the optic is given by the wavelet itself. We 
now shall give a precise meaning to all these expressions, and 
we shall show how to characterize various functional spaces 
over T' with the help of this transform. 

II. SOME DEFINITIONS AND EASY PROPERTIES 

The space Coo (TI) is made of complex-valued func­
tions s over T 1 that are arbitrarily many times differentiable. 
We identify the circle T' with the interval [0, 21T). A topol­
ogy on Coo (T I) is given by the following directed family of 
norms: 

(2.1 ) 

In this topology Coo (T') is a Frechet space, that is, a com­
plete, locally convex, metrizable, linear space. For any func-

a) Laboratoire Propre LP-7061, Centre Nationale de la Recherche Scientifi­
que. 

tion s in Coo (T' ), we can define its Fourier coefficients 
(Fs)(n), neZ: 

(Fs)(n) = _1_ r s(x)e- inx dx. 
21T JT' 

(2.2) 

The sequences (Fs) (n) that can appear as the Fourier coeffi­
cients of some function s in Coo (TI) are exactly the se­
quences that decrease as 1 n I goes to infinity faster than any 
power of n. And conversely every such sequence defines a 
function in Coo (T 1 ). This sequence space will be called 
S(Z). A topology on S(Z) is given by the following directed 
family of norms: 

I/ r Il S (Z);n = L suplkPr(k) I, n = 0,1,... . (2.3) 
O<p<n kEZ 

For any sequence r in S(Z) we define the inverse Fourier 
transform F - I: 

(F-'r)(x) = L r(n)e inX. 
nEZ 

(2.4) 

The following well known theorem shows that C'X> (T') and 
S(Z) are topologically the same spaces, and that any func­
tion in C"" (T') can be decomposed into a Fourier series. 

Theorem 2.1: 
(i) F: Coo (T') .... o8(Z) is continuous~ 
(ii) F- ' : S(Z) ...... C""(T' ) is continuous, 
( ... ) F-' F -I 111 : =IC~(T,),FF =l s (z)' 

Proof: [We only shall prove (i) and (ii).] With the help 
of a partial integration we can write 

! L, kPs(x)e .... ikx dx I 
= I r aps(x)e-ikXdx! <'"21Tllsll JT' x '" COC(T');p' 

which proves (i). On the other hand, since any reS(Z) is 
rapidly decreasing, we may exchange the differentiation and 
the summation: 

la~ ~ r(n)einxl 

= I L nPr(n) 1 + n
2 

inxl 
nEZ 1 + n2 

1 
..;;(lIr l/s(z);P + I/ r ll s(z);p+2) ~ 1 + n2 ..;;C I/ r ll s(z);p+ 2' 

Q.E.D. 
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This proves (ii). Q.E.D. 
The functions g that define via (1.1) the wavelets shall 

all be in the class S(R) of Schwarz, that is, the set offunc­
tions decaying at infinity together with all their derivatives 
faster than any polynomial. A topology on S(R) is given by 
the following directed family of norms: 

IIsllS(R);n.a= L suplxpa!s(x)l, n,a=O,I, .... 
O"p"n R 
O"I"a 

(2.5) 

With this topology S(R) is a Frechet space. On S(R) we 
define translations and dilations in the usual manner: 

Tb: S(R) -+S(R), 

D a: S(R) --+S(R), 

(Tbs)(x)=s(x-b), hER, (2.6) 

(D as)(x) = (lIa)s(x/a), a> 0. 
(2.7) 

Obviously these operators are continuous. On S(R) we de­
fine the Fourier transform Y and the inverse Fourier trans­
formY-las 

(Ys){m) = i s(x)e-icOXdx, 

(Y-Ir)(x) = (21T) -I i r(m)eiwx dx. 

(2.8) 

(2.9) 

We will use the notation s for Y s. The Fourier trans-
form is a bijective, bicontinuous map. 

Theorem 2.2: 
(i) Y: S(R) --+S(R) is continuous, 
(ii) Y-I: S(R) --+S(R) is continuous, 
(iii) y-Iy = Y y- I = I s (R)' 

For a proof, see any textbook about functional analysis. 
The passage from a function s in S(R) to a function in 

C'" ('][' I) will be done by the periodization operator ll: 

(lls) (x) = L s(x + 21Tn), XE']['I. (2.10) 
neZ 

Theorem 2.3: ll: S(R) --+ C'X> (']['1) is continuous. 
We shall prove this theorem in a moment. To any func­

tion in S(R) we can associate a sequence in S(l) with the 
help of the sampling operator: 

~: S(R) --+S(l), (~s)(n) = s(n), n = ... , - 1,0,1, .... 
(2.11 ) 

It obviously is a continuous operator. A natural question is 
to ask what the Fourier coefficients of periodized function 
are. The answer is given by the Poisson summation formula, 
which reads 

m=~Y, (2.12) 

or, more explicitly (s = YS), 

L s(x + 21Tn) = L s(n)einx. (2.13) 
nEZ neZ 

For a proof of this equation, see, e.g., Ref. 6. 
Proof of Theorem 2.3: We have II = F -I ~Y. All map-

pings are continuous. Q.E.D. 
The space L 2 ('][') is made of functions s with finite norm 

(2.14 ) 
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It is a Hilbert space if it is given the following scalar product: 

(r, s) = f r(,p)s(,p)d,p. (2.15) 
JT' 

Clearly L 2(']['1) :JC'" (']['1). The Fourier transform extends 
to a map from L 2('][') to L 2(l), the Hilbert space of square 
summable sequences. We may split L 2('][') into the direct 
sum ofH 2

_ (']['1), the space offunctions that have only nega­
tive frequencies; H 2+ ('][' I), the space off unctions that con­
tain only posi dve frequencies; and K ('][' I ), the constant func­
tions: 

(2.16 ) 

The corresponding subspaces of C'" (']['1) shall be denoted 
by C~ (']['1) and C~ (']['1). 

III. THE WAVELET TRANSFORM OF C"'{']['1) 

In this section we analyze the space functions with the 
highest possible regularity. It will turn out that this is mir­
rored in the wavelet transform by a fast decay of the wavelet 
coefficients as the scale a goes to 0. The regularity of the 
analyzing wavelet, or, what is the same, the fast decay of the 
Fourier transform at infinity, in turn gives rise to a fast decay 
of the wavelet coefficients, as the scale a goes to infinity. 
Therefore we will be able to characterize this space as the set 
offunctions that are well localized in the scales; that is, every 
such function has a minimal effective length scale. We shall 
characterize the range of the transform, and further give an 
inversion formula. 

First we introduce some notations. For any fES(R) and 
any a > 0, we define fa EC'" ('][' I) as 

fa (x) = (llDQf){x) = L J... f(x + 21Tn), (3.1) 
nEZ a a 

andf""aEC'" (']['1) with ,pE']['1 will stand for 

f""a (x) = (llT"'Dj){x) =fa (x - ,p). (3.2) 

For reasons that will become clear later on we shall require 
that all the moments of the wavelet, g, vanish: 

i xng(x)dx=O, n=O,I,.... (3.3) 

An equivalent condition is that the Fourier transform 
g = Y g vanishes at the origin in infinite order: 

g(m) = O(mn), n = 0,1,... (m--+O). (3.4) 

The subset of S(R) of functions that satisfy one (and there­
fore both) of these conditions will be called So(R). 

Definition 3.1: The wavelet transform Tg of any func­
tion SEC'" ('][' 1 ) with respect to a function gESo (R) (called 
the wavelet) is given by the following scalar products: 

(Tgs)(,p,a) = (g""a,s), ifJE,][,l, a>O. (3.5a) 

The same expression in Fourier space reads (using the 
Poisson summation formula) 

(Tgs)(,p,a) = L (Yg)(ak)eik"'(Fs)(k). (3.5b) 
kEZ 

The wavelet transform is a function over the position scale 
space, which in our case is a cylinder Y = ']['1 XR+. Obvious-
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ly it is a function that is infinitely differentiable. It turns out 
that Tg is a continuous map from Coo (TI) into the space of 
functions y( </l,a) over Y that are infinitely differentiable, and 
that decay for a --+ 0 and a --+ 00 faster than any fractional 
polynomial in a. We call this space S(Y). The topology of 
this space is given by a directed family of norms: 

Ilylls(Y);n,a,p = L sup laP a ~a ;y(p, a) I, 
- n<p<n Y 

O<I<a 
O<k<P 

n,a,{3=O,I, .... (3.6) 

Then S(Y) is a Frechet space. We have the following 
theorem. 

Theorem 3.2: For gESo(R), we have Tg : 

C"" (TI) --+S(Y) is continuous. 
We first shall prove two lemmas. 
Lemma 3.3: Let sESo (lR), and let Sa be given by (3.1). 

Then 

(ii) \:In = 0,1, ... : IIsaIIC~(T');n = O(l/a
m

) 

(a--+ 00), for m = 0,1, .... 

Proof' Assertion (i) follows from the fact that for small 
a essentially only the term (n = 0) in the sum (3.1) remains 
because of the localization off To prove (ii) we expand Sa 
into a Fourier series using the Poisson summation formula: 

Sa (x) = L s(an)einx. 
neZ 

Since S(O) = 0 and s(O) = O(wP + m + 2 ) as 0) goes to infin­
ity, we can estimate, for a large enough, 

lama~sa(x)l< L amlnIPls(a'n)I<L C • 
n#O n#oaPlnl m + 2 

Since the sum remains finite if a goes to infinity we have 
finished the proof. Q.E.D. 

Lemma 3.4: For any sESo(R), there are functions u, v, 
WESo(lR) such that 

(i) a",s""a (x) = axu""a (x), 

(ii) aas""a (x) = axv",.a (x), 

(iii) (l/a)s"'.a (x) = axw""a (x). 

Proof' We use again the Poisson summation formula to 
decompose s""a into a Fourier series (s = .7s): 

s""a(x) = Ls(an)ein(X-o,l). 
neZ 

The following functions are in So(R): 

(i) u = - s, 

(ii) u(O) = - i a,.,s(O) , 

(iii) w(O) = (i/O)s(O). 

A direct computation using the Fourier expansion of s",.a 
shows that they satisfy the identities of the lemma. 

Pro%/Theorem 3.2: First letp;;;.O. Using Lemma 3.4, 
for gESo (R) we can find a function rESo (R) such that 
a ~a ;g",.a (x) = a ~+ kr""a (x). With the help ofa partial inte­
gration we can write 

41 J. Math. Phys., Vol. 31, No.1, January 1990 

laP a ~a ~ (Tgs) (</l,a) I 

= Ii aPr (x)al+ks(x)dXI ""a x 
T' 

Lemma 3.3 shows that the sup is finite. Now let p < O. Again 
Lemma 3.4 can be used to find a function rESo(R) such that 
apa ~a ;g"',a (x) = a):1 + 1+ kr",.a (x). Therefore we can write 

laP a ~a; (Tgs) (</l,a) I 

= Ii r (x)a'P,+I+kS(X)dXI "'.a x 
T' 

<~.f. lira ilL '(T') IIsIIC~(T');IPI + 1+ k' 

Again Lemma 3.3 can be used to conclude. Q.E.D. 
Definition 3.5: For any function h in S(Y) the inverse 

wavelet transform T g- 1 h is defined as 

(Tg-1h)(x) = ( g""a(x)h(</l,a) dad</l. Jy a 

(We shall see in a moment in which sense T g- 1 is the inverse 
of Tg .) This integral is well defined since h is rapidly de­
creasing as a tends to 0 or infinity. It again turns out to be a 
continuous map. 

Theorem 3.6: For gESo(R), we have T g-I: 

S(Y)--+C""(T 1
) is continuous. 

Proof' Since h is rapidly decreasing we may exchange the 
integration and the differentiation and we may write 

la~(Tg-Ih)(x)1 = 11 a~g""a(x)h(</l,a) daad</ll 

= 11 g"'.a (x) ! a ~h(</l,a)da d</l I 
<1"" Ilga IlL '(T') da'lIh IIS(Y);I,n,o' 

Lemma 3.3 assures that the integral is finite. Q.E.D. 
We want to establish the relation between Tg and T g- I. 

From Definition 3.1 it follows that the positive (negative) 
frequencies of the wavelet do only interact with the positive 
(negative) frequencies of the function s. Therefore we will 
use the splitting (2.16) to separate positive and negative fre­
quencies. Clearly the image of the constant functions is equal 
to zero and therefore we can only hope to find an inversion 
formula that holds on the other two parts. 

Theorem 3.7: For all SEC ~ ( _ ) (TI) we have 

T g- ITgs = cg+ (- )s. 

The constants cg+ and cg- are determined by g: 

cg+ = ("" da Ig(a) 12, Cg- = ("" da Ig( _ a) 12. 
Jo a 1 a 

Proof' Let SEC ~ ( _ ) (T I) be given. Since all negative 
(positive) frequencies of S vanish, we may suppose that the 
Fourier transform of g is symmetric. We call ~ the function 
that is obtained when using the inverse transformation with 
a cutoff at the small scales: 
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l oo da l .r(x) = - d</> g""a (x)(Tgs)(</>,a) 
EaT' 

loo da l = - d</> dy g""a (x)g""a (y)s(y). 
E a T'XT' 

For fixed e> 0, Lemma 3.3 guarantees the absolute conver­
gence of all integrals, and therefore we could exchange the 
integration. Integrating first over </> and a yields 

.r(x) = ( KE(X - y)s(y)dy = (KE*s)(x), 
JT O 

and the kernel KE is given by 

KE(U) = (00 da (d</>ga(u-</»ga(</»' 
JE a JT' 

Expanding these expressions into a Fourier series we obtain 
the following equations for the Fourier coefficients (denoted 
by a tilde): 

KE(n) = (00 da Ik(an)12 = (00 da Ik(a)1 2 =K(en), 
JE a JlniE a 

where we have posed 

;0... 100 

da K(m) = -lk(a)1 2
• 

1",1 a 

Here we have used the fact that k was chosen symmetric. The 
Fourier coefficients depend only on en. Applying the Pois­
son summation formula (2.12), we obtain 

;0... 

KE=nDEK=KE, with K=Y-'K. 

But [cg+ ( - ) ] -I KE is a summability kernel (e.g., Ref. 6). 
Therefore we can apply the theorem of the approximation of 
the identity6 to conclude. Q.E.D. 

We now want to characterize the range of the wavelet 
transform. 

Theorem 3.8: For any geSo(R), the image of Coo (T') 
under Tg is a closed subspace of S(Y). The range of Tg 
restricted to C ~ ( _ ) (T I) consists of exactly those functions 
y in S(Y) that satisfy the following "reproducing kernel" 
equation: 

('" ) -i ('" ."', ') ("" ') da'd</>' y.",a - Pg .",a,.",a y .",a ---, 
y a 

where the reproducing kernel Pg is given by 

Pg (</>,a;</>',a') = (l/ct ( -) )(g""a,g"",a')' 

or, in Fourier space, 

P g ( </>,a;</>' ,a') 

__ 1_ L (Yg)(ak)(Yg)(a'k)eik ("'-"'·). 

cg+ ( -) k£iZ.k> «)0 

Proof: As continuous preimage of a closed space under 
the inverse wavelet transform, the image of the wavelet 
transform is closed. Now for any yeS(Y) in the range of Tg 

on C~ (_) (T') there is a function S in C~ (_) (T') such 
that. Tgs = y. From Theorem 3.7 we have 
T g-'Tgs = ct (- IS, and therefore we can write 

T T-Iy= T T-'Ts=c+(-)Ts=c+(-)y gg gg g g g g . 

On the other hand, if yeS(Y) satisfies Tg T g- Iy = cg+ (- )y, 
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then, for x = Cg+ ( - ) T g- Iy, we have Tgx = y, which proves 
that y is in the range of Tg • We now rewrite the above identi­
ty more explicitly (we can exchange all integrations, since 
the integrals are absolutely convergent): 

( da' ~</>' y (</>',a') ( g"'.a (x)g"".a' (x)dx 
Jy a JT' 

= cg+ (- )y(</>,a), 

which proves the theorem. 

IV. THE WAVELET TRANSFORM OF 9 '(T1) 

Q.E.D . 

In this section we will be interested in the wavelet trans­
form of the "functions" over the circle, with very low regu­
larity, that is, the space of distributions 9'(T I

). The lack of 
local smoothness is reflected in the wavelet transform by a 
polynomial growth of the coefficients at small scale. How­
ever, the wavelet transformation allows us to represent any 
distribution by a Coo function over the position scale space. 

The elements of 9' (T I) are continuous linear function­
als of Coo (T I); that is, for any X in ii?" (T I) there is an 
integer number n such that, for any seCoo (T' ), we have 

IX(s) I<C,ellsIIC~(TO);n' (4.1) 

The smallest such n is called the order ofthe distribution X. 
A topology in ii?' ' (T I) is given by requiring that any se­
quenceXn in ii?"(T 1

) tends to zero ifand only if Xn (s) goes 
to zero for all SECOO (T I). We identify any function s of 
Coo (TI) with the distribution (s,). This embedding is con­
tinuous. The space Coo (T I) is dense in ii?" (T I), and there­
fore any distribution can be approximated by functions in 
Coo (T ' ). We may even choose Sn (sn -X in the sense of 
distributions) in such a way that, for all rECoo (TI) and n, 
we have (m being the order of X) 

I (sn,r) I<C,ellrllc~(TO);m' (4.2) 

In the same way we denote by ii?"(Y) the space of linear 
continuous functionals over S( Y). For any pair off unctions 
J, hover Y we define the following "scalar product" 
( " • ) L '(V) whenever the following integral converges abso­
lutely: 

i - da d</> 
(j,g)L'(Y) = f(</>,a)g(</>,a) --. 

Y a 
(4.3) 

We now define the wavelet transformation of distribu­
tions. 

Definition 4.1: Tg: ii?"(T1
) -ii?"(Y) is defined by 

XEii?"(TI)~ (TgX)(y) =X(Tg-1y), for all yeS(Y). 
T g- '

: ii?"(Y) -ii?"(T' ) is defined by YEii?"(Y) 
~ (T g- I Y) (s) = Y( Tgs), for all SECOO (T ' ). 

Here, for functions in Coo (TI) and S(Y), the definitions of 
Sec. II apply. 

These definitions are reasonable, since Tg and T g- I are 
continuous maps between Coo (TI) and S(Y). In the follow­
ing theorem we show that Definition 4.1 actually extends 
Definitions 3.1 and 3.5. 

Theorem 4.2: Tg and T g- I are the only possible contin­
uous extensions of Tg restricted to Coo (T I) and T g- I re­
stricted to S(Y). 
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Proof: Let X ne9'(TI ), Xn ..... O (n ..... «J) in the sense of 
distributions. For allyeS(Y), we have 

(TgXn )(y) = Xn (T g- 'y) ..... O (n ..... «J ), 

which shows that Tg is a continuous map from 9'(TI) to 
9' (Y). In exactly the same way we can show that T g- I is 
continuous, too. Let seC" (TI). Takings as a distribution in 
9'(1"), we write, for any yeSey) , 

(Tgs)(y) = r da dr/J r dx g""a (x)s(x)y(r/J,a) 
Jy a JT' 

= (Tgs,yh,(y)· 

We could exchange the integrations since all integrals con­
verge absolutely. Since y was arbitrary, we have proved that 
Definition 4.1 coincides with Definition 3.1 in the case where 
a distribution isa function in Coo (T I). But Coo (TI) is dense 
in 9' (1'1) and therefore by continuity there is exactly one 
continuous extension. The prooffor T g- I is the same. Q.E.D. 

The next theorem shows that the wavelet transform of 
any distribution in 9' (T I) can be identified with a function 
in Coo (Y), that is, the space of functions over Y that are 
infinitely differentiable. 

Theorem 4.3: LetXe9'(TI). For allyeS(Y), we have 

(TgX)(y) = (2",y)L'(y)t 

where the function 2" is in Coo (Y) and is given by 
\ 

2"(r/J,a) = X(g""a)' 
Proof: We can find a sequence Sn of functions in 

Coo (1'1) that converges to X in the sense of distributions and 
that satisifies (4.2). Therefore we may write 

(Tg,x)(y) = lim (sn,T g- lyh'(T') 
n- 00 

. i dadr/J = hm (g""a,sn) y(r/J,s) --. 
n- 00 y a 

(4.4) 

We could exchange the integration for fixed n because of the 
absolute convergence of all the integrals. Clearly (g",.a,sn) 
tends to X(g""a) pointwise, that is, for each (r/J,a)eY. But 
from (4.2) it follows that 

I (g""a,sn) I..;C IIga Ilc~(T');m' 
where m is the order of X. Therefore Lemma 3.3 shows that 
the integrand in (4.4) is uniformly bounded by a function 
absolutely integrable over Y. We can apply the theorem of 
dominated convergence to conclude. 

Again it is useful to split the whole space into 
9 '+ ( _ ) (T I ), the space of distributions that are acting on 
the positive (negative) frequencies only, and % ( T I ), the 
distributions that are multiples of the integral over the circle. 
Again every distribution can be written in a unique way as 
the superposition of three distributions, each one belonging 
to one of these three classes: 

9'(1'1) = 9'+ (1'1) E9%(TI) E99'_ (1'1). 

We now will write a distribution in 9' (T I) as a well 
defined "scalar product" off unctions in C" (Y) obtained by 
an absolutely convergent integral over Y. 

Theorem 4.4: Let seC ~ ( _ ) (T I) and let Xbe a distribu­
tion in 9'+ (_) crl). Then 
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XeS) = (lICg+(-»(~,Tgsh'(Y)t 
and ~ = TgX as given by Theorem 4.3. 

Proof: From Theorem 3.7 it follows that 

(TgX) (Tgs) = X( T g- ITgs) = cg+ (- )X(s). 

Since TgseS(Y) , Theorem 4.3 shows how (TgX)(Tgs) can 
be written as a scalar product. Q.E.D. 

We now want to characterize the image of 9'(TI) un­
der the wavelet transform. 

Theorem 4.5: The image of 9 '+ ( _ ) (T!) under Tg are 
exactly those functions ~ in Coo (Y) that satisfy (i) there 
exists mEZ such that 

~(r/J,a) = O(l/am) (a ..... O) 

uniformly in r/J; (ii) for all p > 0, we have 

~(r/J,a) = O(l/aP ) (a ..... «J) 

uniformly in r/J; and (iii) ~ satisfies the reproducing kernel 
equation (pointwise) 

~(r/J,a) = (l/cg+(-»(pg(r/J,a;''')'~)L'(Y)' 

Proof: Let Xe9'+ ( _ ) (T I). Then ~ (r/J,a) = TgX 
= X(g""a) satisfies (i) and (ii) as follows by direct compu­
tation from (4.1) and Lemma 3.3. To show (iii), note that, 
for any seC" (TI), we can write, with the help of Theorem 
2.4, 

(T g- I TgX) (s) = X( T g- !Tgs) = cg+ (- )X(s). 

Therefore, we can write, for ~ = TgX, 

(TgT g- I~)(r/J,a) = cg+ (- )~(r/J,a). 

On the other hand, a direct computation shows that 

(TgT g-I~)(r/J,a) = cg+ (- )(pg(r/J,a;'" )'~)L'(Y)' 

The integral on the right-hand side converges absolutely for 
every (r/J,a)eY due to the rapid decrease of the reproducing 
kernel Pg at small scales. 

Now suppose that ~ is a locally integrable function over 
Ythatsatisfies (i)-(iii). WedefineXe9'(1'!) by 

Xes) = (l/cg+(-»(~,TgS)L'(Y)' 

Clearly X is well defined since Tgs is rapidly decreasing 
(Theorem 3.2), and a direct computation shows that 
TgX = ~, thus showing that ~ is in the image of 
9'+ (_) (TI) under Tg • Q.E.D. 

V. THE WAVELET TRANSFORM OF LZ(T1) 

In this section we will analyze the Hilbert space of 
square integrable functions over the circle. As subspace of 
9' (T!) all theorems of the previous section hold for 
L 2(TI). In particular, the image of L 2(T!) are functions in 
C" (Y) that satisfy the reproducing kernel equation. It 
turns out that the wavelet transform is an isometry. Its range 
is a closed subspace of L 2 (Y), the Hilbert space over Y with 
scalar product (4.3). So the image of L 2 (1'1) under Tg turns 
out to be a Hilbert space with reproducing kernel. 

Theorem 5.1: The operator 

(lIJct (-» Tg : H2+ (_) (TI) ..... L 2(y) 

is an isometry. Its adjoint is the only bounded operator 
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form L 2(y) to H2+ (_) (T1) that coincides with 

(lI~cg+ (-» T g-1 when it is restricted toS(Y). Let thewa­
velet g have only positive (negative) frequency contribu­
tions. Then the reproducing kernel gives the orthogonal pro­
jector P g+ (-) on the image of H2+ (_) (T1) under Tg : 

P g+ (-): L 2(Y) ..... L 2(y), 

(P g+ (- )y)(t/J,a) = (llcg+ (-) )(pg (t/J,a;', ),yh 2 (Y), 

Proof It is enough to show the theorem on a dense sub-
set of H2+ (_) (1'1). Let S,UEC~ (_) (1'1). We look upon s 

as a distribution in ~'+ ( _ ) (1'1). From Theorem 4.4 it fol­
lows that 

(s,u) = (Tg s,Tg u)L 2 (yl' 

and therefore Tg is an isometry. A direct computation shows 
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.that the adjoint is as stated in the theorem. The fact that the 
reproducing kernel equation is an orthogonal projection op­
erator follows from the well known statement about partial 
isometries. Q.E.D. 
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A graded Weil homomorphism is defined for principal superfiber bundles and the related 
transgression (or Chern-Simons) forms are introduced. As an example of the application of 
these concepts, a "superextension" of the Dirac monopole is discussed. 

I. INTRODUCTION 

In recent years Chern-Simons forms I have found a var­
iety of applications in quantum field theory. 2 Chern-Simons 
forms are used as topological mass terms in gravity and 
Yang-Mills theories3

; moreover, the consistent and covar­
iant anomalies of Yang-Mills-type theories can be interpret­
ed in terms of them4-6 and they playa fundamental role in 
the anomaly cancellation mechanism in string theory.7 Fin­
ally, several supergravity models have Lagrangians involv­
ing Chern-Simons terms.8 

Therefore, it seems interesting to generalize concepts 
involving Chern-Simons forms to the context of supermani­
folds and in particular to the case of principal superfiber 
bundles over supermanifolds [some work in this direction, 
with a particular choice of the structure (super) group and 
using local techniques, has already been done9-ll ]. This gen­
eralization should be relevant to the study of the anomalies 
of superstring and supersymmetric field theories; see, e.g., 
Ref. 11 and the references therein. Some related work 
(Chern classes for superbundles and cohomological treat­
ment of anomalies of supersymmetric gauge theories) can be 
found in Refs. 12-14. 

In this paper, using rigorous supermanifold theory and 
relying on a general algebraic description of the Weil homo­
morphism 15 in the graded setting, 16 we construct a Weil ho­
momorphism for principal superfiber bundles. This is used 
to construct in terms of curvature forms some invariants 
associated with the superbundle and in particular to define 
Chern-Simons forms. Some of the concepts introduced are 
applied to the study of a "superextension" of the Dirac mon­
opole. 17 

The relationship of the Weil homomorphism to the co­
homology of the classifying space for the structure super­
group ofthe principal superfiber bundle will be discussed in 
a future paper. This relationship could be of some conse­
quence in physics, in accordance with the work of Bonora et 
a/. 18 

This paper is arranged as follows. In Sec. II we review 
some basic material concerning supermanifolds, including 
super Lie groups and superfiber bundles. Supermanifolds 
are intended in the sense of DeWitt and Rogers, 19,20 i.e., they 
are topological manifolds modeled on superspace whose 
transition functions fulfill a suitable smoothness condition. 
We also recall some facts about the cohomology of super­
manifolds. In Sec. III the theory of the graded Weil homo-

oj Also at Istituto NazionaIe di Fisica Nucleare, Sezione di Napoli, Mastra 
d'Oltremare Pad. 19,1-80125, Napoli, Italy. 

morphism is expounded and the transgression (or Chern­
Simons) forms associated with a given prinicipal superfiber 
bundle are introduced. In Sec. IV we define the elementary 
Ad-invariant polynomials of the general linear superalgebra 
and construct the related'invariants of principal super fiber 
bundles, when the structure supergroup is the general linear 
supergroup or one of its subgroups. In Sec. V some of these 
concepts are exemplified by studying a Grassmann exten­
sion of the Dirac monopole. 

We shall use some elementary sheaf theory. Indeed, 
while all information concerning a smooth manifold is en­
coded in the ring of global functions over the manifold, this is 
not true for supermanifolds (as it happens in the case of 
complex manifolds), so that the use of sheaves is mandatory. 

II. SUPERMANIFOLDS AND PRINCIPAL SUPER FIBER 
BUNDLES 

A. Algebraic preliminaries 

In this paper we shall be constantly concerned with Z2 -
graded modules. We shall always say "graded" for "Z2 grad­
ed" and the grading will be denoted as follows: If 
M=MoIiDMI' Ixl =jmeansx~.lfeitherxEMoorxEMI' 
x is said to be homogeneous. A morphism of graded modules 
f: M -N is said to be even (resp., odd) iff (Mj) CNj [resp., 
f(Mj)CNj+ I]' 

We denote by B L the exterior algebra over RL
, L < 00. 

Here BL is naturally graded, BL = (BL)o liD (BL) I and is a 
graded commutative algebra, i.e., 

abe(BL)lal+lbl' ab= (_l)lallblba, 

if a, beBL are homogeneous. If NL is the nilpotent ideal of 
B L' one has B L = R liD NL. The relevant projections u: B L 
- Rand s: B L - N L are called body and soul maps, respec­
tively. The Cartesian product B '; +" can be made into a 
graded B L module by setting 

B '; + " = B ';," liD B T,f., 
with B ';," = (BL );;'X (Bd~, B T''; = (BL )7'X (BL )~. A 
body map U"''':B ';," - Rm is defined by letting 
U"'''(x1 •• 'xm,y1" 'y") = (u(x 1

). ··u(xm». 
A graded B L module is said to be free of dimension 

(m,n) if it is free of rank m + n over BLand bas bases 
formed by m even and n odd elements. Any left-graded B L 

module M can be turned into a right module, and vice versa, 
by letting 

xa = ( - 1) lal l"lax, 'r/ homogeneous xEM, aeD L' 
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Given two graded B L modules M, N, their tensor product 
over B L' calculated by considering M as a right module and 
N as a left module, can be canonically given a structure of a 
graded B L module. We shall always regard M ® BL N as en­
dowed with such a structure (of course, this applies to any 
graded commutative ring and not only to B L ). 

The set of (m + n) X (m + n) matrices with entries in 
B L' denoted by gl (m + n), is a graded B L module of dimen­
sion (m2 + n2 ,2mn). It can be graded so that its even part, 
denoted by gl(m,n), is formed by matrices of the form 

x=(~ !), (2.1) 

where the matrices A and Dare m X m and n X n, respective­
ly, and have entries in (BL )0; while Band Care m Xn and 
nXm, respectively, and have entries in (Bdl' Endowed 
with the bracket whose action on homogeneous elements is 
[X,Y] =XY - (- 1)lx 11 YlyX, gl(m + n) is a graded Lie 
BL algebra (i.e., a Lie superalgebra over BL ). 

B. Supermanifolds 

Following Rogers,21 we introduce a sheaf of B L -valued 
functions on B ~,n called GHoo functions. We denote by 
Crff [ V;B L ] the graded algebra of Coo B L -valued functions on 
vex, where X is any manifold, and regard BLand B ~.n as 
topological spaces by endowing them with their vector space 
topology. Let us fix two positive integers Land L', with 
L ' <L and, for any open set U in Rm

, let us denote by 

ZL',L:Crff [ U;BL ] -+ Crff [ (0"',0) -I (U);B L ] 

the morphism of graded B L' algebras defined by 

ZL',L if) (Xl .. 'xn) 

~ 1 (ai' ... ai'"j) 
"'" . I .' I I m I(a(x')"'a(x'"» 

i.···im=O '.0"· 1m. 

xs(xl )i, • . 's(xm) i,". 

One .£Eoves that ZL',L is injective; its image will be denoted 
by .0/ jf'[ 0"',0) -I (U)] and will be identified with the graded 
algebra of GH 00 functions of even variables on 
( a m,O) - I ( U). The G H 00 functions of even and odd variables 
are naturally defined on the sets (o"',n) -I (U), where Uis an 
open set in Rm. The relevant function algebra is denoted by 
[§ Jf"[ (o"',n) -I (U)] and its elements have the form 

F(x l .. 'xm,yl .. yn) 

= Fo(xl"'xm) + L Fa""a.(xl"·xm) 

Xya, ... ya., 

k= I"'n 
l<a,<···<ak<.n 

where Fa""a. E~[ (0"',0) -I( U)]. The first derivatives of 
F are uniquely determined by the development 

m . aF 
F(x + hoY + k) = F(x,y) + L h '-i (x,y) 

i=1 ax 

n aF + L k a
_ (X,y) + O(h,k)2, 

a= I aya 

provided that 
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L-L'>n. (2.2) 

We may as well consider GH 00 functions on arbitrary open 
sets weB ~,n: An element of [§ Jf"[ W] is a function in 
[§Jf"[(o"',n)-lo"',n(W)] restricted to W. One can easily 
check that this defines a sh~ of graded B L' algebras over 
B ~,n. One has also a sheaf fj if? of germs of GH 00 functions 
of even variables and the two sheaves are related by 

[§Jf"~~®RA[n], 
where A [n] is the exterior algebra over R with n generators. 

Setting L = L ' one recovers the so-called G 00 functions 
originally introduced by Rogers.2o These are badly behaved 
since condition (2.2) is violated; the lack of definition of 
partial derivatives with respect to odd variables implies that 
the modules of derivations of the local function algebras are 
not free. However, the sheaf [§ Jf", where L, L " and n are 
supposed to satisfy condition (2.2), also has some unplea­
sant features, mainly related with the definition of a tangent 
space and the relationship between derivations and tangent 
vectors.22 Such drawbacks can be eliminated by considering 
a new, enlarged structure sheaf 

[§ = [§Jf"®BL.BL, (2.3) 

which is a sheaf of graded B L algebras. The partial deriva­
tives of sections of [§ are defined according to the rule 

_a..!:,if_®_a...;,,) = _af_ ® a, 
a~ a~ 

The definition of supermanifold we shall adopt is such 
that the structure sheaf of a supermanifold locally has the 
form (2.3). A precise definition of the resulting category of 
supermanifolds, whose objects we call [§ supermanifolds, 
while the morphisms are called [§ maps, was given in Refs. 
22 and 23. Here we wish only to recall the following. 

(i) If U, Vare open sets in B ~.n and! U -+ Vis a [§ map, 
then if r ( [§ I V) is a subsheaf of [§ I U; in other words a [§ 
map pullbacks sections of [§ into sections of [§ . 

(ii) If S is an (m,n)-dimensional [§ supermanifold, 
the topological space underlying S is Hausdorff second 
countable and on S there is an atlas .If 
= {(Ua,,pa)l,pa:Ua-+B~,n} such that its transition func­

tions are [§ maps. 
Defining the evaluation morphism of I8i a ~ fa map­

ping [§ into the sheaf of B L -valued C 00 functions on S, the 
triple (S,[§ ,8) is a supermanifold in the sense of Rothstein24; 
moreover, o( [§) is the sheaf of GOO functions on S. 

Remarks: (i) The supermanifold S also inherits a struc­
ture of ordinary differentiable manifold of dimension 
2L

-
I (m + n). 
(ii) The module B ~,n is obviously a supermanifold; 

also, 
B ~ + n has a structure of supermanifold of dimension 
(m + n,m + n) given by the canonical isomorphism of 
(BL)o modules of B ~+ n~B ~+n,m + n. 

Henceforth we shall say simply "supermanifold" in­
stead of" [§ supermanifold." A class of supermanifolds that 
is important for physical applications is given by the so­
called De Witt supermaniJolds. 19

,20,25 De Witt supermani­
folds are defined in terms of a coarse topology on B ,£,n, called 
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the De Witt topology, whose open sets are the counterimages 
of open sets in am through the body map U".n:B 'Z.n ..... Rm. We 
say that the (m,n) supermanifold is De Witt if it has an atlas 
such that the images of the coordinate maps are open in the 
De Witt topology. Loosely speaking, a supermanifold is De 
Witt if it has an atlas with a "tubelike" cover. It is easily 
shownzo that a De Witt (m,n) supermanifold is a locally 
trivial fiber bundle over an m manifold So with a vector fiber. 
The manifold So is usually called the body of S and the bun­
dle projection 4>:S ..... So is given in local bundle coordinates 
by the body map U".n. 

C. Supervector bundles22,23 

A supervector bundle (SVB) of rank (p,q) over a super­
manifold S is a pair (5,1T), where 5 is a supermanifold, 
1T:5 ..... S is a [§ map, and there is a cover {Ua} of S with [§ 
diffeomorphisms 

t/Ja:1T-'( Ua ) ..... Ua XB~+ q 

such that pr,0t/Ja = 1T. Moreover, the transition functions 
gaP defined as usual, i.e., 

gaP(x)(v) = prz°t/Ja0t/Ji '(x,v), 

Vxeuanup , veB~+q, 

are required to be (BL)o linear, i.e., 

gap:Ua n Up ..... GL(p,q), 

where GL(p,q) is the group of even automorphisms of the 
graded B L module B ~ + q, which is the open subset of gl (p,q) 
formed by invertible matrices. 

Given two SVB's 5, 5' over a supermanifold S, a [§ map 
/:5 ..... 5' is said to be a morphism of SVB 's if the diagram 

f 

51-15' 1T 1T' 
id 

s-s 
commutes andfinduces morphisms of [§ -modules between 
the modules of local sections of 5 and 5 ' . 23 

D.Gradedtangentspace 

Let S be an (m,n) supermanifold and [§ its structure 
sheaf. Let us denote by Der [§ the sheaf of derivations of 
[§22; by Der* [§ the dual sheaf; and finally, 

AP = /\ f~ Der* [§. 

The sections of AP are called differential p-forms. It is easily 
proved that Der [§, Der* [§, and AP are free graded [§ mod­
ules. Differential one-forms on an open set U are said to be 
even (or odd) if they are even (or odd) as morphisms 
Der [§(U) ..... [§(U). 

We wish to relate Der [§ with a notion of graded tan­
gent space. For each xeS, denote by T"S the space of graded 
B L linear maps X: [§ )( ..... B L satisfying 

X(fg) =X(f)g+ (_l)IXllfryx(g), 
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where the overtilde denotes evaluation of germs at X.22.24 

Here T)(S is a free graded BL module of dimension (m,n) 
and its even part is canonically isomorphic, both as a real 
vector space and as a (BL)o module, with the ordinary tan­
gent space to Sat x. '9.20 

Finally, the disjoint union U xeS T)(S can be given the 
structure of a rank (m,n) SVB over S, denoted by TS, and 
one has a natural identification TS:::Der [§. 

Whenever DeDer [§ (U), 7]eDer* [§ (U), we shall de­
note the action of 7] on D by D J 7]. 

E. Supermanlfold cohomology26,27 

A sheaf morphism d: [§ ::: A 0 ..... Der* [§ ::: A " called exte­
rior differential, is defined by letting D J df 
= D(f)Vfe[§ (U), DeDer* [§ (U) and is extended to mor­
phismsAP ..... AP+ ',p;;;'O, in the usual way, sothatd 2 = O. We 
introduce the differential complex 

and denoted by H ;DR it cohomology (super de Rham coho­
mology) . Since S has also a structure of ordinary manifold, it 
is natural to compare H ;DR (S) with the ordinary de Rham 
cohomology of S, H~R (S). Each AP(S) into C(P(S) ® RBV 

where C(J peS) is the vector space of C 00 differential p forms 
on S, and one has a corresponding morphism in cohomo­
logy, 

(2.4) 

In general, this morphism is neither injective nor surjective. 
However, we have the following result: 

If S is a De Witt supermanifold, the morphism (2.4) is 
bijective. Moreover, H~R (S) =H~R (~). 
These facts rely on the triviality of the Cech cohomology of 
[§ when S is De Witt.27 Another property of SDR cohomo­
logy is that it is not a topological invariant: Two homeomor­
phic supermanifolds may have different SDR cohomolo­
gies.26 Therefore, SDR cohomology carries different 
information than de Rham cohomology; in particular, it 
"feels" the superdifferentiable structure. 

F. Super Lie groupsR 

A super Lie group G is an algebraic group also carrying 
a supermanifold structure such that (g,h ) ...... gh -, is a [§ 
map. An example ofa super Lie group is the group GL(p,q) 
introduced in Sec. II C. Let us denote by [§ G the structure 
sheaf of G. Having introduced the left and right transport 
operators Lg and Rg as usual, we define the Lie module WG 
of G as the space of left-invariant global graded derivations 
of [§ G' i.e., 

Now WG is endowed with a bracket by setting 

[D"D2 J = D,oD2 - ( - l)ID.lIDzID20D,. 

The following results are easily proved. 28 
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Proposition 2.1: We find that WG is a free graded BL 
module of the same dimension as G. The bracket defined 
above fulfills the following properties: 

(i) [D I ,D2 ] = - ( - l)ID oIID,I[D2,DI ]; 

(ii) [aD I ,D2 ] = a[D I ,D2 ], VaEBL ; 

(iii) L (_l)IDoIID,I[[DI ,D2 ],D3 ] =0. • cyclic 

For instance, the graded BL module gl(p,q) introduced 
in Sec. II A is the Lie module ofGL(p,q). 

The module W G free over B L' for a fixed basis formed by 
the homogeneous elements {DA,A = 1, ... ,m + n} of WG 
there exist elements e ~E in B L such that 

[DA,DB] = e~BDE' (2.5) 

The grading of e ~B is the following: I e ~B I = IA I 
+ IB I + IE I. The BL dual W;; of WG is given by the left­

invariant one-forms on G, i.e., 

W;; = {8eAh (G)s.t. L;() = (), VgeG}. 

The analogous property of (2.5) on W;; is expressed by the 
Maurer-Cartan equations: If D A J () B = ~!, 

d(}A = !(}B /\ (}Ee1s. 

Many other features of ordinary Lie groups have suit­
able counterparts for super Lie groups. For instance, one can 
define an exponential map exp: (WG )o-.G, which is a f1 

map and, in a neighborhood of 0 in (WG )0' is injective. 

G. Principal superflber bundles 

Let G be a super Lie group. A PSFB over S with the 
structure supergroup G is a supermanifold n carrying a right 
action of G such that S = nlG and having local trivializa­
tions satisfying the usual conditions (obviously, the quotient 
nlG must be suitably defined, but this can be done easily). 
Moreover, the right action of G, the natural projection 1T: 
n -. G, and the local trivializations are required to be f1 

maps. 
We introduce on n the vertical graded tangent bundle 

T vn, whose sections are vertical derivations of f111 : 

r[U,TVn] 

= {DEDer f111 (U) =r[ U,m] 11T.D = O}. 

We shall also denote by ATI the SVB of differential q forms 
on II. Let us consider the exact sequence of SVB's 

0-. TVn-.m-.1T- IT.S-.O. (2.6) 

A connection is an even B L -linear morphism of SVB'S29 

v:m-. Tvn, (2.7) 

which splits the sequence (2.6) and is G invariant in the 
sense that 

VORtr = Rtr oV. 

Therefore, one has a G-invariant splitting Tn"", T vn 
al1T- 1 TS or, equivalently, a G-invariant splitting of graded 
BL modules 

(2.8) 
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where Horu n is isomorphic with T 1T(u)S. Equation (2.8) 
shows that one can associate with any connection V an even 
differential one-form (JJ on n, with values in WG, the Lie 
module of the structure supergroup, satisfying the usual 
properties of connection forms on principal bundles. To 
state these properties, we must define thefundamental verti­
cal derivations of f1 n . Fixing a UEn, one considers the right 
action of the structure supergroup as a map /u :G-. n, gt--+ug 
and takes the tangent map to /u at the identity of G, thus 
obtaining a map TeG"", WG-.Tun, DEWGf-+D"ETun. One 
can check that by varying UEn one obtains a section of 
Der [1 II called the/undamental vertical derivation D" asso­
ciated with D. Then we have 

R;(JJ = (Adg-I)(JJ, VgeG; 

D" J (JJ = D, VDEWG 
(2.9) 

Conversely, any even WG-valued differential one·form (JJ on 
n fulfilling conditions (2.9) gives rise to a connection V on 
n. 

Let Horl (n) be the subbundle of All whose sections 
vanish when applied on vertical derivations of f1 II 

and define Horq(II) = /\ '1-;" Horl(n). Then the splitting 
(2.8) yields a projection h:ATI -.Horq(n). Given any 
71Er [ U,Af. ] , where U is an open set in n, its covariant de­
rivative is defined as 

D v71 = h(drl>. 

The covariant derivative n of the connection form (JJ is called 
the curvature o/V; it fulfills the identities 

nA = d(JJA - ~(JJB /\ (JJEe 1B' 

D vn = 0 (Bianchi identity). 
(2.10) 

Finally, we note that if 71 is a horizontal q form on n of type 
(Ad, WG), i.e., 71Er [n,Horqn ® BL WG ] and R; 71 
= (Adg-I)71VgeG, then 

(2.11) 

Equations (2.10) and (2.11) are conveniently written using 
the following notation. Let 71 and r be a W G-valued p and q 
form on n, respectively, both homogeneous as elements in 
WG , and define the WG-valued (p + q) form [71,r] by let­
ting, for homogeneous Y I ' •• Yp + qEDer f1 II (n), 

Y I /\"'/\ Yp+q J [71,r] 

1 =-LX(O')( _I)C(1/,u.p.ql+d(u) 

p!q! <T 

X [YU(I) /\ ••• /\ YU(P) J 71, 

XYU(P+I) /\"'/\YU(p+q) Jr], 
where X(O') is the sign of the permutation 0', 

p+q 

c( 71,O',P,q) = 1711 L I YU(i) I, 
i=p+1 

(2.12) 

d(O') = number of minus signs that occur going 

from the sequence Y I '" Yp + q to the 

sequence Y U( I) ... Y<T(P + q) , 

and the summation is on all permutations of the first p + q 
integers. 
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Then Eqs. (2.10) and (2.11) are written as 

n = d(i) + H(i),(i)] , D v", = d", + [(i),,,,]. 
Further results on PSFB's and examples may be found 

in Refs. 30 and 31. 

III. WElL HOMOMORPHISM AND TRANSGRESSION 
FORMS 

Now we shall use the general algebraic construction de­
veloped in Ref. 13 to construct a Well homomorphism and 
the secondary Chern-Simons characteristic classes for 
PSFB's. Throughout this section we assume that we are giv­
en a PSFB 17':n ...... s with structure supergroup G; WG will 
denote the Lie module of G. Moreover, we assume that on n 
there is a connection, that we describe by means of a connec­
tion one-form (i) with curvature n. We would like to stress 
that in general this is a genuine assumption since, as in the 
case of hoi om orphic bundles in the ordinary theory, the lack 
of a partition of unity prevents one from proving that any 
PSFB has a connection. Actually, one can define a cohomo­
logical invariant (the Atiyah class of the bundle) which van­
ishes if and only if the bundle carries a connection.31 

A. Differential calculus of W o-valued forms on n 
The first ingredient we need is the tensor algebra of W G: 

(3.1) 

Here W~ is a Z-Z2-graded algebra with ® BL as multiplica­
tion. In the following, the subscript B L will be omitted. Next 
we take AP.k==AP(n; W~), the space of p forms on n with 
values in W~. If q;eAP.\ then for all YiEDer [1 n (n), 

YI /\ ... Yi /\ Yi + I /\ ... /\ Yp J <p 

= - ( - 1)IY,lly,+.ly
l
/\··· Y

i
+ I 

/\ Yi /\ ... /\ Yp J <po 

The vector space AP,k is graded according to 

1 y i /\ .. ·/\ Yp J <p 1 = l<p 1 + L 1 Y;j. 
i 

(3.2) 

The exterior differential on n can be extended to 
d:AP.k ...... AP + I.k by letting, for homogeneous 
YiEDer[1 n (n), 

YI /\ ... /\ Yp + I J <p 
p+1 A 

= ~ ( - 1 )Q(i) Y. (Y /\ .... /\ y/\ ... /\ Y J m) 
- ~ ,I I p+ I T 

i=1 

+ L (-I)b(iJ)[Yi,lj]/\YI /\"'/\Yi/\'" 
I <i<j<p 

/\ lj /\ ... /\ Yp + I J <p, (3.3) 

where 

49 

i-I 
aU) = 1 +i+ IYil L IYhl, 

h=1 

i-I j-I 

bUj) =i+j+ 11';1 L IYhl + Iljl L IYhl, 
h= I h= I 

h "I'i 
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(3.4 ) 

and the caret indicates omission. An exterior product /\: 
AP.k X A q.h ...... AP + q.k + h is defined by letting 

YI /\ •• /\ Yp + q J (<p /\ "') 

1 =-LX(u)( _1)c(q:w.p.ql+d(u) 
p!q! u 

X (Yu(i) /\ ... /\ YU(P) J <p) 

® (YU(P+ I) /\ ••• /\ YU(p+q) J "'), (3.5) 

where X(u), c(<p,u,p,q) , andd(u) have the same meaning as 
in Eq. (2.13). 

Finally, let us recall that in Sec. II we defined an oper­
ation 

[ , ]:AP.IXAq·I ...... AP+q.l. (3.6) 

Using definitions (3.3)-(3.6) one can prove the following 
proposition. 

Proposition 3.1: If q;eAP.k and r/lEA q.h, then 

d(<p/\ "') = d<p/\ '" + ( - 1)P<p/\d"'; (3.7) 

moreover, if k = h = 1, 

d( [<p,,,,]) = [d<p,,,,] + ( - 1)P[<p,d",], (3.8) 

[<p,,,,] = - ( - l)pq+ 19' II~I [",,<p ], 

[<p,[<p,<p JJ = o. 

B. Graded Well homomorphism 

(3.9) 

(3.10) 

Let us now consider the set lOr (W~;BL) of graded al­
gebra morphisms P: W ~ ...... B L' which are graded symmetric 
and adjoint-invariant, i.e., 

P(ZI ® "'Zi ®Zi+ I ® ... ®Zk) 

= (_l)lz,llz,+.Ip(ZI ® '''Zi+ I 

®Zi®"'®Zk)' VZjEWG, (3.11) 

P(Adg)ZI ® ... ® (Adg)Zk) = P(ZI ® •.• ®Zk), 

VZjEWG, geG (3.12) 

(one could, as well, consider the morphisms P: W ~ ...... C L' 

where C L is the complexfication of B L' as we shall do in Sec. 
IV). Condition (3.12) implies that 

k L ( - 1)IZI(IZoi + ... + IZkl)p(ZI ® ... ® [Z,Zi] 
i=1 

(3.13) 

We take lOr (WG;BL ) == (I) kEN lOr (W~;BL) and make it into 
a graded B L algebra by defining, for Pel Or ( W ~;B L) and 
YElor (W~;BL)' the product PYElor (W~+h;BL) as fol­
lows: 

PY(ZI ® ... ®Zk+h) 

= _1_ L ( _ l)d(u) + IYI(IZ,,(I)I + ... + IZ,,(k)l) 

k!h! u 

XP(ZU(I) ® ••• ®ZU(k) 

®Y(Zu(k+ 1) ® ... ®ZU(k+h»' (3.14) 

where d(u) is as in Eq. (3.5). 
If q;eAP.k and Pel Or ( W ~;B L ), by composition we ob-
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tain a BL - valued k form on ll, P(tp) = POtpEAP(ll). One 
shows easily that 

dP(rp) = P(drp). (3.15) 

Moreover, property (3.13) implies that given a collection 

{'I/1;eAPi
'\ i = 1, ... ,k} and tpEA 1.\ 

k L (_I)p,+---+p,+I9'I(I.p,I+---+I'hl l 

;=1 

x P( '1/11/\ ••• /\ ['I/1;.tp ] /\ ... /\ 'I/1k) = o. (3.16) 

We are now ready to prove the following proposition. 
Proposition 3.2: Given a PSFB 17':ll ---S with the struc­

ture supergroup G, let 0 be the curvature form of a connec­
tion on II and let PeJOr ( W ~;B L ). Then the following holds. 

(i) The 2k form p(Ok), where Ok = 0/\ ... /\ 0 (k 

times), projects onto a closed 2 k form p(Ok) eA2k(S). 
(ii) If lr(P) is the element of the super de Rham 

cohomology group H~~R (S) defined by p(Ok), then 
lr(P) does not depend on the connection and 
lr:lor (WG;BL ) ---H;DR (S) is a graded algebra homomor­
phism (graded Weil homomorphism). 

If we consider the morphisms P: W ~ --- C L' then 11'" (P) 
takes values in H~~R (S) ® CL • 

Proof of part (i) of Proposition 3.2: Since 0 is horizontal 
of type Ad, so is Ok. As a consequence, p(Ok) is invariant 
and horizontal. Therefore, there exists a unique 2k form 

]i(Oi')eA2k(S) whose pullback by 17' is p(Ok). To prove 

dP(Ok) = 0 it is sufficient to show dP(Ok) = O. However, 
using Eqs. (3.15), (3.7), (3.16), and the Bianchi identity, 
one has 

dP(Ok) =P(dOk) =kP(dO/\Ok-l) 

= kP( [O,w] /\Ok-I) = O. 

In order to prove part (ii), we first state, without proof, the 
following lemma. 

Lemma 3.1: Let Wo and WI be two connection forms on 
II and define Wt = Wo + ta, a = WI - wo, O.;;:t.;;:l; then the 
following holds. 

(i) We find that a is an even horizontal one-form on II 
of type (Ad, WG ). 

(ii) We find that W t is a one parameter family of connec­
tion forms. 

(iii) We find that (d Idt)Ot = da + [w"a]. • 
Another result we shall need is the following proposi­

tion. 
Proposition 3.3: 

P(O~) - P(O~) = k d f pea /\O~-I)dt. (3.17) 

Proof By part (iii) of Lemma 3.1, 

:t P(O~) = kP((:t Ot))/\O~-I 
= kP(da /\O~-I) + kP([ w"a] /\O~- I). 

On the other hand, using the Bianchi identity and Eq. 
(3.16), 
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k dP(a /\O~-I) 

= kP(da /\O~-I) - k(k - l)P(a /\dOt /\O~-2) 

= kP(da /\O~-I) + kP<[ wt,a] /\O~-I) 

and, integrating by parts over t, one obtains Eq. (3.17). • 
Proof of part (ii) of Proposition 3.2: The (2k - 1) form 

<I> = k f~P(a /\ O~ - I )dt, being horizontal and invariant, 
projects onto a form ~A2k-I(S) and Eq. (3.17) in tum 
projects onto 

(3.18) 

Finally, one shows directly that 11"': 
lOr ( W G;B L ) --- H ;DR (S) is a graded algebra homomor­
phism. • 

C. Transgression formula 

The Weil homomorphism constructed in Sec. II B de­
scribes properties of the superbundle structure which do not 
depend upon the connection. However, the realization of the 
homomorphism in terms of the curvature 0 of the connec­
tion gives rise to new interesting objects. One indeed has the 
following propositions. 

Proposition 3.4: The 2k form p(Ok) on II is exact and 

p(Ok) = dT pew), 

with 

TP(w) =k f P(w/\\fI~-I)dt, 
(3.19) 

\fI t = t dw + ..!... t 2 [w,w ]. 
2 

(3.20) 

• The proof, similar to that of Proposition 3.3, will be 
omitted. 

We call Eq. (3.19) the graded transgressionformula and 
the forms on II given by TP( w) for different P, graded 
Chern-Simonsforms. These are invariant under the action of 
the supergroup G but are not horizontal, so that they do not 
project onto forms on the base supermanifold S. 

IV. ELEMENTARY INVARIANT POLYNOMIALS ON 
gl(m+n,'C) 

Let CL = BL ®RC, The setof(m + n) X (m + n) ma­
trices with entries in CL , denoted by gl(m + n;C), is a free 
graded CL module; its even part, denoted by gl(m,n;C), is 
formed by matrices having the structure given in Eq. (2.1), 
but with entries in (CL)o or (CL ) I' Here gl(m + n;C) is the 
Lie module of the super Lie group GL(m,n;C), which is the 
open subset of gl(m,n;C) whose elements are invertible ma­
trices. The adjoint action ofGL(m,n;C) overgl(m + n;C) is 
given as in the ordinary case by 

AdHX=HXH-\ HeGL(m,n;C), Xegl(m+n;C). 

Finally, we recall that the ordinary concept of trace is here 
replaced by the supertrace, which is defined as follows: If 
X = {X!, A,B = 1, ... ,m + n} is homogeneous [i.e., 
Xegl(m + n;C); with i = 0 or i = 1], one defines 

m+n 
StrX= L (_I)A(I+1lX1· 

A=1 
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If X is not homogeneous, then X =Xo + XI and Str X = Str 
(Xo) + Str(XI ). The supertrace has the following proper­
ties: 

Str(Xy) = (_l) lx IIYI Str(YX), 

V homogeneous X,Yegl(m + n;C), 

Str(HXH -I) = Str X, VXegl(m + n;C), 

VHeGL(m,n;C). (4.1 ) 

Using the supertrace we can construct functions on 
gl(m + n;C), invariant under the adjoint action of 
GL(m,n;C), which are polynomials in the entries of their 
argument. Such functions, which we shall call elementary 
invariant polynomials, are in a sense the "simplest" invariant 
functions on gl(m + n;C); however, we do not know 
whether these functions generate all invariant polynomials, 
as happens in the ordinary case. Indeed, in order to prove 
this one would need a spectral theory for matrices in 
gl(m + n;C), which is not available. 

The elementary invariant polynomials are defined by 
k 

pk(X) = L aj(Str Xj)k- j
, 

j= I 

(4.2) 

where the coefficients aj are the same that appear in the 
ordinary expression of the elementary invariant polynomials 
on the Lie algebra gl(N;C) (with N = m + n).32 The Ad 
invariance of these polynomials is assured by Eq. (4.1). The 
first few polynomials are the following: 

pl(X) =StrX, p2(X) =H(StrX)2-Str X 2], 

p3(X) = !(Str X)3 - !(Str X)2(Str X) +! Str X3. 

Obviously, these polynomials are naturally defined on 
any subalgebra of gl(m + n;C). If X is even, i.e., 
Xegl( m,n;C), the polynomials (4.2) can be given the follow­
ing compact representation: 

Pk(X)=J..[d:SdetU+tX)] , 
k! dt 1=0 

where 1 is the (m + n) X (m + n) identity matrix, t is a real 
number, and the superdeterminant (or Berezinian) of matri­
ces in GL(m,n;C) is defined as follows: If X has the form 
(2.1), with inverse 

X-I = (A' B') 
C' D" 

then 

SdetX= (detA)(detD'). 

Now, let 1T:II-S be a principal superfiber bundle, with 
structure supergroup GL(m,n;C) or one of its subgroups. 
Given a connection on 11 with curvature 0, we can construct 
the forms pk [(i/21T)0]. These forms can be written in 
terms of the polarization P k associated with the polynomial 
p k. The polarization, which is defined as in the ordinary 
case,32 is an element of lOr ( W~;CL)' with 
Wa = gl(m + n;C); one has 

pk [(i/21T)0] = pk([ (i/21T) 0] '1, 
so that the results of Sec. III apply to the forms 
pk [(i/21T)0]. Thus the cohomology classes in 
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H ;DR (S) ® CL represented by these forms are invariants as­
sociated with the superbundle. We define the k th Chern class 
of II as 

Ck (11) = { pk [(i/21T)0] }eH;~R (S) ® CL. (4.3) 

The reader may find in Ref. 12 a more general definition of 
integer Chern classes of superbundles. To our knowledge it is 
not possible to prove that the cohomology class in (4.3) is 
B L valued, since we are not able to construct on 11 some 
analog of a Hermitian connection in terms of which C I (11) 
would tum out to be B L valued. 

In accordance with the discussion of Sec. III C, we can 
also associate with the bundle 11 and the connection (}) 
transgression forms Tk «(}) such that 

(4.4) 

These are the Chern-Simons forms considered in Refs. 8-10. 

v. EXAMPLE: THE GRASSMANN DIRAC MONOPOLE 

In this section we give a simple example to illustrate 
some of the ideas developed previously. The example is the 
Grassmann version of the Hopf fibration as constructed in 
Ref. 17 in purely algebraic terms. 

The total space of the fibration is the ( 1,2) -dimensional 
super Lie group UOSP( 1,2), which can be realized as fol­
lows.33.34 Let osp ( 1,2) be the Lie B L superalgebra of dimen­
sion (3,2) with even generators {A;oi = 1,2,3} and odd gen­
erators {Ra,a = 1,2} given by the matrix representation 

A.~«~ 
0 1 A'~«~ 0 

D 0 0 
2 0 1 o 2 0 -i 

A'~«~ 
0 q R.~~ ~1 0 

D 0 
2 0 0 -1 2 0 0 

R'~~ ~ 
-1 

D 0 (5.1) 
2 -1 0 

Moreover, let L be an even integer, introduce the complexi­
fied Grassmann algebra C L = B L ® C, and consider a graded 
involution O:CL -CL verifying 

(xy)O = xOyO, Ixol = lxi, xO ° = ( - 1) Ixlx 

V homogeneous xeC L. 

The existence of such a map is assured by the fact that L is 
even.34 Now, we introduce the Lie C L superalgebra 

W = CL ® R osp(1,2) 

and define uosp ( 1,2) as the set of Xe W which can be written 
as 

X = alAI + l1RI + 110R2' al,l1eCL' a? = at. 

Here uosp( 1,2) is a subalgebra of gl(3 + 2). The super Lie 
group UOSP( 1,1) is defined as the image of the exponential 
map exp: gI(3,2) -GL(3,,2) restricted to uosp( 1,2)0. 

An arbitrary element seUOSP(1,2) can be parame­
trized as follows: 
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-! 1Jo 
z~(1 -11J01J) 

- z?(1 -61J01J) 

Here the elements ZO, zle( CL)o satisfy zoZ~ + ZIZ? = 1 and 
1Je (CL )I' 

The structure supergroup of the fibration is ~ ( 1 ), the 
Grassmann extension3s of U( I ): It can be realized as 

~(1) = {we(Cdo s.t. wwo = n. (5.3) 

Here ~ (1) imbeds into UOSP(1,2) by 

w~G ~ ~} 
so that we can think of A3 as the generator of ~ (1), i.e., 

~(1)={exp(A.A3)IAe(CL)0 s.t. A =A o}. 

By taking the right action of ~ ( 1) on UOSP ( 1,2) one ob­
tains a principal superftber bundle 

n=:UOSP( 1,2) +- ~ (1) 
1Tl 
S~ (5.4) 

whereS~ =: UOSP( 1,2)/~ (1). The projection 17' can be giv­
en explicitly as 

1T(S) = s[ (2/i)A3]St=:Xk [(2/i)Ad + sa(2Ra), (5.5) 

where st is the adjoint of S.33 It turns out that the xk,s are 
"real" even [i.e., xke( CL)o and Xko = Xk], the s a,s are in 
( C L ) I and satisfy S 2 = - S 10, and the following constraint 
holds: 

(5.6) 

On n there is a natural connection: take the Maurer­
Cartan form on UOSP( 1,2), 

(5.7) 

then the component of tVo along A3 is a connection form on n 
given explicitly by 

tV=8 3A 3, 

8 3 = -2i(1-!1J01J)(~dzo+z?dzl) (5.8) 

+ (i/4)(1Jo d1J + 1J d1Jo). 

As for the curvature, one has 

0= [_8 I A8 2 _ (i/2)8'8 2]A3 

= [ - 2i(1 - !1J01J) Xdz~ Adzo + dZ? Adzl ) 

- (i/2)( 1Jo d1J + 1J d1Jo) 

A(z~dzo+z?dzl) + (i/2)d1JoAd1J]A3. (5.9) 

The connection tV given by Eq. (5.8) is the Grassmann 
extension of a Dirac monopole. We shall show that n is not 
trivial by checking that its first Chern class, which we shall 
compute in terms of tV, does not vanish. Let us denote by 
ir (X,Y) the Cech cohomology ring of the topological 
space X with coefficients in the sheaf Y. 

Proposition 5.1: We find that S ~ is a De Witt supermani-
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(5.2) 

fold with body S2 (the two-dimensional sphere). If cI>: 
S~ ..... S2is the bundle projection, cI>·:H·(S2,Z) ..... H·(S~ ,Z) 
is an isomorphism. 

Proof: It is evident that S~ =82XB~2, where 82 is the 
unit sphere in B ZO, i.e., 

8= {(X I,X2,X3)eBZO s.t. 

X (XI)2 + (X2)2 + (X3)2 = n. 
Let T: 8 2 

..... S 2 be the projection, given by 
T«XI,x2,x3» = (u(x l ),u(x2),U(X3», where S2 is regarded 
as the unit sphere in R3. Here 82 can be covered by the two 
open sets 

U+ = 8 2 
- T-l«O,O,1), U_ =82 

- T-I«O,O, - 1», 

both of which are homeomorphic to B 20 via the maps '11 ± : 

U ± ..... B 20 defined as follows: 

.T. (I 2 3) ($#±x3 
Xl ..... ± x,x,x = --- --;::;:::;:;;;==::;::;;:;;:-

1 +~ ~(XI)2 + (X2)2 

~ x
2 

) X" 1 +~ ~ (XI)2 + (X2)2 . 

The transition function "'+0"'= I:B 20 _ (if·O) -1(0) 
..... B 20 

- (if·O) -I (0) is the map 

(zl,r) t-+ (ZI)2 ~ (r)2' (r)2: (r)2)' 

which is a [1 map. This proves that 82 is a De Witt super­
manifold of dimension (2,0). The second part of Proposition 
5.1 is a consequence of the fact that S ~, being De Witt, is a 
locally trivial bundle over S2 with vector space fiber. • 

We also introduce the morphism 

j:H2(S:,Z) ..... H~DR (S~), (5.10) 

which is induced by the morphism Z ..... BL of constant 
sheaves over S~ and by the isomorphism H;DR (S~) 
=H·(S~ ,BL ). The morphismj is injective since the exact 
sequence of constant sheaves of S~, 

O ..... Z ..... BL ..... ~ (1) X (BL ) 1 ..... 0, 

induces in cohomology a long exact sequence32 which splits 
into several pieces, among which one has 

v 2 2 iV 2 2 
O-+H (S.,Z)-+H (S • .BL ) 

-+H2X(S~, ~ (1) X (BL )1)-+0. 

After this preparatory material, we are ready to prove 
that C I (n) =1= O. The ~ ( 1) superbundle n over S ~ can be 
identified with an element of the cohomology group 
H I(S~ ,YI ), whereYI is the sheaf of [1 mapsS~ ..... ~ (1). 
The exactness of the sequence of sheaves over S: , 

O-+Z-+ [1o-+YI -+O, 

where [10 is the even part of the structure sheaf of S: , and 
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the triviality of the cohomology of [J 0' due to the fact that 
S ~ is De Witt, give an isomorphism 

[here we have used the canonical identification of [J 0 with 
the sheaf of germs of ~ maps S ~ : (B L )o( Ref. 23) ] . The ele­
mentc5(II) inH2(S~,Z) is called the obstruction class of II 
and has the property27.36 

(5.11) 

We wish to show that for the superbundle II previously con­
structed, one has 

c5(II) = - 1 (5.12) 

[notice that H2(S~ ,Z) =.H2(S2,Z) = Z]. Thus we have 
the following result of the Gauss-Bonnet type: 

j(1) = el(II), 

which, together with the injectivity ofj, proves that II is not 
trivial. 

Let f S 2 --> S ~ be a global cross section of the bundle 
S ~ --> S 2. The pullback/- I II is a principal fiber bundle on S 2, 
with the structure supergroup OJ! ( 1 ), and there is a bundle 
map If- I II --> II such that the diagram 

I-I-II 

1 ] 1 g 

S2_S~ 
f 

(5.13) 

commutes. Let u: OJ! (1) --> U( 1) be the restriction of the 
body map to OJ! ( 1 ). Composing the transition functions of 
I-III with uoneobtains a U( 1) bundle QoverS2, which is 
nothing but a Hopf fibration. Taking the body of the pull­
backl- (J) of the connection (2.8) one obtains a connection 
over Q, which is a Dirac monopole of the lowest strength. 
Therefore, the obstruction class of Q is - 1. Then the result 
(5.12) is a consequence of the following proposition. 

Proposition 5.2: The bundles II,/-III, and Q have the 
same obstruction class. 

Proof: First we prove c5(II) = c5(/-III). This is equiva-
lent to the commutativity of the diagram 

HI (S ~ ) ,.'71 )_H2 (S ~ ,Z) 

1* I 11*=<1>--1, 
H I(S2,F1 ) H 2(S2,Z) 

where FI is the sheaf of smooth maps S 2 --> U( 1 ). The equa­
lity r = <1>- - 1 follows from the fact that/0<l> is homotopic to 
the identity map. 

Moreover, the commutativity ofthe diagram 
a H'(S:r---r:'Z

) 

HI (S2,FI) H 2(S2,Z) 
a 

impliesc5(/-III) = c5(Q). Now, the connecting morphisms 
a: H I(S2,FI) -->H 2(S2,Z) and a: HI (S2,F) -->H 2(S2,Z) 
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have the following form: If 'I' = {Va} is a cover of S2 and 
g = {gaP}isan element in H I ('1',.'7) orinH I (r,FI ), then 
a(g) = h = {hapr }, with 

haPr = (1I217"i) (log gaP + log gPr + log gya ). 

Then the equality aou = a is equivalent to the following al­
gebraic result: If a, b, ce( CL)o with abc = 1, 

log a + log b + log e = log u(a) + log u(b) + log u(e). 

• 
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A three-dimensional space-time geometry of relativistic particles is constructed within the 
framework of the little groups of the Poincare group. Since the little group for a massive 
particle is the three-dimensional rotation group, its relevant geometry is a sphere. For massless 
particles and massive particles in the infinite-momentum limit, it is shown that the geometry is 
that of a cylinder and a two-dimensional plane. The geometry of a massive particle 
continuously becomes that of a massless particle as the momentum/mass becomes large. The 
geometry of relativistic extended particles is also considered. It is shown that the cylindrical 
geometry leads to the concept of gauge transformations, while the two-dimensional Euclidean 
geometry leads to a deeper understanding of the Lorentz condition. 

I. INTRODUCTION 

The internal space-time symmetries of relativistic parti­
cles are governed by the little groups of the Poincare 
group. 1,2 The internal space-time symmetry group for mas­
sive and massless particles are isomorphic to the three-di­
mensional rotation group and the two-dimensional Euclid­
ean group, respectively. We have shown in our previous 
paper3 that the internal space-time symmetry of massless 
particles is dictated by the cylindrical group, which is iso­
morphic to the Euclidean group. The cylindrical axis is par­
allel to the momentum. For the case of electromagnetic 
fields satisfying the Lorentz condition, the rotation around 
the axis corresponds to helicity, while the translation on the 
surface of the cylinder along the direction of the axis corre­
sponds to a gauge transformation.4 

The purpose of the present paper is to present a more 
complete geometrical picture of relativistic particles. Since 
the little groups for massive and massless particles are three­
parameter groups, 1 it is possible to construct a three-dimen­
sional geometry of internal space-time symmetries for all 
relativistic particles starting from a sphere for a massive par­
ticle at rest. It was observed in Ref. 3 that the three-dimen­
sional rotation group can be contracted either to the two­
dimensional Euclidean group or to the cylindrical group.3,5 
In the present paper, we point out first that both the cylindri­
cal and Euclidean geometries are needed for the little group 
for massless particles.3

,6 

We shall then show that the Euclidean geometry leads 
to a deeper understanding of the Lorentz condition applica­
ble to massless particles and to massive particles in the infi­
nite-momentum limit. It is then shown that the cylindrical 
symmetry is shared by all those particles, even without the 
requirement of the Lorentz condition. This means that the 
concept of gauge transformation can be extended to all mass­
less particles or massive particles with infinite momentum. 

Also in this paper, we shall discuss relativistic extended 
particles often called hadrons. It is not difficult to visualize 
the symmetry of an extended particle as the three-dimen­
sional rotation group.7 However, it is not trivial to construct 
the geometry of a relativistic extended particle or hadron if it 
moves with a speed close to that of light. We attack this 

problem by constructing the generators of the little groups in 
differential form and the wave functions to which these oper­
ators are applicable. 

In Sec. II, we discuss the three-dimensional rotation 
group and its contractions to the cylindrical and the two­
dimensional Euclidean group. It is shown that both of these 
contractions can be combined into a single representation. In 
Sec. III, the generators of the little group are discussed in the 
light-cone coordinate system. It is shown that these genera­
tors are identical to the combined geometry of the cylindri­
cal group and the Euclidean group discussed in Sec. II. 

In Sec. IV, we show that the Lorentz condition is not a 
prerequisite for the cylindrical symmetry and that the Eu­
clidean symmetry replaces the role of the Lorentz condition. 
In Sec. V, the formalism developed in Secs. II-IV is applied 
to the space-time geometry of relativistic extended hadrons. 
It is shown that the relativistic hadron can be described in 
terms of the parameters of the cylindrical group. Feynman's 
parton picture is discussed as an illustrative example. 

II. THREE-DIMENSIONAL GEOMETRY OF THE LITTLE 
GROUPS 

It is not difficult to construct the geometry of the little 
group for a massive particle at rest. 1 It is the three-dimen­
sional rotation group whose generators L; satisfy the com­
mutation relations 

(2.1 ) 

Transformations applicable to the coordinate variables x, y, 
and z are generated by 

o 
o 
o 

-i 

o 
o 

(2.2) 
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In our previous paper,3 we have shown that this group 
can be contracted either to the cylindrical group or the two­
dimensional Euclidean group. In either case, we can start 
from a sphere. The contraction to the two-dimensional Eu­
clidean group can be achieved through a plane tangent to the 
sphere at the north pole.4 The contraction to the cylindrical 
group corresponds to the cylinder that makes contact with 
the sphere at the equatorial belt. 3 

The Euclidean group is generated by L 3, PI' and P2, 
where 

(

0 0 i) (0 0 
PI = 0 0 0 , P2 = 0 0 

o 0 0 0 0 

(2.3) 

and they satisfy the commutation relations 

[PI,P21 = 0, [L3,Pd = iP2, [L3,P21 = - iPI. 

(2.4) 

The cylindrical group is generated by L 3, QI' and Q2' where 

(

0 0 
QI= 0 0 

i 0 

0) (0 0 o , Q2 = 0 0 
o 0 i 

(2.5) 

These generators satisfy the same set of commutation rela­
tions as that for L 3 , PI' and P2 given in Eq. (2.4): 

[QI,Q21 = 0, [L3,Qt1 = iQ2, [L3 ,Q21 = - iQI' 

(2.6) 

We achieve the contractions to the Euclidean and cylin-
drical groups by taking the large-radius limits of 

PI = (lIR)B -1(L2)B, P2 = - (lIR)B -I(LI)B, 

QI = - (lIR)B(L2)B -1, (2.7) 

Q2 = (lIR)B(L I )B -I, 

where 

o 
(2.8) 

o 

The vector spaces to which the above generators are applica­
ble are (x,y,zIR) and (x,y,Rz) for the Euclidean and cylin­
drical groups, respectively. 

In differential forms, the generators of the rotation 
group can be written as 

LI = -i(Y~-Z~), L 2= -i(Z~-X~)' 
az ay ax az 

L3 = - i(X ~ -y~) , 
ay ax 

(2.9) 

applicable functions of x, y, and z. The B(R) transformation 
applicable to these operators is 

B(R) = exp( - pz ~), (2.10) 

wherep = In(R). This operator commutes withL3. The ap­
plication of this formula to Eq. (2.9) in the large-R limit 
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leads to 

PI = - i !, P2 = - i ; . 

QI= -(~)~, Q2= -(~)~. 
(2.11) 

Since PI (P2) commutes with Q2 (QI)' we can consider the 
following combination of generators: 

(2.12) 

Then these operators also satisfy the commutation relations: 

[FI,F21 = 0, [L 3,Fd = iF2, [L3,F21 = - iFI . 

(2.13 ) 

On the other hand, this is not true if we add the three-by­
three matrices for P; and Q; to construct three-by-three ma­
trices for FI and Fz. This is due to the fact that the vector 
spaces are different for the P; and Q; representations. We can 
accommodate this difference by creating two different z co­
ordinates, one with a contracted z and the other with an 
expanded z, namely, (x,y,Rz,zl R). Then the generators be­
come 

i) (0 ~ • P,~ ~ 

Then FI and F2 will take the form 

F'~(! 
0 0 ) r 0 0 

~ . F,~ ~ 0 0 

0 0 

0 

0 

0 

(2.14 ) 

~) o . 
o 

0 

~) 0 
0 o . 
0 0 

(2.15) 

The contraction and expansion of the z axis are illustrated in 
Fig. 1. 

Next, let us consider the transformation matrix genera­
ted by the above matrices. It is easy to visualize the transfor­
mations generated by P; and Q;. It would be easy to visualize 
the transformation generated by FI and F2, if P; commuted 
with Q;. However, P; and Q; do not commute with each 
other. Thus the transformation matrix takes a somewhat 
complicated form: 

exp( - '<SF, + ~F,» ~ (~ 
o 

7J 
o 

l5' +:~')/2} 
o 
o 

o 
(2.16) 

If we make a similarity transformation on the above form 
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FIG. 1. Cylindrical and Euclidean deformations of the sphere. It is possible 
to contract the z axis by dividing it by R. This contraction ofthe z axis leads 
to the contraction of O( 3) to the two-dimensional Euclidean group. If the z 
axis is multiplied by R, then it becomes expanded. This expansion of the z 
axis leads to the contraction ofO( 3) to the cylindrical group. The expand­
ing and contracting z axes are treated as different coordinates, and are called 
the u and v coordinates, respectively, in Sees. III-V. 

using the matrix 

(~ 
0 0 
1 0 
0 1Iv1 
0 1Iv1 

-~N2)' 
1Iv1 

(2.17) 

then exp( - i(tFI + 1/F2 » ofEq. (2.16) becomes 

o -tlv1 
-1/Iv1 

1 - (t 2 + 1/2 )/4 

- (t 2 + 1/2 )/4 

(S'~~)/4 ). 

1 + (t 2 + 1/2 )/4 
(2.18 ) 

This form is readily available in the literaturel
,4 as the trans­

lationlike transformation matrix for the little group for 
massless particles. In this section, we have given a geometri­
cal interpretation to this matrix. 

III. LITTLE GROUPS IN THE LIGHT-CONE COORDINATE 
SYSTEM 

Let us now study the group of Lorentz transformations 
using the light-cone coordinate system. If the space-time 
metric coordinate is specified by (x,y,z,t), then the light­
cone coordinate variables are (x,y,u,v) for a particle moving 
along the z direction, where 

u = (z + t)/v1, v = (z - t)1v1. (3.1 ) 
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The generators of Lorentz transformations are then 

1 0 

(

0 

J
I ='7i ~ 

KI=_1 (~ 
v1 0 

i 

J =_1 (~ 
2 v1 - i 

i 

K =_1 (~ 
2 v1 0 

o 

(

0 -i 

J,~ ~ ~ 

o 
o 

-i 

o 
o 
o 
o 

o 
o 
o 
i 

o 
o 
o 
o 

o 
o 
o 
o 

o 
o 
o 
o 

o 
o 
i 
o 

(3.2) 

~). 
-l 

For J I , J2, and J3, we can consider the three-by-three matri­
ces consisting of the first three rows and columns. Then they 
are clearly the generators of the rotation group. The set of 
three-by-three matrices consisting of the first, second, and 
fourth rows and columns also constitutes the set of rotation 
generators. 

If a massive particle is at rest, its little group is generated 
by JI> J2, and J3• For a massless particle, the little group is 
generated by J3, N I , and N2, where 

NI = (KI - J2 ), N2 = (K2 + J I ), (3.3) 

which can be written in the matrix form as 

N =_1 (~ 
0 0 

~} 0 0 
I v1 i 0 0 

0 0 0 
(3.4) 

N =_1 (~ 
0 0 
0 0 

V 2 v1 0 0 o . 
0 0 0 0 

These matrices satisfy the commutation relations: 

[J3,NI] = iN2' [J3,N2] = - iNI' [NI,N2] =0. 
(3.5) 

Let us go back to FI and F2 of Eq. (2.15). Indeed, they 
are proportional to NI and N2, respectively: 

NI = (lIv1)FI, N2 = (l/v1)F2. (3.6) 

Since FI and F2 are somewhat simpler than NI and N2, and 
since the commutation relations of Eq. (3.5) are invariant 
under multiplication of NI and N2 by constant factors, we 
shall hereafter use FI and F2 for NI and N2. 

In the light-cone coordinate system, the boost matrix 
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along the z direction takes the form 

B(R) =exp( -ipK3) =(~ ! ~ 
° ° ° 

~ ), (3.7) 

l/R 

withp = In(R), and R = «(1 + ,8)/(1 - ,8»112, where,8is 
the velocity parameter of the particle. Under this transfor­
mation, x and y coordinates are invariant, and the light-cone 
variables u and v are transformed as 

u' = Ru, v' = viR. (3.8) 

(3.9) 
W2(R) = iJ:...BJIB-I 

R 

~u ° ° ~. ° -i/R2 

i ° -i/R2 ° 
then W1(R) and W2(R) becomeFI andF2, respectively, in 
the large-R limit. 

The algebra given in this section is identical with that of 
Sec. II based on the three-dimensional geometry of a sphere 
going through a contraction/expansion of the z axis. There­
fore, it is possible to give a concrete geometrical picture to 
the little groups of the Poincare group governing the internal 
space-time symmetries of relativistic particles. 

The most general form of the transformation matrix is 

D(t,7j,a) = D(t,7j,0)D(0,0,a), 

where 

D(t,7j,0) = exp( - i(tFI + 7jF2», 
D(O,O,a) = exp( - iaJ3 ). 

(3.10) 

Here, D(O,O,a) represents a rotation around the z axis, and 
does not need further explanation. In the light-cone coordi­
nate system, D(t,7j,0) takes the form ofEq. (2.16). It is then 
possible to decompose it into 

D(t,7j,0) = C(t,7j)E(t,7j)S(t,7j), (3.11) 

where 

C(s. V) ~ exp( - 'sQ, - 'vQ,) ~ (~ ° ° 

V· ° 
71 1 

° ° 
(3.12) 
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° ° ° ° 
° ° 

(3.13) 

(3.14) 

The matrix C(t,7j) performs a cylindrical transformation on 
the first, second, and third components, whileE(t,7j) is for a 
Euclidean transformation on the first, second, and fourth 
components. The matrix S(t,7j) performs a translation 
along the third axis and commutes with both C(t,7j) and 
E(t,7j). As we noted in Ref. 3, both E(t,7j) and S(t,7j) 
become identity matrices when applied to four-vectors satis­
fying the Lorentz condition which have a vanishing fourth 
component. 3 

IV. CYLINDRICAL GROUP AND GAUGE 
TRANSFORMATIONS 

In order to illustrate the transformation property of the 
vector to which the above matrices are applicable, let us con­
sider a particle represented by a four-vector: 

(4.1 ) 

whereA I'- = (AI.A2.A3.AO)' In thelight-conecoordinatesys­
tern, 

(4.2) 

where Au = (A3 + Ao)/v?:, and Au = (A3 - Ao)/v?:. If it is 
boosted by the matrix ofEq. (3.7), then 

A'I'- = (A I.A2,RAu.Av/R). (4.3) 

Thus the fourth component will vanish in the large-R limit, 
while the third component becomes large. 

The momentum-energy four-vector is 

pI'- = (O,O,(k + IV)/v?:,(k -IV)/v?:), 

which in the rest frame becomes 

pI'- = (O,O,m/v?:, - m/v?:), 

(4.4) 

(4.5) 

where m is the mass. If we boost this four-momentum using 
the matrix ofEq. (3.7), then 

P'I'-(O,O,Rm/v?:, - m/v?:R). (4.6) 

Here again, the fourth component vanishes for large values 
of R, while the third component becomes large. 

Let us go back to W1(R) and W2(R) ofEq. (3.9). If 
WI (R) is applied to the four-vector A '1'-, the result is 

i{(Au -Au)/R,O.A I, -AI/R2), (4.7) 

which becomes (0,0, - iAI,O). When W2 (R) is applied, the 
result is (0,0, - iA2,0). Thus the i/R 2 factors in WIR 2 and 
W2 (R) can be dropped in the large-R limit. We can thus 
safely apply the transformation matrix generated by FI and 
F2• 
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Since the fourth component of the vector vanishes or 
becomes vanishingly small, the application of S(s,q) ofEq. 
(3.14) onA '1' and P'I' will produce no effects in1:he large-R 
limit. The same is true for E(s,rJ} of Eq. (3.13). Thus, 
among the three factors of the transformation matrix, only 
the matrix C(s,1/) given in Eq. (3.12) will produce a nontri­
vial effect. This is the cylindrical transformation discussed in 
Ref. 3. 

During the limiting process, the three-dimensional ge­
ometry consisting of the x, y, and v coordinates describes a 
pancakelike compression of the sphere in which the v coordi­
nate shrinks to zero, as is indicated in Fig. 1. Because of this 
contraction of the v coordinate, the Euclidean component of 
the little group disappears. This is the content of the Lorentz 
condition for massive particles in the infinite-momentum 
limit. The three-dimensional geometry of the x, y, and u co­
ordinates corresponds to the expanding z coordinate, result­
ing in the cylindrical symmetry, as is indicated in Fig. 1. 

Let us see the effect of C(s,1/) on the four-vector of Eq. 
(4.3). If we apply C(s,1/) to the four-vector, then 

(~ ! ~ ~)(3.) =(RA. +~, + >pi,). 
o 0 1 AJR Au/R 

(4.8) 

This is not unlike the D(s,1/) transformation applied to the 
four-vector satisfying the Lorentz condition Au = 0: 

(~ 
o 
1 

1/ 
o 

o 
o 
1 

o 

~(~ ~ ! V(~·) 
~ ( RA. + :i.+ >pi) (4.9) 

As we noted at the end of Sec. III, the Lorentz condition 
eliminates the Euclidean component in theD(s,1/,O) matrix. 
It is remarkable that Eq. (4.9) is strikingly similar to Eq. 
(4.8). The cylindrical transformation is quite independent 
of the fourth component in both cases, and it produces the 
same result for the first three components. Thus the elimina­
tion of the Euclidean component that led to Eq. (4.8) can 
thus be regarded as an extension of the Lorentz condition to 
all four-vectors. 

V. LITTLE GROUPS FOR RELATIVISTIC EXTENDED 
PARTICLES 

We are now ready to discuss the symmetry property 
discussed in Sec. III for relativistic extended particles or ha­
drons. Let us consider a hadron consisting of two quarks 
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bound together by an attractive force such as the harmonic 
oscillator force. We use four-vectors Xa and Xb to specify 
space-time positions of the two quarks. Then it is more con­
venient to use the following variables8

: 

X= (xa +xb )12, X= (xa -xb )/2Y2. (5.1) 

The four-vector X specifies where the hadron is located in 
space-time, while the variable x measures the space-time 
separation between the quarks. 

In the light-cone coordinate system, the generators of 
rotations applicable to functions localized in the four-dimen­
sional space-time of x are 

i (( a a) a) J I = - - y - + - - (u + v) - , 
Y2 au av ay 

i ( ( a a) a ) J2 =- x -+- - (u+v)- , 
Y2 au & ax (5.2) 

i (( a a) a) K2 =- y --- + (u-v)- , 
Y2 au av ay (5.3) 

K3 = - i( u ! -v ~) . 
These generators do not contain the hadronic coordinate 
variable X, as transformations of the little group do not 
change the hadronic momentum. 

The boost operator along the z direction is 

B(R) = exp( - p( u ! -v :J) . (5.4) 

If this boost is applied toJ2 andJl , as in the case ofEq. (3.9), 

WI(R) = -i(X! -v ! -(~r(u ! -x :J), 
(5.5) 

W2(R) = _/y~_ v!....- (~)2(U!...._ y!....)). 
\au (Jy Ray av 

In the limit oflarge R, WI and W2 become FI and F 2 , respec­
tively9: 

FI = -;( x ! -v !), F2 = - i~ ! -v ~) . 
(5.6) 

The transformation operator is now 

D(s,1/,O) = exp( - i(sx + 1/Y) ~ - iV(s ~ + 1/ !....)) , au ax ay 
(5.7) 

which can be decomposed into 

D(s,1/,O) = exp( - i(sx + 1/Y) !) 
xexp( - iV(s ! + 1/ ~)) 

xexp( - i..!!... (S2 + 1/2 )~), (5.8) 
2 au 
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v 

u 

Area A 

FIG. 2. Lorentz deformation in the uv plane. As the velocity parameter 
increases, the distribution along the u axis becomes expanded while the v 
axis becomes contracted, in such a way that the area remains constant. In 
the infinite-momentum limit, the v distribution becomes like that of i5(v), 
while the distribution along the u axis becomes widespread. The translation 
along the u axis becomes a gauge transformation. 

as in the case of Eq. (3.11). 
We are applying this operator on functions localized in 

the four-dimensional space-time. As an illustration, let us 
consider Dirac's Gaussian form lO

: 

t/J(x) = (lhr)exp( - (x2 + r + r + t 2)/2). (5.9) 

This form is not invariant under Lorentz boosts, but under­
goes a Lorentz deformation when the system is boosted.9

•
11 

If it is boosted along the z direction, the x and y coordinates 
are not affected. We can therefore delete these transverse 
variables, and concentrate on the Lorentz deformation prop­
ertyof 

t/J(z,t) = (lhr) 1/2 exp( - (u2 + v2)/2), (5.10) 

in the uv plane. The light-cone variables u and v are defined 
in Eq. (3.1), and their Lorentz-transformation property is 
given in Eq. (3.8). If this function is Lorentz boosted along 
thez axis, 

t/Jp(z,t) = (lhr) 1/2 exp[ - «uIR)2 + (RV)2)/2J. 
(5.11 ) 

The width of this function along the u axis increases as R 
becomes large, while the distribution along the v axis be­
comes narrow, as is described in Fig. 2. 

This function illustrates the Lorentz-deformation prop­
erty of functions localized in the uv plane. The width of the v 
distribution decreases as 1/ R. When the v distribution is 
very narrow, we can consider the transformation in the sub­
space where v = O. Then the factors 

exp( - iV(S ~ + TJ ~)) and exp( - i ~ (S2 + TJ2) ~) 
ax ay 2 au 

inEq. (5.8) for D(s,TJ,O) can be dropped. As a consequence, 

D(s,TJ,O) = exp( - i(sx + TJY) :u). (5.12) 

This means thattheterms v a lax and v a layinEq. (5.6) can 
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be dropped, and FI and F2 can be written 

F . a F . a 
I = - IX -, 2 = - ly -. 

au au 
(5.13) 

These operators generate translations along the u axis. These 
operators, together with the rotation generator J3 of Eq. 
(5.2), are the generators of the cylindrical group. The differ­
ential operators FI and F2 are now the generators of gauge 
transformations applicable to functions with a narrow distri­
bution in v (Ref. 9). 

Here again, a complete description of the little group for 
massive particles in the infinite-momentum limit requires 
both the cylindrical and Euclidean components. The Euclid­
ean component can be deleted in the infinite-momentum 
limit or in the v = 0 subspace. As we observed at the end of 
Sec. IV, this is the Lorentz condition applicable to massive 
particles in the infinite-momentum limit. 
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The stochastic theory developed by the authors for the scattering from a random planar 
surface is extended to the case of a random spherical surface, which is assumed to be a 
homogeneous random field on the sphere, homogeneous with respect to spherical rotations. 
Based on the group-theoretical analogies between the two, the formulation of the theory is 
closely connected to the representation theory of the rotation group. The concept of the 
"stochastic" spherical harmonics associated with the rotation group and their several formulas 
are introduced and discussed at the beginning. For the plane wave incident on a random 
spherical surface, the scattered random wave field can be expanded systematically in terms of 
the stochastic spherical harmonics in much the same way as the nonrandom case, and several 
formulas are derived for the coherent scattering amplitude, the coherent and incoherent power 
flows, and the coherent and incoherent scattering cross sections. The power-flow conservation 
law is cast into the stochastic version of the optical theorem stating that the total scattering 
cross section consisting of the coherent and incoherent power flow is equal to the imaginary 
part of the coherent forward-scattering amplitude. Approximate solutions are obtained for the 
Mie scattering with a slightly random spherical surface where the single scattering 
approximation is valid due to the absence of a real resonance, as shown in the previous work 
on the two-dimensional case. Some numerical calculations are made for the coherent and 
incoherent scattering cross sections. 

I. INTRODUCTION 

In a series of papers, 1-8 the authors have been studying 
the scattering of waves from a random planar surface, by 
means of a stochastic functional approach that is entirely 
different from the ordinary scattering theories. It is to be 
stressed that, in addition to the stochastic functional calcu­
lus due to Wiener and Ito,9-11 the formulation of our theory 
is based on the group-theoretic consideration associated 
with homogeneity of the random surface, where homogene­
ity implies the probabilistic invariance under the group of 
translational motions on the plane, and that this leads to the 
"stochastic" Floquet theoreml2,1-8 as an irreducible repre­
sentation for the translation group. 

The present paper deals with the problem of scattering 
from a random spherical object, which is practically related 
to, for instance, the light scattering by interplanetary dust 
particles,13-15 Raman scattering by microcrystalline parti­
cles,16.17 radio-wave scattering by deformed rain drops, 18 
diffraction by a rough planetary surface, etc. Although the 
scattering by a random sphere has been treated in several 
ways, assuming a suitable model for a random spherical sur­
face,13-15,19 a theoretical formulation like the w~ll-known 
scattering theory for a nonrandom sphere20 has not yet been 
made for a random sphere. It is perhaps because of the lack 
of the techniques to handle a random field on the sphere and 
partly because of the intrincate manipulation of spherical 
functions in the perturbation calculus. The problem, there­
fore, attracts our attention not only for practical reasons but 
also for the theoretical interest aroused by it. 

A preliminary study21 has been made on a simple two­
dimensional (2-D) model, that is, the scattering of plane 
wave from a random cylindrical surface that is homogenous 

with respect to circular rotations. Since the rotation is only a 
translational motion along a circle, the irreducible represen­
tation of the circular rotation group is again ID, and the 
group index is given by a Fourier exponential function, so 
that the theory can be easily formulated in a manner analo­
gous to the case of random planar surface. The differential 
cross sections for the coherent and incoherent scattering and 
a stochastic version of the optical theorem have been ob­
tained. In the case of a planar random surface even if the 
roughness is negligibly small, the multiple scattering has an 
important effect causing the so-called anomalous scattering 
(e.g., scalar wave with Neumann surface,? electromagnetic 
wave with perfectly conducting surface, 3 surface plasmon 
mode8). In the case of random cylindrical surface, although 
the multiple scattering can be treated by means of Wiener­
Hermite expansion in much the same way as the planar case, 
it is shown that the multiple scattering does not create an 
appreciable effect in the Mie scattering if the roughness is 
small enough: This is due to the lack of a real resonance or of 
a surface mode on the circular surface. Therefore, it is ex­
pected for the same reason that, if the roughness is small 
enough, the Mie scattering from a random spherical surface 
could be well treated based on the single scattering approxi­
mation for the incoherent part and the second-order approx­
imation for the coherent part. 

In the present paper, the random surface is assumed to 
be a homogeneous random field on the sphere, homogeneous 
with respect to the spherical rotations. The scattered wave 
field is then regarded as the stochastic functional of the ho­
mogeneous random surface, and at the same time it is expect­
ed that the random wave field reflects a group-theoretic 
property associated with the rotational homogeneity. The 
totality of spherical rotations forms the rotation group that 
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we denote by G. It is to be noticed that the representation 
theory ofthe rotation group22,23 plays an essential part in our 
treatment of stochastic functionals associated with the ran­
dom spherical surface. A great difference from the planar or 
the circular case lies in the fact that due to the noncommuta­
tive property of G the vector space for the irreducible repre­
sentation is finite dimensional, i.e., (21 + 1 )-0,1 = 0,1,2, ... , 
and its (21 + 1) -0 transformation matrix is given in terms of 
generalized spherical functions22; this is to be contrasted to 
the 1-0 representation in terms of a Fourier exponential 
function for the translational or the circular motion group. 
With this difference in mind, we can formulate the scattering 
theory for a random sphere in a manner analogous to the 
planar case. Table I shows the analogies between the two 
formulations for the spherical random surface, which will be 
helpful in what follows to formulate the scattering theory for 
a random spherical surface. The scattering from a cylindri­
cal random surface,21 which stands between the two cases, is 
theoretically close to the planar case in view of its group 
property, but physically similar to the spherical case with 
respect to its scattering characteristics. 

A brief summary on the theory of the rotation group and 
related formulas for vector spherical harmonics are given in 
the Appendix for reference in the text. Before dealing with 
the stochastic scattering problem, we need to prepare some 
mathematical tools in Secs. II-IV, which are indispensable 
for manipulating the random wave fields arising from the 
homogeneous random spherical surface. Section II gives a 
new group-theoretic interpretation for the spectral represen­
tation of a homogeneous random field on a sphere. In this 
connection, we introduce a concept of the stochastic repre­
sentation of the rotation group in a vector space of random 
variables: it is a novel way of a group representation, since 
the representation space has been usually taken as an ordi­
nary vector space or a function space. Section III deals with a 
more general stochastic representation in the space of ran­
dom fields by means of the shift transformation associated 
with the rotational homogeneity. In Sec. IV, a "stochastic 

spherical harmonic" is defined as a homogeneous vector 
random field in a (21 + 1) -0 vector space of an irreduoible 
representation. And in terms of stochastic spherical har­
monics, a "stochastic solid harmonic" is defined, which sat­
isfies the vector Helmholtz equation and which represents a 
stochastic spherical wave belonging to the same invariant 
vector space. 

These mathematical definitions and formulas are conve­
niently applied to the theory of the wave scattering from a 
random spherical surface in Secs. V-VIII. In Sec. V, the 
formulation for the scattering problem is given in two steps. 
First, the theory is developed for the spherical wave inci­
dence where the scattered wave field can be expanded in 
terms of stochastic solid harmonics belonging to the same 
invariant vector space with the incident wave: this corre­
sponds to the stochastic Floquet theorem in the case of a 
planar random surface. 1 Then, in much the same way as the 
ordinary scattering theory from a sphere,20 the scattered 
random wave field for a plane wave incident on the random 
sphere can be readily obtained by superposition in the form 
of an expansion in terms of stochastic spherical harmonics 
(i.e., an irreducible decomposition in the representation the­
ory of the rotation group). Once the stochastic wave field is 
obtained, the statistical characteristics of the scattered wave 
can be easily calculated by averaging, which are given in Sec. 
VI, such as the coherent amplitude, coherent and incoherent 
power flows, total scattering cross section, optical theorem, 
and coherent and incoherent scattering distributions. Sec­
tion VII gives the method of approximate solution for the 
expansion coefficients by solvintg the boundary condition on 
the random spherical surface. The calculations are given for 
the first-order (single-scattering) approximation for the in­
coherent field and the second-order approximation for the 
coherent field. Numerical evaluations for several statistical 
scattering characteristics are finally given in Sec. VIII for the 
Mie scattering where the first-order approximation is valid 
for small roughness parameter as shown in the case of a ran­
dom circular surface. The range of validity is checked using 

TABLE I. The analogies between the two formulations for the scattering from a planar random surface and the scattering from a spherical random surface. 

Random surface 

Homogeneity 

Group representation 

Spectral 
representation 
Analog of F10quet 
theorem 

Stochastic wave field 

Incident wave 
Synthesized wave field 

Scattering from a random plane 

l' homogeneous random field 
on plane 

2' probabilistic invariance 
under translations 

3' stochastic representation of 
translation group 

4' Fourier integral type 

5' random field in an 
irreducible representation space 
of the translation group 

6' integration of stochastic 
plane wave 

7' plane wave 
8' superposition of plane waves; 

stochastic radiation field for 
a point source 
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Scattering from a random sphere 

homogeneous random field 
on sphere 

2 probabilistic invariance 
under spherical rotations 

3 stochastic representation of 
the rotation group 

4 expansion in spherical 
harmonics 

5 random field in an 
irreducible representation space 
of the rotation group 

6 sum of stochastic solid 
harmonics 

7 spherical wave 
8 superposition of spherical 

waves; 
stochastic wave field for plane­
wave injection 
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the power conservation formula and the optical theorem. 
It is to be remembered that, as often used in quantum 

mechanics, a group-theoretic treatment based on the sym­
metry simplifies a great deal of manipulations for calculating 
the solution, and in the same manner our stochastic group­
theoretic treatment based on the rotational homogeneity 
again considerably simplifies the calculation as well as the 
description of the solution. Otherwise, even in the single­
scattering approximation, the representation and the statis­
tical properties of the scattered wave field are much too com­
plicated to obtain by means of a conventional scattering 
analysis, because of the coupling of three spherical harmon­
ics arising from the spectral representation of the random 
surface, the expansions of the Green function and the inci­
dent plane wave all in terms of spherical harmonics. 

The multiple-scattering correction will be required if we 
go far beyond the Mie scattering range or treat the case of the 
short wavelength limit in the diffraction theory. As in the 
polar or circular rough surface, the multiple scattering can 
be taken into account, if necessary, by introducing the sec­
ond Wiener kernel in the Wiener expansion of the stochastic 
functionals. This involves the irreducible decomposition of 
the tensorial products describing the second-order Wiener­
Hermite functional. To do this, however, implies a lot of 
complication in addition to the present calculation, although 
it was trivially easy in the planar case1

•
2 or the cylindrical 

case21 because of the 1-0 representation of the translational 
or rotational group by means of Fourier exponential func­
tions. Therefore, we avoid this in calculating the approxi­
mate solution and limit ourselves to the Mie scattering with 
small roughness due to the reason mentioned above. The 
case of multiple scattering will be discussed in a future work 
based on the present treatment. 

II. HOMOGENEOUS RANDOM FIELD ON A SPHERE 

For the applications in the following, we briefiy summa­
rize the mathematical definitions and formulas with concise 
description about the derivation and theoretical meanings. 

Let (.0,&6' ,P) denote the probability space (.0 denotes 
the sample space, &6' the Borel field on .0, and P the probabil­
ity measure), and let Y( m) denote a random variable (&6' 
measurable function), m indicating the probability param­
eter denoting a sample point in .0, which will be often 
supressed for brevity. Let L 2 ( .0) denote the Hilbert space of 
random variables such that (I Y 12) < 00 with inner product 
(Y1,Y2 )n = (Y1Y2 ), ( ) denoting the average over .o. 

Let a three-dimensional (3-D) vector r be denoted by 
r= (r,(},q;) in the spherical coordinates, and a 3-D spherical 
surface by S3 = (r, (},q;) with radius r = 1. The rotational 
motion g, which describes the transformation r ..... r' = gr, 
forms the rotation group G (see the Appendix). Here, DI 
denotes a (21 + 1 )-0 vector space for an irreducible repre­
sentation of G with weight I. It is to be kept in mind that the 
term "representation" is used in two ways in the following; 
the representation of the rotation group and the representa­
tion of a random field, which, however, may not be confus­
ing for us. 

Let f(r) =f(r,m) represent a q.m. (quadratic mean) 
continuous random field on S3' In this section, let L ;( .0) 
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denote the sub-Hilbert space of random variables which is 
linearly generated from f(r) (q.m. limit oflinear transfor­
mation). In the present paper, the probability space 
(.0,&6' ,P) is associated with the homogeneous random field 
on S3 describing a random spherical surface, so that a ran­
dom variable is considered as a stochastic functional of the 
random spherical surface. 

A random field on the sphere whose probability distri­
bution (correlation function) is invariant under arbitrary 
rotations is said to be homogeneous in the strict (wide) 
sense. More generally, a homogeneous random field is de­
fined with respect to the invariance under the group of mo­
tions in a homogeneous space.2

4-26 For our purpose, we as­
sume f(r,m) be a homogeneous Gaussian random field on S3 
with mean 0, so that it is homogeneous in either sense. Since 
the correlation function R(r1,r2 ) = (f(r1)f(r2 » is invar­
iant under arbitrary rotations, we have 

from which follows that R (r Itr 2) is a function only of (}, 
which denotes the angle between r 1 and r2 [cf. (AI9)], so 
that we write the correlation function as R«(}) =R(r1,r2 ). 

We first show three forms for the representation of the 
homogeneous random field f(r,m) on the sphere: 

(2) 
00 I 

= L L Y'!'«(},q;)FIB'!'(m) 
I=Om=-1 

(3) 

= L -- FIB I(r,m), r=geo· OO~/+l 0 _ 
1=0 41T 

(4) 

Equations (2) and (4) will be explained later. Equation (3) 
is the classical form ofthe spectral representation27

,28 given 
in terms of spherical harmonics and the orthogonal random 
spectrum FIB,!" where B'!'=B'!'(m) denotes a Gaussian 
random variable with mean 0 having orthogonal property: 

(B'!'B'f!') = (B'!'(r)B'r'(r» =~l/'~mm" (5) 

where the middle member in the equality will be explained 
later. The spectral representation for the correlation func­
tion can be easily given using the addition formula for the 
spherical function: 

(6) 

where (} is denoting the angle between two vectors r l and r2, 

and we call 1F112 the "power spectrum." Particularly, the 
"white" spectrum 1F112 = l( const) gives the delta correla­
tion for the white noise on the sphere: R«(}) = ~«(}),~«(}) 
denoting the delta function on the sphere with the measure 
dS=sin (} d(} dq;. 

The homogeneous random field on the sphere, f(r), can 
be as well regarded as a random field on Gby (A2); 

(7) 

where eo denotes a unit vector along the polar axis, and gr 
denotes the rotation that brings eo into r. The scalar field (7) 
is independent of the third Euler angle q;2 or of the rotation 
aroundr. 
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Let the rotational transformation S g of the homoge­
neous random field fer) be as defined by (A4); 

sg:j(r) -f(g-Ir), geG. (8) 

Then, the transformation sg on fer) induces a transforma­
tion ug on random variables YeL ;(0), 

ug: Y(m) - Y' (m) == UgY(m), (9) 

which we call the shift transformation. From the invariance 
( 1 ), U g is a unitary transformation in L;' The strict sense 
homogeneity of f( r) implies that the measure-preserving set 
transformation r g: A -A' = rgA is induced on 0, such 
that p(rgA) = peA), A, A 'effB. For convenience, we write 
this formally as a point transformation on 0 without loss of 
rigor9: 

( 10) 

and we can write the shift transformation (9) in the follow­
ingmanner: 

(11 ) 

which is intuitively understandable because the sample point 
m can be looked upon as if it is a coordinate parameter. As 
easily demonstrated, the transformation r g

, equivalent to 
U g, has the group property: 

rg'rg'=rg,g" [rg]-I=rg- 1, re=I, (12) 

which is also satisfied by U g
, in the same manner as sg in 

(A5). Therefore, the group homomorphism g - r g (or U g
), 

geG, gives the representation of the rotation group in the 
space L ;(0). 

Then using the shift operator r g
, we can write the ho­

mogeneous random field f(r,m) in the form (2): 

f(r,m) =f(eo,rg-'m)==Ug-'j(eo,m), r==geo, (13) 

where g denotes the rotation that brings eo into r. Then, we 
note that the scalar random field fer) is invariant under 
rotations around r: 

U"/(r) =f(r), hEllr;U"/(eo) =f(eo)' hEll, (14) 

where H denotes the subgroup of rotations around the "po­
lar axis" eo; heo = eo, hEll, and by Hr the subgroup of rota­
tions around the vector r = geo: hr r = r; hr 
= ghg- 1Ell" hEll. 

By the representation theory of the rotation group,22,23 
the representation space L ;(0) for r g (or ug) can be de­
composed into the sum of irreducible spaces, and corre­
spondingly a vector f(eo) inL ;(0) can be decomposed into 
the vectors of orthogonal irreducible spaces. For conven­
ience, we denote by DI (0), I = 0,1,2, ... , an irreducible space 
of the weight-I representation for r g ( U g). 

We can show that the independent Gaussian variable 
B '(' = B '(' (m) in the spectral representation (3) is trans­
formed according to the operation r g

-' in such a manner as 

I 

= L r!m (g)BHm), r==geo (15) 
s= -I 

and its special case with m = 0 is written using (A8), 
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B?(r) = ~ 41T ± Y,(,(O,tp)B,(,. 
2/+1 m=-I 

(16) 

This implies that B ,(" m = - 1, ... ,1, is the mth canonical 
basis relative to the "north pole" eo in the (21 + 1 )-D vector 
space of DI(O), which is subject to the transformation by 
means of the unitary matrix r!m (g), thatthe canonical basis 
B'(' ought to satisfy the orthogonality (5), and that B '(' (r) 
==B ,(,(r,m) in the left-hand member of (15) gives the mth 
canonical basis relative to r = geo, satisfying the orthogonal­
ity (5) as well. 

Since by (14) f(eo) has only the Oth canonical compo­
nents relative to eo, its irreducible decomposition can be 
written in terms only of B 7, 

f(eo) = L -- FIB I' '" ~/+l 0 

1=0 41T 
(17) 

If we apply U g-' (or r g-') on both sides, using (13) and 
( 15), we get the expression (4), which is the spectral repre­
sentation in terms of the moving canonical basis in DI (0). 
That each term of C 4) or ( 17) has only Oth canonical compo­
nent implies according to (A27) that the homogeneous ran­
dom field fCr) is decomposed into the sum of isotropic 1-
vector field in DI (0), which is a simple geometrical 
interpretation for the spectral representation. 

Substituting ( 16) into ( 4 ) we recover the spectral repre­
sentation (3) in the original form, where the random spec­
trum FIB '(' can be interpreted as the fixed canonical basis of 
D I ( 0) at the north pole eo. Therefore, the simple spectral 
representation (4) is a "coordinate-free" representation 
while the original form (3) is a "coordinate-fixed" represen­
tation. Such a group-theoretic or geometric simplification is 
greatly helpful when we deal with the random fields genera­
ted by the original homogeneous random field. 

III. SHIFT TRANSFORMATION AND HOMOGENEOUS 
RANDOM FIELDS ON A SPHERE 

In what follows, we deal with a random field on the 
sphere 'I/J( r,m) as a ( ffB s X ffB measurable) function on 
S3 X 0, or more generally a random field 'I/J(g,m) on G. For 
the sake of practical applications we introduce the shift 
transformation D g operating on random fields using the 
convenient notation r g, instead of ug. Define the operator 
Dg,geG, by 

Dg'I/J(r,m) = 'I/J(g-l r ,rg -'m), (18) 

(19) 

Writing r = goeo, (18) is a special case of (19). From (A5) 
and (12) it easily follows that D g gives a representation of 
the rotation group G: 

Dg'Dg, = Dg,g" [Dg]-1 =Dg-', De=I. (20) 

The operator D g, being a measure transformation on S3 X 0, 
can be applied to the random measure as well. The shift 
operator D g introduced here is an analogy to the shift opera­
tor operating on stationary processes. 12 

It should be noticed that the homogeneous random field 
(2) is invariant under Dg, geG. More generally, if a random 
field X( r,m) is D g invariant, that is, 
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(21) 

then it is shown thatX(r,w) is a homogeneous (scalar) ran­
dom field on S3 expressible in the same form as (2): 

X(r,w) = X(eo,Tg-'w) == Ug-'X(eo,w), rEgeo, (22) 

that is, the value at r = geo can be obtained by applying Tg-' 
to th~ value at the north pole, X(eo,w). which is a scalar 
quantity invariant under rotations around eo. 

More generally. using a random variable Y( w) (!!IJ 
measurable) we make a random field on G; 

Y(g.w) == Y(Tg-'w), geG, (23) 

which is easily shown to be D g invariant and hence is a ho­
mogeneous random field on G. A random field on S3, like 
(22). is a special case of (23) such that Y( T hW) 

= Yew). hEll. 
Next. we consider an I-vector random field with compo­

nents. 

X/'(r.w), m = -1 •...• 1. r ==gr eo. (24) 

which are transformed by D g in the following manner: 
I 

DgX/'(r.w) = I T~m (g)X[(r,w), m = -1 •...• 1. 
s~! 

(25) 

Such random field is said to be a homogeneous I-vector ran­
dom field. One of such I-vector random field can be repre­
sented in the following form: 

X/'(r,w) = T~n (gr )Xn (r,w), m = -1, ...• 1. (26) 

whereXn (r,w), n = -1, ...• 1. represents aDg-invariant sca­
lar random field of the form (22). In fact, the factor 
T ~n (gr) in (26) is transformed under D g or S g like (25) 
according to (A16). Since by (A1S) T~n (gr) is the mth 
component of e(l)" (r) in the fixed canonical basis. (26) can 
be expressed in the I-vector notation as 

X(l)n (r.w) = e(l)n (r)Xn (r.w). (27) 

The I-vector fields, (27) with different n, is linearly indepen­
dent of (orthogonal to) each other. A homogeneous I-vector 
random field can be generally written as a linear combina­
tion of (27) in n, examples of which will appear in the next 
section. It is to be noted that the random field of the form 
(26) or (27) is a rotational counterpart of the stochastic 
Floquet theorem based on the translational motion. 12 

IV. STOCHASTIC SPHERICAL HARMONICS AND 
STOCHASTIC SOLID HARMONICS 

Let Z /' = Z /' (w) be a fixed canonical basis in D 1 (w ), 

and Z/'(r) = Z/'(r.w) be the moving canonical basis rela­
tive to r = geo, such that 

(Z/'Z~') = (Z/'(r)Z~'(r)} =811'8mm.• (28) 
1 

Z/,(r)==Z/,(Tg-'w) = L T!",(g)Zt, r==geo 
s~ -I 

(29) 

[cf. (5). (15)]. For comparison and reference it should be 
noticed that the similar relations (A 14) and (A 15) do hold 
for an I-vector canonical basis e(i)n in DI and the moving 
canonical basis e(l)n (r). 
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We define the "stochastic I-vector spherical harmonics" 
associated with Z /' by the formula 

!' P(l)n (r.w) 
I' 

I P~;;':. (O,tp)Z~(w). r== (l.O.tp) (30) 
",~ -I' 

= e(l)n (r)Z I' (r) ~
1'+1 n 

417' 
(31) 

1,1' = 0.1,2 •... , L = min(l.I'). n = -L, ...• L. 

where P~;;':. (O.tp) denotes the I-vector spherical harmonic 
defined by (A29), and (30) is rewritten into (31) using 
(A29), (29). and (At5). Since, by definition (29),Zi(r) is 
invariant under D g', (3t ) is a homogeneous I-vector random 
field of the form (27). The correlation function can be easily 
calculated; we omit its details here. 

Now we introduce the "stochastic solid harmonics" 
J~/)n (r;w) such that it is a homogeneous I-vector random 
field on R3 that satisfies the I-vector Helmholtz equation. We 
denote the position and the wave vector by r== (r.O,tp) and 
k = (k,u,v) in the polar coordinate. respectively. and let 
them stand for the spherical coordinates (O,tp) and (u,v) as 
well. Let us define the stochastic solid harmonic by the inte­
gral 

I, r e'k.rp~;) n (k;w) dSk 
417';1 -I Js, 
/'=0,1,2, ...• n= -L •... ,L. L=min(l,I'). 

(32) 

That this bears the desired transformation properties under 
D g easily follows from that of the integrand, or from the 
following expressions. Substituting (30) into (32) and using 
(A35), (A31). (A29). and (31), we obtain several expres­
sions for (32); 
I' 

J(l)n (r;w) 
L 

I J~;;':. (kr.O,tp)Z~ (33) 
m~ -L 

L 

= I j~/(kr)P~;),(r;w) (34) 
,= -L 

~I' + 1 ~ '1'1 k ' = ~ In' ( r)e(l)' (r)Z I' (r). 
417' ,=-L 

(35) 

Since Z Hr) is D g invariant. (35) is the sum of the functions 
ofthe form (27). The integral representation (32) is a sto­
chastic analog to (A3 5). and (34) is another analog to 
(A31). Furthermore, substituting (34) into the left-hand 
side of (32), and (31) into the right-hand side, we obtain the 
formula analogous to (A36): 

L 

I j~/(kr)e(l),(r)ZHr) 
,~ -L 

= +, r e(l)n (k)Zi. (k)e,k'r dSk , (36) 
4m Js, 

which is the tensor integral representation, where e/(n) is a 
canonical I-vector in DI and Z i, a canonical 7' vector in 
Dr (n) so that e(l)n (k)Z i· (k) gives an isotropic I X 7'-ten­
sor field in D I X D I' (n) according to (A28). 
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It is obvious from (32) or from (33) and (A33) that 

J~;)n (r,a» satisfies the I-vector Helmholtz equation; 
2 2 I' (V +k )J(I)n(r,a»=0 (37) 

analogous to (A33). The above-mentioned analogies would 
justify the name of "stochastic I-vector solid harmonics." 
Similarly, we can define the stochastic solid harmonics 

(1)/' l' /' (1)/' ./'/ k H(I)n (r;a» by rep acmg J(I)n by H(I)n and int ( r) by 
h ~:)/'/(kr) in the right-hand sideof(33)-(35), whichrepre­
sent the stochastic outgoing I-vector wave satisfying the 
Helmholtz wave equation. 

When Z i is a linear functional of B i's, then Z i can be 
replaced by B i on the above formulas. Otherwise it is to be 
represented as a nonlinear functional in terms of the Wie­
ner-Hermite tensorial expansion, details of which will be 
omitted here. 

v. SCATTERING FROM A SPHERE WITH 
HOMOGENEOUS RANDOM SURFACE 

A. Random spherical surface 

Let the random surface on the sphere with radius a be 
described by 

r=a+/(r,a», (j{r,a») =0, (38) 

where I(r,a» denotes a homogeneous Gaussian random 
field on S3 given by the representations (2)-(4) with the 
correlation function (6). From now on, let r represent a 
vector with length r = Irl. The parameter describing the 
roughness is given by the variance 

a2===(j{r,a»2) =_1_ f (2/+ 1)/F/12. (39) 
417' 1=0 

B. Wave equation and the boundary condition 

The stochastic wave field scattered by the random 
spherical surface has to satisfy the Helmholtz equation and 
the boundary condition on the random surface (38) as well 
as the radiation condition; 

(40) 

r/J(r,a»=0, r=a+/(rs,a» (Dirichlet), (41) 

ar/J(r,a» =0, r=a+/(rs,a» (Neumann), (42) 
an 

where V2 denotes 3-D Laplacian, and r s a point on S3 crossed 
by the vector r. Assuming the roughness is small enough, the 
boundary condition (41 ) or ( 42) on the random surface can 
be replaced by the following approximate boundary condi­
tion on the sphere: 

[r/J + I ar/J] = ° (Dirichlet), (43) 
ar r=a 

[ ar/J _ V fVr/J + la2r/J] = ° (Neumann). (44) 
ar ar r=a 

At this point we n~te that the random wave field r/J(r,a» 
as a function of a> is regarded as a stochastic functional of the 
random surface via the boundary condition, and according­
ly, all random quantities appearing in the following are con­
sidered as generated from the Gaussian variables B i. We 
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also note that the random surface (38), as well as the Lapla­
cian and the boundary condition, is invariant under the 
transformation D g as in (21). 

C. Spherical-wave expansion of a plane wave 

As well known, the plane wave with the wave vector 
k=== (k,u,v) is expanded in terms of spherical harmonics: 

00 I 

erk
•
r = 417' L L ;1.Mkr) YiUJ,cp)Yi(u,v) (45) 

I=Om=.-1 

"" = L ;1(21+ l)jl(kr)(e(l)o(k)·e(l)o(r». (46) 
1=0 

Here, (46) is a simple form using the inner product: The 
parenthesis implies the (21 + 1 )-D inner product of two 1-
vectors [see (AI2), (A18)], ande(l)m (r), m = -1, ... ,1, de­
note the canonical I-vector basis relative to r in the space Dr, 
which is related to the fixed canonical basis eU)m in such a 
way that [see (A14), (AI5)] 

(e(l)m ·e(l)n) = (e(l)m (r)-e(l)n (r» = I5mn , (47) 
I 

e(l)m (r) = TI(gr )e(l)m = L T!m (gr )e(l)S' 
s= -I 

m = -1, ... ,1, (48) 

where (47) shows the orthogonality and (48) the transfor­
mation property under rotation [cf., (5), (15) or (28), 
(29)]. 

The expansion (45) or (46) in terms of spherical wave 
should be compared with the expansion in terms of cylindri­
cal wave in the 2-D problem [Ref. 21, Eq. (24)]. A spherical 
wave with the quantum number 1= 0,1,2, ... is regarded as an 
I-vector wave with (21 + 1) components numbered with 
m = -1, ... ,1 while in 2-D cases the cylindrical wave is a 
scalar wave with the quantum number m = 0,1,2, ... , which 
corresponds to 1 in the 3-D problem. As the 2-D scattering 
problem was treated separately for each mth cylindrical 
wave,21 in the present 3-D problem each I-vector spherical 
wave can be dealt with separately since it is transformed 
within the same vector space under the transformation D g. 

In view of the relation (46), the wave solution for the 
plane wave incident on a random sphere can be obtained in 
the following manner: First, we find the I-vector wave solu­
tion for the spherical wave incidence, namely, the solution 
for the primary wave of an isotropic I-vector field 
2jl (kr)e(l)o (r) [cf. (A27)]; second, taking the inner prod­
uct of the I-vector wave solution with the I-vector e(l)O (k) 
and summing the inner products over all I, we obtain the 
complete wave field for the incidence of a plane wave with 
the wave vector k. 

D. Unperturbed field (primary wave) 

In the nonrandom case with a2 = ° (smooth sphere), 
the unperturbed wave field for the spherical wave injection 
can be written in the well-known manner in terms of spheri­
cal harmonics and spherical Bessel functions.20 According 
to the remark made above, we will write this in the vector 
notation: 

1/fl1) (r) === 1/fll) (r)e(l)O === [jl (kr) + a~h ~ I) (kr) ] e(l)O (r) 
(49) 
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= H h l7/(kr) + /ill'h p)(kr) le(l)o (r) (50) 

a~=.ieill, sin ~I = - jl (ka)lh ~I)(ka) (Dirichlet), 
(51) 

= - jj(ka)lh j(l)(ka) (Neumann), 
(52) 

where j/ (z) is the spherical Bessel function, h ~ I) (z) the 
spherical Hankel function of the first kind, and the prime 
denotes the diiferentiation;jj(z) = djl(z)ldz. Here, a~ and 
~ 1 are the so-called scattering coefficient and phase shift. The 
I-vector e(l)o(r) in (49) is the Oth canonical basis whose 
21 + 1 components relative to the fixed basis are the spheri­
cal harmonics [see (AI5), (A8)]. It should be noticed that 
under the rotational shift D g the spherical wave t/fll) (r) giv­
en by (49) (independent of w) is transformed as an isotropic 
I-vector field in the spaceD/ [see (A23) and (A27)]. 

E. Perturbed wave field (secondary wave) 

In the case of random surface (~> 0), let the total/­
vector wave field for the spherical wave injection be written 

t/J(I) (r,w) =.t/fll) (r) + 1/1(1) (r,w), (53) 

where the second term is the perturbed wave field created by 
the surface roughness. In view of the fact that the boundary 
condition on the homogeneous random surface (2), as well 
as the wave equation (40), is invariant under the transfor­
mation Dg, geG, and that t/fll) is an isotropic I-vector field 
[cf. (A2 7) ], the perturbed random wave field also should be 
an I-vector random field subject to the same transformation 
as t/fll) under D g. That is, it is a homogeneous I-vector ran­
dom field transformed under D g as in (25), and at the same 
time it should represent an outgoing I-vector wave satisfying 
the Helmholtz equation. To sum up, the secondary wave 
should be expanded in terms of stochastic solid harmonics 

HW~'(r,w), which satisfy the I-vector Helmholtz equation 
(37) and which are given by Eqs. (33)-(35) where 

J~;;':, (kr,O,tp) and j~:r(kr) are to be replaced by HW~'m 
(kr,O,tp) and h ~:)(kr), respectively, so that they express 
outgoing waves corresponding to the spherical Hankel func­
tions. Such complication did not arise in the 2D problem 
because the wave components are all scalar quantities and 
can be readily expressed in terms of familiar functions [cf. 
Ref. 21, (32)]. 

Therefore, our expansion can be written 

00 L ~ /1'1' 
1/1(1) (r,w) = I~O n A. L V 2/' + I An H(l)n (kr,w), 

(54) 

00 L 
=Aih}I)(kr)e(l)o(r) + L L H~'(kr) 

1'=0 m= -L 

Xe(l)m (r)Z~(r,w), (55) 

where A ~' denotes the expansion coefficient, Z ~ (r) are the 
orthogonal random variables forming the moving canonical 
basis in D 1 ( n) satisfying the same relations as (5) and ( 15) 
[see (28), (29)], as we have put 
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L 

H~'(kr)=. L h~~II'(kr)A~', L=min(l,I'). 
n= -L 

(56) 

Equation (55), a rewritten form of (54) using (35), corre­
sponds to the expansion in terms of the "stochastic spherical 
harmonics" (31). Concerning the term with I' = 0 in (54), 
we should notice the following. It should be noticed that, 
although Zo(r,w) =.Zo(w) is a D g-invariant scalar, namely, 
Zo( rgw) = Zo(w), it is not necessarily a nonrandom con­
stant. Thus the first term of (56) with coefficient A i denotes 
the average part extracted from the term with I' = 0, and 
accordingly (Z ~ (r) > = 0 in the rest of terms. 

The random variable Z ~ (w), which generally is a non­
linear functional of the random surface, could be expanded 
in the Wiener-Hermite series ofB j (Refs. 12and21). How­
ever, in view of the result in the cylindrical case,21 we can 
assume that the multiple scattering due to the surface rough­
ness could be neglected in the Mie scattering range with 
small roughness, since there is not real reasonance nor sur­
face mode on the sphere. Therefore, in such a case, the inco­
herent part of the scattered wave u}C can be well represented 
as a linear functional of the random surface or of the vari­
ables B j. In the expansion of (55), accordingly, we replace 
Zj(r,w) by B j(r,w) instead ofa nonlinear Wiener expan­
sion. 

F. Scattered wave field for spherical wave injection 

To summarize the total wave field t/J(I) for the I-vector 
spherical wave injection can be cast into the coherent (aver­
age) part 'l/fr.1) plus the incoherent (random) part VitI) with 
mean 0; 

t/J(I) (r,w) =.t/fll) (r) + 1/1(1) (r,w) (57) 

= 'l/fr.1) (r) + VitI) (r,w), (VitI) > = 0, (58) 

where 

'l/fr.1)(r) = [jl(kr) +a/Ii;I)(kr>]e(l)o(r), (59) 

al=.a~+AI, (60) 

00 L 
. ~ ~ /I' f/ltl) (r,w) = £.J £.J H m (kr)e(l)m (r)B ~ (r,w), 

['=0 m=-L 

(61) 

'l/fr.1) gives the coherent (average) part and VitI) the incoher­
ent (random) part with mean O. We call a 1 the coherent 
scattering coefficient. 

G. Scattered wave field for plane-wave Injection 

To obtain the scattered wave field for the incidence of 
the plane wave (46), according to the procedure given 
above, we simply take the inner products of the I-vector 
e(I)O (k) with the I-vector fields (59) and (61), and sum 
them up with respect to I: This corresponds to the irreducible 
decomposition of the rotation group. In what follows, with­
out loss of generality, we take the plane wave progressing 
along the polar axis, i.e., k = keo, and use the formulas 
(A17), (AI8), and (A8) to calculate the inner products. 

Thus, the total wave field for plane-wave incidence with 
the wave vector k=.keo can be written 
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t/J(r,w) =t/J°(r) + t/I(r,w) 

= t/f(r) + tfC(r,w), (tfC) = 0, 

where 

t/f(r) = f ;1(21 + 1 )(e(/)O (k)' t/J(I) (r» 
1=0 

(62) 

(63) 

(64) 

= f ;1(2/+ 1) [j/(kr) +a1hp)(kr>]P1(cos8) 
1=0 

(65) 

= f i (21 + 1) [h ~2)(kr) + (iieSl + 2A j') 
1=0 2 

Xh p)(kr) ]P1(cos 8) (66) 

tfC(r,w) = i ;1(21 + 1 )(e(/) (k) ·tft1l (r,w» (67) 
1=0 

~ ~ L 

= 2: ;t(21 + 1) 2: 2: H~' (kr) T~m (g) 
1=0 1'=Om=-L 

xB'r(r,w), (68) 

the third Euler angle fIl2 in T ~m (g) (r = rgeo) being canceled 

by the term T!:(g) inB'r(r,w) [see (15)], and T~m(g) 
being given by spherical harmonics [see (A8) ] . 

VI. STATISTICAL CHARACTERISTICS OF THE 
SCATTERED WAVE FIELD 

A. Coherent scattering amplitude 

The coherent scattering part t,ff.(r)( = t/f(r) - t/Jo(r» 
arising from the second term of (65) has the asymptotic 
form 

~ 

t/f(r) = 2: ;1(2/+ I)a1hp)(kr)PI(cos8) 
1=0 

- (eikr/r)ct> (8), r-+ 00 

1 ~ 

ct>(8)=-: 2: (2/+ I)aIPI(cos8), 
k,l=o 

(69) 

(70) 

(71) 

ct>(8) is called the coherent scattering amplitude. 

B. Power flow conservation 

Ifwe apply the Gauss theorem to a spherical region with 
radius r surrounding the random sphere, we obtain the con­
servation law for the total power flow crossing the sphere: 

O=.c ( 1m [ t/J(r,w) at/J(r,w)] dS 
k J~ ar 

= r { 1m ( t/J(r,w) at/J(r,w») dS, 
k Js, ar 

a.s. (72) 

where the total power flow equals 0 with probability 1 (re­
gardless of random surface) so that it must be equal to its 
average also, which is the last equality. Substituting (63) 
into (72) we obtain 

r 1 1m [ t/f(r) at/f(r)] dS 
k s, ar 

+.c { 1m ( tfC(r,w) atfC(r,w») dS = 0, (73) 
k Js, ar 
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where the first term represents the total coherent power flow 
while the second the total incoherent power flow, which we 
denote Sc and O'ic' respectively. 

C. Total coherent power flow 

Since (73) is independent of r, the total coherent power 
can be evaluated at r-+ 00, substituting (65): 

Sc = lim r ( 1m [ t/f(r) at/f(r)] dS 
r_~ k JSJ ar 

=~ f (2/+ 1)[ -1 + 11 +2aI1
2] 

k 1=0 

417' ~ . 
=-22: (2/+1)[Real +12aI1

2]. (74) 
k 1=0 

The term arising from the second term in the bracket of (74) 
gives the coherent power flow for the scattered wave which 
we denote by O'c. 

D. Total Incoherent power flow 

Substituting (68) into the second terms of (73), and 
using the orthogonality relations (5) for B i and (A2I) for 
T~m (t), we can evaluate the total incoherent power flow at 
r-+ 00: 

ri [-. a
tfC

] O'ic = lim - 1m t/lc -- dS 
r_~ k s ar 

~ ~ L 

= 417' 2: (21 + 1) 2: 2: lim 
1= 0 I' = 0 m = - L r_ ~ 

Xlm[ H~'(kr) iI~'(kr)] (75) 

= 4~ f f ± (21 + 1)IH~'12, 
k 1=0/'=0 m= -L 

(76) 

where the overdot denotes the differentiation and we have 
used the asymptotic formulas for H~' (kr) and h ~~II' (kr), 

ikr 
h (l)/'/(kr) _~ h 1'1 

mn ikr mn' 
r-+ 00, 

(77) 
L 

H~'= 2: h~~A~', L=min(l,I'), (78) 
n= -L 

1+ I 
h ~~ = } ;-1+ I' ( _ I)m+ n(l_ ml'mlll'L 0) 

L=jt-/I 

X(I-nl'nlll'LO). (79) 

E. Total scattering cross section 

The total power-flow conservation formula (73) can be 
rewritten using (74) and (76): 

4~ f (21 + I) [Re a l + 12al12 
k 1=0 

+ Itom~-L IH~'12] =0, (80) 

where the sum corresponding to the second term in the 
bracket gives the coherent power flow O'c of the scattered 
wave and the third term in the bracket corresponds to the 
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incoherent power flow U ic ' The sum, therefore, is to give the 
total scattering cross section S, that is, 

41T 00 

S=uc +Uic =-2 L (2/+ 1) 
k 1=0 

x[I2a112+ Itomt-L IH!'12]. (81) 

F. Optical theorem 

In terms of (71) and (81), the conservation law (80) 
can be cast into the well-known form of optical theorem: 

S= (41T/k)lmct>(0), (82) 

where ct>(0) is the forward coherent scattering amplitude. 
This is the stochastic version of the optical theorem for the 
scattering from a random sphere: The total scattering cross 
section consisting of the coherent and incoherent power flow 
is given by the imaginary part of the coherent forward-scat­
tering amplitude. 

G. Angular distribution of coherent scattering 
(differential cross-section for coherent scattering) 

In view of (70), the angular distribution Uc (0) of the 
coherent scattering can be given by 

I I 00 uc(O)dS= 1ct>(0) IdS =-2 L (2/+ l)al 
k 1=0 

XPI(cos 0) 12dS, 

dS = sin 0 dO dq; denoting the spherical element. 

(83) 

H. Angular distribution of Incoherent scattering 
(differential cross section for Incoherent scattering) 

Calculating the average power flow of (68) using (5), 
(77), and (A8), the angular distribution U ic (0) of the inco­
herent scattering can be given by 

uic(O)dS = k\ I'~Om~I' 11~0;1(21+ I)H!' 

x (/-m)! pm(cos 0) 12ds, 
(/+m)! I 

(84) 

which depends only on 0 as expected. Integrating (83) and 
(84) over dS gives Uc and U ic ' respectively. 

VII. METHOD OF APPROXIMATE SOLUTION FOR THE 
BOUNDARY CONDITIONS 

We deal with the boundary condition on the random 
surface for the spherical wave incidence and calculate the 
expansion coefficients A '/ and A ~' to obtain the scattered 
wave field. As mentioned in Sec. V, the wave field is a homo­
geneous I-vector random field so that we can calculate only 
the value at the polar point r==rtlo , putting e(l)m (r) ..... e(/)m 

and B ~ (r) ..... B ~ in the equation: The value of the field at 
arbitrary point r == tgeo can be obtained from this by means of 
the transformation (15) and (48). Since the I-vector field 
has (21 + 1) components, the number of equations for the 
components arising from the boundary condition (43) or 
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( 44) increases with increasing I: Such complication does not 
occur in the 2-D scattering problem since the cylindrical 
wave field is a scalar quantity under circular rotations.21 

A. Dirichlet condition 

Substituting (57) and (58) into (43), and using the 
boundary condition for (49), the equation is first separated 
into the two equations for the coherent (average) part and 
the incoherent part: 

[ I a¢itl) (r,ll.))] 
t/f(/) (r) + ,((r,ll.) ar r=ae = 0, (85) 

[ 
. aVft/) (r) ] tilt/) (r,ll.) + !(r,ll.) = 0, ar r= ae 

(86) 

where (86) retains only the linear terms with respect to sur­
face roughness, the higher-order terms being neglected ac­
cording to our assumption, whereas (85) is the second-order 
equation. 

First, substituting (85), (49), and (61) into (86), and 

putting GI ==~ (21 + 1 )/41TFI for notational brevity, we ob­
tain the equation 

Ito Lt-L H!'(ka)e(l)mB~ 
+ kifl/(ka)Gl'e(l)oB7,] = 0, (87) 

where the overdot denotes differentiation. Using (56) and 
orthogonality relations (5) and (47), Eq. (87) turns into 

L 

H!'(ka)== L h~~I'I(ka)A~' 
n= -L 

= -~mOkGl'ifI/(ka), m= -L, ... ,L, (88) 

which is a set of linear equations to be solved for A ~', 

n = - L, ... ,L. From A~' we obtain H!' (kr) by (56), 
which in turn gives us the incoherent part t/f(l) (r,ll.) in the 
single-scattering approximation. 

Next, substituting into (85) the expressions (4), (58) 
and the incoherent part (61) so obtained, we get the per­
turbed term for the coherent scattering coefficient: 

c 1 00 -. dl' 
A I =- LkGI'Ho(ka), (89) 

h P) (ka) 1'=0 

which is the second-order quantity in GI' or FI' in view of 
(88), and therefore is given in terms of the power spectrum 
1F1'12. 

B. Neumann condition 

In a similar manner, the boundary condition (44) can 
be separated into the two equations for the coherent and 
incoherent parts: 

[a:/) _ (Vs!,vs¢itl) > + Va:~I) ) 1.=_ = 0, (90) 

[a¢itl) -v f'V .tlJ +!a 2Vft
I)] =0 (91) 

a s s'f/(l) a-2 ' r r r=_ 
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where (91) retains only linear terms in surface roughness. 
Here, Vs denotes the angular part (m = - 1,1) ofthegradi­
ent operator V= (V _, alar, V +) written in the canonical 
basis (m = - 1,0,1), so that Vs is expressed as 

(92) 

(cf., Ref. 25) whereH ± ( = - H+-) are differential oper­
ators22 such that 

Applying this to (15) and (48) yields the following rela­
tions: 

H_e(l)n =p~e(l)n-I' H+e(l)n =P~+le(l)n+I' (94) 

---H B n plB n- 1 ---H B n pi Bn+' 
- 1= n I, + 1= n+ 1 I , (95) 

rand It) being supressed here. In particular, from (7) and 
(95), we have 

1 ~ I' -I I' 1 Vs!=(V_f,V1j)=- ~ GI,(PoB/, ,{3I B /,), 
.fir 1'=0 

(96) 

where we have again put G, = ~(21 + 1)/41TF, for nota­
tional brevity in the formula. 

First, substituting (49) and (61) into the incoherent 
part (91) and using (94) and (96), we get 

I~O L~L kiI~'(ka)e(l)mB~ 
t/!?(ka) (f3lpl' B- 1 'B 1 ») 

- 2 G/, 0 0 (e(/)_l I' +e(l)1 I' 
2a 

2~ip 0] +k 'l'l(ka)G/,Ble(l)o =0. (97) 

In the same manner as (87) we obtain 
L 

iI~'(ka)= L iz!.!~Il'(ka)A~' 
n= -L 

[ 
p~p~' 

= kG/, (15m - 1 + t5ml ) -k 2 J/I1(ka) 
2( a) 

- I5m0 1tJt(ka) ] , 

m = - L .... ,L. L=min(l,/'). (98) 

This is the set of linear equations to be solved for (2L + 1) 

coefficients A ~'. n = - L, .... L. from which we obtain the 
incoherent field VitI) (r,lt) through (56) and (61). 

Next, substituting (49). (96). and the incoherent field 
( 61 ) so obtained into the boundary condition (90). and after 
some manipulations using (92), (94), and (95). we finally 
obtain the coherent scattering coefficient in the following 
form: 

1 00 -{"l/' 1 A~= - . L k GI' Ho (ka) +--2 
h JI) (ka) I' = 0 2(ka) 

X [PbPb'(HI~ 1 (ka) + Hi" (ka» 

-2(Pb')2Hg'(ka)]}, (99) 
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which is the second-order quantity in G/, expressible in 
terms of the power spectrum IF/' 12. 

VIII. NUMERICAL EVALUATIONS FOR SCATTERING 
CHARACTERISTICS 

Once the approximate solutions are obtained for the ex­

pansion coefficients A ~' and A I as in (88) and (89) for the 
Dirichelt conditions and (98) and (99) for the Neumann 
condition, then we can evaluate various scattering charac­
teristics using the formulas (69) to (84) with an appropriate 
power spectrum for the random spherical surface. As well 
known in the nonrandom case, the spherical wave expansion 
of the type (65) and (68) is effective in the Mie scattering 
range, so that we choose the Mie parameter to be ka = 1 or 2 
in the numerical calculation. 

There is no typical power spectrum known for a random 
field on the sphere. So. as in the previous example for the 
circular case,21 we again assume the power spectrum of a 
Gaussian form in 1 for the sake of numerical calculation: 

IFI12 = (crIN)e- K
'I'12, 1=0.1,2,.... (100) 

where 

N=_l_ f (21 + 1)e- K 'I'/2 
417' 1=0 

(101 ) 

is the normalization constant given as a Dirichlet series. The 
correlation function corresponding to (100) 

R(O) = cr _1_ f (21 + 1)e-K'I'/2PI(cos 0), 
N 417' '=0 

0,0,17', (102) 

can be numerically calculated as a function of 0: Some exam­
ples are given in Fig. 1 for K = 0.2 - 1.0, where the param­
eter K( < 17') can be roughly considered as the correlation 
distance (rad) on the sphere; as K -+ 0, R (0) looks more like 
a Gaussian form. 

We can check the validity of the approximate solutions 
by means of the power conservation law (73). It is to be 
noticed that the conservation formula does hold also for 

R(B> 
1.0 

0.5 

o 

-0.5 

a 

i':'~-:-.. 
\\"\:' 
\\ ':\ 
\ \\>"" 
\ \ \" , " 
\ \ ','" 

K = 0.2 

0.4 

0.6 

0.8 
1.0 

.. , , '. '" "', 

60 120 a deg 180 

FIG. 1. Correlation function on the sphere (102), plotted as a function of 
the angular distance. (02 = I, K = 0.2 - 1.0). R(O) looks more like a 
Gaussian form as K becomes smaller, K being a correlation distance. 
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1.5 
DIRICHLET 

Pc + PiC 

1.0 -- ... - ... _--
ka • 2.0 

Pc 

1 = 0 

0.5 - K = 0.8 

Pic ----o. a +-----=::;.=1=-=-=----1 
O. a 0.1 

Kef 0.2 

FIG. 2. Power flow conservation for a spherical wave incidence versus the 
roughnessparameterku(Dirichlet, I = 0, ka = 2.0,K = 0.8). Here, Pc and 
P;c denote the total coherent power flow and the incoherent power flow, 
respectively. For a rigorous solution, Pc + P;c = 1. 

each spherical wave injection. Then the power equality for 
the I th spherical wave injection can be written 

1 =P'j+Plc
, (103) 

where in the present approximation the total coherent power 
P'j and the incoherent power pIc can be written, using (74) 
and (76), 

P'j= 11 +2(a~+A'jW, 
co L 

Plc=4 L L IH~'12. 
/'=0 m= -L 

(104) 

We can use (103) and (104) to check the validity of the 
single-scattering approximation. An example for I = 0 is 
shown in Figs. 2 and 3 for the Dirichlet and Neumann cases, 
respectively, where P 'j + pIc is plotted against the roughness 
parameter ku: The equality (103) is nearly satisfied within 
the parameter range ku<0.2 shown in these figures. It is 
shown by numerical calculations that 1 - Pc and Pic rapidly 
aproach 0 for larger /, so that in the Mie scattering range, the 
equality (80) consisting of the sum over I does hold for 

1. 5 -,-----------.., 

NEUMANN 

1. a -+-----===------l "'---... -

0.5 -

ka = 2.0 
t = 0 

K = 0.8 

P 
ic _--

O. a -I-----~r.=..=..;:::..:=---I 
0.0 0.1 Kef 0.2 

FIG. 3. Power flow conservation for a spherical wave incidence versus the 
roughness parameter (Neumann, 1=0, ka = 2.0, K = 0.8). Here, Pc and 
P;c denote the total coherent power flow and the incoherent power flow, 
respectively. For a rigorous solution, Pc + P;c = 1. 
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1. 5 -.----------~ 

S/So 
DIRICHLET 

K = 0.4 

1.0 -------~..::.--
K = 0.8 

0.5 

ka = 2.0 

O. a -+------.------1 
0.0 0.1 

Kef 
0.2 

FIG. 4. Optical theorem for a plane-wave incidence (Dirichlet, ka = 2.0, 
K = 0.4,0.8). Here, S denotes the total cross section calculated by (81) and 
So the right-hand side of (82) due to the imaginary part of the forward­
scattering amplitUde. S ISo = I for rigorous solution. 

plane-wave incidence. However, to check the power equality 
in the plane-wave case, we can make use of the optical 
theorem (82), namely, S = So, S denoting the total cross 
section (81) and So the right-hand member of (82) due to 
the coherent forward-scattering amplitude. Figures 4 and 5 
show the ratio S ISo plotted against ku, which roughly equal 
1 within the range shown in the figures. 

Weare then ready to calculate the angular distributions 
of coherent scattering (83) for a plane-wave injection, which 
are shown in Figs. 6 and 7 for the Dirichlet and Neumann 
case, respectively, with ka = 1.0 and 2.0. Correspondingly, 
the angular distributions of the incoherent scattering calcu­
lated by (84) are shown in Figs. 8 and 9, respectively, which 
show that the incoherent scattering is generally stronger in 
the backward direction than in the forward in either case. 
These characteristics shown in Figs. 6-9 are somewhat simi­
lar to those for the cylindrical case. 21 

As mentioned at the beginning, the single-scattering ap­
proximation is valid in the Mie scattering if ku is small 
enough; this is due to the absence of a real resonance or a 

1.5-.-------------

S/So 
NEUMANN 

1.0-

K = 0.4 

--..::: -------=-.-:::-----
K = 0.8 

0.5 -

ka = 2.0 

0.0 -+------.--1-----1 
0.0 O. 1 Ko' 0.2 

FIG. S. Optical theorem for a plane-wave incidence (Neumann, ka = 2.0, 
K = 0.4,0.8). Here, S denotes the total cross section calculated by (81 ) and 
So the right-hand side of (82) due to the imaginary part of the forward­
scattering amplitUde. S ISo = I for rigorous solution. 
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FIG. 6. Angular distribution of the coherent scattering for plane wave inci­
dent in the direction B = 0 (Dirichlet, ka = 1.0, 2.0, ku = 0.2, K = 0.4, 
0.8). The solid line shows the case ofsmooth surface with ku = O. 
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FIG. 7. Angular distribution of the coherent scattering for plane wave inci­
dent in the direction B = 0 (Neumann, lea = 1.0, 2.0, ku = 0.2, K = 0.4, 
0.8). The solid line shows the case of smooth surface with ku = O. 
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FIG. 8. Angular distribution of the incoherent scattering for a plane-wave 
incidence (Dirichlet, ka = 1.0,2.0, ku= 0.2, K = 0.4, 0.8). 
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FIG. 9. Angular distribution of the incoherent scattering for a plane-wave 
incidence (Neumann, ka = 1.0, 2.0, ku = 0.2, K = 0.4,0.8). 
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surface mode on a spherical surface. This fact is to be con­
trasted to the case of planar random surface corresponding 
to the case ka -+ 00, where the multiple scattering has a cru­
cial effect on the scattering characteristics even if the rough­
ness is negligibly small (Neumann surface/ perfectly con­
ducting surface,3 surface plasmon modes). In this regard, 
when the Mie parameter ka is made much larger beyond the 
Mie scattering range, the effect of multiple scattering has to 
be taken into account in the formulas and calculations in a 
manner similar to Ref. 21. This can be achieved in principle 
by incorporating the second-order Wiener kernel in the cal­
culation for the approximate solution as remarked at the 
beginning, which, however, would be much more involved 
than the present treatment. 
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APPENDIX: REPRESENTATION OF ROTATION GROUP 
AND SPHERICAL HARMONICS 

Some necessary definitions and notations concerning 
the representation ofthe rotation group are briefly summar­
ized for reference and for indicating our choise among var­
ious definitions: Several formulas are given in convenient 
forms for our applications. For details of the theory of the 
rotation group see Refs. 22 and 23, and also the appendix of 
Ref. 30. 

Rotation group: 
A rotation g=g(tpl,{J,tp2) described by the three Euler 

angles is defined by the successive rotations in the order: a 
rotation g<P, about ez , go about e~ = g<P, ex' and g<P, about e; 
= goez' (ex,ey,ez ) denoting the 3-D unit vectors alongx,y, z 

axes, respectively. The rotations g (identity e, inverse g- I) 
form the rotation group G, and the rotation of a 3-D vector is 
represented by the Euler matrix [g] = [g<P, ] [go] [g<p, ]. 

Canonical basis: 
We call the set of vectors em' m = - 1,0,1, i.e., 

(AI) 

the fixed canonical basis relative to ez • The Euler matrix is to 
be represented in the fixed canonical basis. Let (e"e8 ,e<p ) be 
the unit orthogonal vector basis for the polar coordinates 
r= (r,(},tp). The vector t=e, giving a point t = (l,(},tp) on 
the sphere can be written 

(A2) 

We define the moving canonical basis by the set of vectors, 
em (r) =g.em, m = - 1,0,1, namely, 

eo(r) =g.eo = e" 

e'Fl (r) =g.e+ = [±e<p +ie8 ]e±i<p,/2, 
(A3) 

which is the canonical basis relative to r or t. 
Representation of the rotation group: 
For the functions on the sphere t/J( t), tES3, or more gen­

erally the functions on G, t/J(g), geG, we define the transfor­
mationSgby 

73 J. Math. Phys., Vol. 31, No.1, January 1990 

(A4) 

which gives the representation of G: 

Sg'Sg'=Sg,g" [Sg]-I=Sg-', se=l. (AS) 

We denote by D/ the (21 + 1 )-D invariant space ofthe irre­
ducible representation of weight I, of which the matrix of 
unitary representation is written 

T/(g) = [T!.,,, (tpl,(},tp2)]' - l<.m,n<.l, (A6) 

T!.,,, (tpl,(},tp2) =e - im<p,p!.,,, (cos (})e- i,,<p, (A7) 

where T!.,,,(e) =l)mn and T~n(g) =gmn' gnm being the 
Euler matrix relative to (A 1 ). The matrix representation is 
referred to the fixed canonical basis in D/, which is a set of 
(21 + 1) orthogonal vectors of (21 + 1) dimension, e(l)n' 
n = - 1, ... ,1: each being the eigenvector with the eigenvalue 
e - in<p, for the rotation g around ez • In the present paper, we 
deal with the representation of the integral weight I: 
1= 0,1,2, .... The matrix element (A7) is called the general­
ized spherical function of order I (Ref. 22) and in particular 
for n = 0, we have 

T!..o(tpl,{J,tp2) = ~ ;mYi«(},tpl)' (AS) \j (21 + 1) 

where Yi«(},tp) denotes the normalized spherical harmon­
ics: 

Yi«(},tp) = ( - 1)1 21 + 1 (l- m)! pm( 8) im<p 
--- I cos e. 

41T (l + m)! 
(A9) 

Vector and tensor: 
A (21 + 1)-D vector with components a(l)n' 

n = -1, ... ,1, which is transformed by the matrix TI(g) upon 
rotation g as 

I 

aCl)m = L T!"n (g)a(l)n, m = - 1, ... ,1 (AlO) 
n= -I 

is called an I-vector in D/; hence, the ordinary 3-D vector 
transformed by gmn is a I-vector. Similarly, a (21 + 1 )-D 
vector transformed by the matrix TI(g) is called an I-vector 

in DI (the overbar implying the complex conjugate). 
Further, we consider a tensorial quantity in a product space; 
for instance, a tensor with (21 I + 1) X (21 + 1) components 

aH;~n' which is transformed under rotation g as 
I I' 

a(l')n' _ ~ ~ I' I (I')n' (I)n - ~ ~ T mn (g) T mn (g)a(l)n 
n= -I n'= -I' 

(All) 

is called for simplicity an T'xi tensor in D/, XD I , where 

the superscript refers to the component of an T'-vector in 

DI ,. The inner product oftwo I-vectors, a(1) and b(l) , a.o; well 
as the contraction of a tensor, can be defined as 

I 

(a(/) . bel) ) = L a(l)m h(l)m' 
m= -I 

Properties of the matrix: 
The unitarity of the representation matrix, 

I 

L T!m(g)T!,,(g) =l)"m, .= -I 

(A12) 

(A13) 

can be interpreted as the orthonormal relation of a set of 
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(21 + 1) l-vectorse(1)n (r) withrespecttotheinnerproduct; 
namely 

(e(1)m (r) 'e(1)n (r» = l)mn' 

where we have put 

(AI4) 

e(1)n (r) =T/(g. )e(1)n 

I 

= L T!n (g. )e(l)s' n = - 1, •.. ,1, (AI5) 
s= -I 

which is obtained from e(1)n by rotagion g.: T!n (g.) in the 
right-hand side giving the 21 + 1 components in the fixed 
canonical basis of DI • The set of (21 + 1) vectors (AI5) is 
called the moving canonical basis in DI relative to r, which is 
reduced to (A3) for I = 1. As (A 14) shows, the coordinate­
free I-vector notation in the left-hand side of (AI5) make 
vector and tensor formulas considerably simpler than the 
coordinate-fixed notation in the right-hand side. 

The mUltiplicative law of the group representation can 
be written as 

I 

T~n(g2Kl) = L T~(g2)T!n(gl)' 
s= -I 

I 

T~n(g2-1gl)= L T~s(g2)T!n(gl)' 
s= -I 

(AI6) 

The first equality simply shows that e(1)n (r) is an I-vector, 
having the property (AlO). The second following from the 
first implies the addition theorem for generalized spherical 
functions, which can be interpreted as the inner product of 
two I-vectors: 

T~n (g2- 19l) = (e(1)m (r2) 'e(1)n (r2», (AI7) 

where r l =gleo, r2=g2eo; (AI7) reduces to(AI4) when 
gl = g2' In particular, for m = n = 0, (AI7) gives the well­
known addition formula for the zonal spherical function; 

PI (cos 8) = (e(/)o (r2) 'e(l)o (rl» 
= ~ ± Yi(8l ,q;l) Yi(82,q;2) 

2/+lm=_1 
(AI8) 

cos 8 = cos 81 cos 82 + sin 81 sin 82 COS(q;l - q;2)' 
(AI9) 

The integration over G has the invariance properties un­
der rotational transformation of the variable: 

(A20) 

For the function j( t) on S3 (A20) implies the integral over 
S3 multiplied by 2fT. The orthogonality and the completeness 
of the set of generalized spherical functions are written as 

r T~'n' (g) T~n (g)dg = l)/I'l)mm,l)nn' ~, (A2I) k U+I 

_1_ f ± ± (21+ 1) T~n (g) T~n (g') 8r I=Om= -In=-7 

= l)(g - g'). (A22) 

Vector and tensor fields: 
Upon rotation g, an I-vector field on R3 is transformed 
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into a new vector field by the formula 
I 

a(/)m (r) = L T~n (g)a(1)n (g-lr), reR3 • (A23) 
n= -I 

In a similar manner, a tensor field, e.g., an l' X I-tensor field 
is transformed according to 

,(1')m'( ) a(1)m r 
I I' 

= ~ ~ T I' (g) TI (g)a(/')n'(g-lr) £.- £.- mm, mn (1)n . 
n= -In'=-I' 

(A24) 

Isotropic vector field and isotropic tensor field: 
When a vector or a tensor field is invariant under rota­

tions, for instance, when 

a(/)m (r) = a(l)m (r) , 

a,(1')m'(r) - a(1')m'(r) (I)m - (1)m , 

(A25) 

(A26) 

hold for (A23) and (A24), then the I-vector field or the 

l' X I-tensor field is said to be isotropic. It is easily shown30 

that, when referred to the moving canonical basis, an iso­
tropic I-vector field has only the Oth canonical component 
depending on r = Irl, that is 

a(l)m (r) = 8mQa(r), m = - 1, ... ,1 (A27) 

and that similarly an isotropic l' X I-tensor field has the 
components only for m' = m; 

(I')m' _ ~ a(l)m (r) - umm,am (r), 

m = -1, ... ,1, m' = - 1', ... ,1' . (A28) 

For the isotropic field on the sphere r = 1, the components 
are constants. 
Vector harmonic functions: 

For reference in the text we summarize the definitions 
and formulas concerning the I-vector spherical and solid 
harmonics that are derived from the representation of the 
rotation group.30.3l 

Let an I-vector function onS3 having only nth canonical 
component be 

P /'m 8 -(1)n ( ,q;) = (21' + I) --"'1 ,:----
4fT T mn (g) e(/)n (r) , (A29) 

n = - 1, ... ,1,1' = 0,I,2, ... ,m = - 1', ... ,1'. 

in the coordinate-free notation. The I-vector function (A29) 
is called the I-vector spherical harmonic and satisfies the 
orthogonality relation, 

i ( I'm' I'm')d ~ ~ P(I)n'·P(I)n' 'S = un'n,l)/'I' Um'm' , 
S3 

dS= sin 8 d8 dq; . 

Let I-vector functions on R3 be defined by 
I 

J~;;':. (kr,8,q;) = L j~/(kr)P~;);((J,q;), 
t= -I 

(A30) 

(A31) 

which we call the I-vector solid harmonic, wherej~:1 (kr) is 
defined by 

1+ I' 
J~~(kr) = ) jL-I+I'( -l)m+n(/-ml'mlll'LO) 

L= 1T'-I'1 

X (/ - nl'nlll'LO)jdkr) , (A32) 

H, Ogura and N. Takahashi 74 



                                                                                                                                    

j L (kr) being the spherical Bessel function and 
(I - ml ' mill' L 0) denoting the Clebsch-Gordan coeffi­
cient.22,30 Here,j~~ (kr) defined by (A32) is called the gen­
eralized spherical :Qessel function, having orthogonality 
with respect to integration, and is derived from the matrix 
element of the translation group in R3.30 The I-vector solid 
harmonics are shown to satisfy the I-vector Helmholtz equa­
tion, 

and the orthogonality relation; 

2. roo r (J~;),.:(k'r,(},q;).J~;)":.~'(k"r,(},q;»dSrdr 
1T Jo Js, 

(A33) 

=~n·n·~/'l"~m·m·[~(k'-k")/k'2]. (A34) 

The following vector and tensor integral representations 
hold for I-vector harmonic functions: 

J~;),. (kr,(},q;) 

I i ik.rpl'm ( )dS =~ e (l)n U,V , 
4m s, 

(A35) 

L 

L j~; (kr)e(l), (r) e(l')t (r) 
/= -L 

= +. r e(l)n (k) e(l')n (k)e,k'rdS 
4m Js, 
(L = min(l,l'), (A36) 

where k = (k,u,v) in the polar coordinates and dS 
= sin u du dv. These two are equivalent representations 

with different interpretation; the first is written as the Four­
ier transform of the I-vector field over a sphere, while the 
second gives the Fourier transform of an isotropic I X 7' -ten­
sor field over the sphere. 

Analogous toj~~ and JU;~n given in terms ofjL (kr) we 
can define h ~~I' m and the solid harmonics H Hi!' m in terms of 
spherical Hankel function h il)(kr). The I-vector solid har­
monic HW!'m satisfies the Helmholtz equation (A33) also 
and has similar integral representations. The definitions and 
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formulas for I-vector harmonics are reduced to the vector 
case for I = I and to the familiar scalar case for I = O. 
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A way is found to trivialize and so deal with constraints in a gauge invariant manner. 

I. CONSTRAINTS IN CLASSICAL THEORY 

In the Lagrange formulation of mechanics (see Gold­
stein l and Landau and Lifshitz2

) one has a scalar quantity 
(the action S L dt) from which the classical (Euler-La­
grange) equations of motion 

~(~)-~ 
dt aqn aqn 

follow from an extremizing principle where, for the vari­
ation, the coordinates are treated as independent of each 
other 

If the motion is constrained to a surface, 

rPm (q,t) = 0, 

then the independence of the coordinates may be restored by 
supplementing the Lagrangian: 

L = Lo + AmrPm 

and treating the Lagrange mUltipliers Am in the manner of 
additional independent coordinates. Extremization with re­
spect to the Am then yields the constraints as equations of 
motion. If a constraint is nontrivial (that is, alters the mo­
tion), then it follows that the associated Am is determined. 

When moving from the Lagrange to Hamilton formal-
ism, 

H(p,q,t):: LPnqn - L(q,q,t), 
_ aL 

Pn=-.-· 
aqn n 

In addition to an imposed constraint, a similar but different 
kind of constraint can arise (Dirac, 3 and references therein). 
In the Hamilton formulation the equations of motion follow 
from arbitrary variations of the qn andpn leading to 

. aH. aH 
qn =a' Pn = -T' 'Pn qn 

or, in condensed notation, 

g = {g,H} + ~~, 
where the Poisson bracket is defined by 

{J,g}:: aj ag _ aj ag . 
aqn apn apn aqn 

If the action has symmetries, then there exist relations 

lJ";:.m f L(q,q,t)dt = 0, 

which become the constraints (explicitly time-dependent 
symmetry constraints are ignored for simplicity) 

rPm (p,q) = 0 

in the Hamilton formalism. These constraints that arise di­
rectly from the symmetry are called primary. To reinstate 
the independence of the q nand P n the same technique as 
before may be adopted to yield the supplemented Hamilto­
nian 

H = Ho + AmrPm, 

with the important distinction that these constraints are not 
externally imposed but arise from invariances of the system. 
In contrast to previously, where the constraints in general 
alter the motion and the Lagrange multipliers are deter­
mined, here the Lagrange multipliers should be undeter­
mined. However, this is not the end of the story since there 
are consistency conditions that must be satisfied for the con­
straints to be maintained for all times; namely, 

~m = {rPm,H}::~O, 
i.e., 

{rPm,Ho} + Ak {rPm'rPk}::~O, 
where::::: means equality by virtue of the constraints (weakly 
equal). These consistency conditions might imply further 
(so-called secondary) constraints (to be attached to the 
Hamiltonian with associated Lagrange multipliers and 
which must also undergo the consistency conditions, so pos­
sibly leading to further secondary constraints). If all the 
constraints are first class [commute (in the sense of zero 
Poisson bracket) with the total Hamiltonian for all Am], 
then the Lagrange multiplies are truly arbitrary (as they 
must be for a symmetry constraint) and the system is in a 
consistent condition. However, ifthe constraints are second 
class (do not commute), then conditions are imposed upon 
the Lagrange multipliers in contradiction to their undeter­
mined nature, and the Hamiltonian as it stands is therefore 
inconsistent. Dirac showed a way to eliminate these second 
class constraints via the now so-called "Dirac bracket,,,3 
which yields a first class (and so consistent) Hamilton for­
mulation of the system. But an alternative approach exists; 
namely, to apply the Lagrange multiplier conditions to the 
total Hamiltonian, which then also leads to a first class for­
mulation, albeit different from Dirac's. 

The restrictions upon the Lagrange multipliers fall into 
two distinct classes: (I) A :;60, where the system is altered by 
the constraint; or (II) A = 0, which is a condition selectively 
removing the offending second class constraint. 

Having applied these conditions to obtain a consistent 
"pilot" Hamiltonian (denoted by a prime) 

H=Ho + Am' rPm' , 
it is easy to see that the now first class rPm' are generators of 
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gauge transfonnations, since, for any f (q,p), 

. af I af { } f= {f,H} +-= {J,H o} +-+A .... J,tPm' , 
at at 

which includes an arbitrary part given by 

tjarb(f) = A .... {f,tP .... }{jt, 

so that the tPm' generate arbitrary" nonphysical, changes; 
each A m' choice corresponding to a particular gauge. 

This procedure has a very nice interpretation; namely, 
since a first class constraint is the generator of a gauge trans­
fonnation, and a second class constraint is indicative of 
gauge fixing (leads to a particular choice of Am), (this is the 
reason why second class constraints come in even numbers; 
since an invariance gives rise to one constraint and its gauge 
fixing another), the presence of second class constraints in 
an ungauged system is symptomatic of incompatible symme­
tries. The automated repair consists of removing the unin­
tentional gauge choice (which does not alter the equations of 
motion) and restoring compatiblity by extending the sys­
tem. 

In general, a second class formulation, be it so through 
intentional gauge fixing or incompatible symmetries, is un­
suitable for quantizing. Path integral quantization is ob­
structed because one cannot integrate over Lagrange multi­
pliers that are not undetennined, while operator 
quantization (which is itself ambiguous4

) 

{f,g}~ (i/Ii) V,g] 
(where the hat symbolizes an operator), leads to a contra­
diction, since second class constraints, by definition, do not 
commute, but are individually zero. Once a first class fonnu­
lation is achieved the system may be quantized without ob­
struction, where symmetries lead to another dilemma. Be­
fore discussing this new problem and its solution, the 
technique developed above might be profitably illustrated 
upon a minimal example. 

Consider, therefore, the system characterized by the La­
grangian 

L =qilt. 

The equations of motion follow as 

(12=0, q, =0. 

Now move to the Hamilton fonnulation 

aL aL 
P,=-. =q2' P2=-. =0, 

aq, aq2 
which therefore has the primary constraints 

tP,=p, - q2 = 0, tP2=P2 = 0, 

which are second class (noncommuting) since {tP"tP2}i;0. 
This leads to the pilot Hamiltonian 

H=A,(p,-q2) +A2(P2)' 

The consistency conditions read as 

;PI = {tP"H} = - A2 = 0, ;P2 = {tP2,H} = A, = 0. 

Applying these yields 

H=O, 

which, although leading to a first class system and reproduc-
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ing the correct equations of motion 

p, =0, iI, =0, 

P2 = 0, q2 = 0, 

would seem not to regenerate the original Lagrangian 

L =p,q, +P2q2 -H. 

However, it should be recalled that the removal of sec­
ond class constraints indicates that the pilot Hamiltonian 
possesses extended gauge freedom. This is confinned by the 
ability to pick the originally inconsistent constraints as the 
gauge fixing conditions: 

p, = q2' P2 = 0, 

which then correctly leads back to the original Lagrangian 

L =q2q,. 

To avoid returning to a second class fonnulation, the 
second class constraints should be applied as gauge fixing 
conditions after quantization, where such troubles are avoid­
ed. 

II. CONSTRAINTS IN QUANTUM THEORY 

Having obtained a first class formulation of the classical 
theory one might quantize it via the Hamilton (q,p) path 
integral fonnulation of quantum theory. Fonnally one 
would need to deal with objects like 

... DA ... Dq ... --.J!..... 
f

oo foo foo D 
- 00 - 00 - 00 21rli 

xexp[ ~ fb[pq- (Ho+AtP)]dt], 

where the labels on A, q, and P are suppressed. This is fonnal 
in that the path integral depends upon the finite difference 
scheme adopted in its time discretization as well as the end 
point conditions. 5-9 On top of this ambiguity the above inte­
gral is divergent, since the infinite number of integrations 
over A, while imposing the constraint, overcounts by inte­
grating over equivalent systems (each choice of A corre­
sponding to a particular gauge). One way of dealing with 
this is to pick a specific gauge in order to isolate and so dis­
card the overcounting factor'o." (this must inevitably in­
volve subtleties related to the obstruction to quantizing a 
gauged classical Hamiltonian theory; the procedure is less 
involved in the Lagrange fonnalism'2). It would be more 
esthetically pleasing, however, to identify and factor out the 
overcounting without recourse to a particular choice of 
gauge. 

Following the philosophy of Omnes, J3 one might con­
sider dealing with a constrained system by transfonning it to 
an equivalent unconstrained one. A direct approach to 
transfonning away the constraint is not viable; for consider a 
canonical transfonnation generated by F (q,P,t): 

K = H + (aF) , P = ( aF) , Q = (aF) . 
at qP aq PI ap qt 

If one calls upon this transfonnation to trivialize the 
constraint tP (q,p,t) ::::: 0, then the generating function is deter­
mined from 
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¢( q, ~: ,t ) = 0, 

and so 

F = determined function (q,t) 

+ undetermined function (P,t). 

Hence 
p = function (q,t), Q = function (P,t), 

which does not bridge the two spaces! 
One might instead follow the Hamilton-Jacobi philoso­

phyl and require that the entire system with constraint be 
trivialized. Starting with the general Hamiltonian with con­
straint 

H(q,p,t) = Ho(q,p,t) + A (t)¢(q,p,t), 

and performing a Hamilton-Jacobi transformation based on 
F(q,P,t), Fis determined (albeit not uniquely) from 

Ho(q, aF ,t) + a + aF (q,P,t) = 0, aq at 
A(t)¢(q, ~:,t) =a, 

which is a generalized Hamilton-Jacobi equation, where a is 
to become an undertermined (although restricted) function 
of P. This might be used to advantage on the Hamilton (q,p) 
path integral. However, up to this point, the discussion has 
been based on canonical transformations in the context of 
classical mechanics and formal expressions for the path inte­
gral. For this reason we must digress to a discussion of ca­
nonical transformations in the context of the path integral. 

In classical mechanics a canonical transformation is de­
fined to be one that preserves Hamilton's equations. A quan­
tum canonical transformation might analogously be defined 
to be one that leads to a path integral representation 6,9,14-16 
in the new variables if one existed in the old ones, Le., formal­
ly, with the end points (a,b) in phase space held fixed: 

"'Dq ... ~exp ~ [pq-Hldt f'" J'" D [ . itb ] 
_ '" - '" 21rli Ii to 

= exp ~(rb - r b) "'DQ "'--[ . ]f'" J'" DP 
Ii - '" - '" 21rli 

xexp [ ~ {b[PQ_Kldt] 

(r =F- QP). 

It has been found l7.l8 that this formal statement be­
comes true for the Stratonovich 19 (midpoint scheme) coher­
ent state path integral 

== lim Yi: I(J'" dq(j)J'" dp(j») 
N_", j=l -'" -'" 21rli 

xexpr~ i (P(k)(q(k) - q(k - 1») 
Ii k= 1 

- H(P(k),q(k),k - 1I2)At) ], 

where the Hamiltonian is altered (which may give rise to 
quantum anomalies that spoil classical symmetries that 
might be present): 

Ph ==p(N), Pa ==p(O), 

qb ==q(N), qa ==q(O). 

This understanding gives formal manipulations valid­
ity, and it is found that quantum canonical transformations 
are, in fact, a proper subset of classical canonical transforma­
tions l8 (scaling transformations, being normalization ruin­
ing, are disallowed). 

Coherent states, it should be recalled, are not observable 
(the reason why the end points could be fixed in phase space 
without violating Heisenberg's uncertainty principle), and it 
still remains to convert the coherent state path integral to a 
physical amplitude. For example, the position to position 
amplitude 

x ~ exp [ - 2~ «Xb - (qb + iPh»2 + p~) ] (Pb,qb,tb !Pa,qa,ta )exp [ - 2~ «Xa - (qa - iPa»2 + p~) ]. 

For the particular case ofthe trivializing (Hamilton-Jacobi) transformation this reduces to a double integral18 

(Xb,tblxa,ta) = 13/2f'" dQf'" dPexp[--I_«Xb-(qb+iPh»2+p~)]exp[~(rb-ra)] 
2(1rli) -'" -'" 21i Ii 

xexp [ - 2~ «xa - (qa - iPa W + P~)]. 
rj--------------------------------------

where the Hamilton-Jacobi analysis yields remembering to employ the altered Hamiltonian. This still 
leaves a subtlety concerning the sequence of performing the 
momentum and position integrals, a matter dealt with in the 
Appendix. 

qa (P,Q,ta), Pa (P,Q,ta), r a (P,Q,ta), 

qb (P,Q,tb), Ph (P,Q,tb), r b (P,Q,tb), 
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Returning, then, to the constraint case with the now 
well specified representation of the path integral 

,"DA "'Dq ... --L f '" f'" f'" D 
- '" - '" - '" 21rli 

xexp[ ~ Eb[pq- (Ho+A~)]dt]. 
The above expression, being understood to be a coherent 

state amplitude, has fixed q and P end points. It is convenient 
then to also not include the end point A integrations in this 
expression and perform all the end point integrations togeth­
er when converting to a physical amplitude. Trivializing this 
object through the generalized Hamilton-Jacobi transfor­
mation given previously yields: 

exp ..!..(rb - ra) ... DQ ... --[ . ]f'" f'" DP 
Ii - '" - 00 21rli 

xexp[.i.f'b(PQ]dt]f'" ... DA. 
Ii '. -00 

Here the infinite gauge factor (f DA, not including end 
points) is isolated and may be factored out (abandoned) and 
the path integral performed to yield 

exp[ (illi)(rb - ra) ]8(Qb - Qa) 

X21rli8(Pb -Pa )8(Ab -Aa )· 

The delta function in A follows from the delta function 
in Q and P, since once the constraint is enforced at one end, it 
is then automatically satisfied at the other. It still remains to 
transform this coherent state amplitude to an amplitude 
between physical states when the remaining end point A de­
pendence is integrated out. 

III. AN EXPLICIT EXAMPLE 
To illustrate the technique one might investigate the re­

parameterization invariant free massive point particle2o,21 as 
an example of a system with general covariance freedom. 
This taking a "hammer to crack a nut" approach has the 
virtue of illustrating the technique in an uncluttered exam­
ple, but suffers the penalty of seeming cumbersome. 

Starting from the Lagrangian formalism, 

S = - mJ~ iIq. ik/' dr. 
ih ar 

Following Dirac,3 this has a trivial Hamiltonian if one 
I 

fails to account for the primary constraint p I'll' = m2
; hence 

the Hamilton formalism 

H - A(r) (roJ.' 2) 
-~PI'Y -m , 

s= J(PJAI'- ~~) (p~-m2»)dr. 
In this case the potentially anomalous term to be added 

to the Hamiltonian when moving to the coherent state path 
integral (see before) is just a constant and may be neglected. 
Having only one constraint, this is a first class system and 
there is no repair to be made. 

Analyze this system under the trivializing scheme. A 
subtlety arises for the Hamilton path integral in that it is, in 
general, necessary to perform the momentum before the po­
sition integrations (see the Appendix). To relax this condi­
tion, consider instead the simple harmonic system 

H = (A 12m) (p~ + m2oiql'rt' - m2), 

in the limit as w -+ 0, where momentum and position are then 
further placed on an equal footing by performing the trivial 
counterscaling canonical transformation generated by 

F= (1/~mw)qI'PI', 

which yields 

ql' -+ql'/~mw, PI' -+pl'~mw, 

and introduces an overall factor of ~mw into the position to 
position amplitude. The system under consideration is then 
characterized by 

H = (A/2m)(mwpl'?' + mwql'rt' - m2), 

and the generalized Hamilton-Jacobi equations determining 
the generating function then read as 

a + aF = 0, A( r)t/J(ql' aF ,r) = a, 
ar art' 

which become 

F(ql'a,r) = W(ql'a) - a J dr, 

where W is determined from 

~(mw aw aw + mwq rt' - m2) = a, 
2m a~ art' I' 

Solving this [Gradshteyn and Ryzhik,22 p. 86, from 
2.271 (3)], yields 

F=-- -+--q rt' +- -+- arCSlD -+- "ql'rt' -a dr. ~ ~(2a m ) 1 (2a m) . [(2a m)-I12 r:::-:;t] J 
2 WA w I' 2 WA w wA w 

This generates 

Unravel to expose q,. andp,.: 
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q~ =n~~!~ +: sin[lOA(Q~ a:: + f dT)] , 

p~ =n~~!~ +: COS[lOA(Q~ a:: + f dT)] , 
F= ~ (~ + :)sin[lOA(Q~ ~: + fdT)]COS[lOA(Q~ ~: + f dT)] + (a+'~)Q~ ~: + ~A f dT 

(r = F - Q~P~), 

where n ~ is the unit vector in the direction of the corresponding x ~ (since q: = ~, q't, = xt ). The phase space integral is thus 
reduced to one canonical pair. Dropping indices therefore and exploiting the arbitrariness in a to let a-+A (lOa - m12) leads 
to 

F=asin[Q ~= +lOA f dT]COS[Q ~= +lOA f dT] +aQ ~= + ~A f dT. 

To determine the position to position amplitude, recall 

(Xb,Tblxa,Ta) ex:_I_Jco dA Jco dQJco dP_I_ exp[ - _l_«xb - (qb + iPhW + p!)]exp[~(rb - r a)] 
21rli - co - co - co fiiiz 21t It 

xexp[ - 2~ «xa - (qa - Pa »2 + p~) l 
Substituting and transforming P, Q-+a, 8, where 8=QdP Ida (unit Jacobian) proves independence (in general) from 

the functional form of a(P), a becoming a dummy variable. Further replacing a = r leads to 

~/2 Jco dA Lco rdrJ1r d8exp[C2 (8)r + Ct (8)r+ Co(8)], 
(1rli) - co 0 -11' 

where 

C2= - !(l-~XP[ -2z\8 +lOA fTb dT)] -~XP[2z\8 +lOA fTa dT)])' 

C t = i~ (Xb exp[ - z\8 + lOA fTb dT)] - Xa eXP[z\8+ lOA fTa dT)]) , 

(X~ +X~) .mA iTb 
Co = -mlO +1- dT, 

21t 21t Ta 

having included the ~mlO factors stemming from the first trivial counterscaling canonical transformation. 
Translating 

A fTb A fTa 
8 -+ 8 - ~ dT - ~ dT 

leads to the simplification 

(X2 +X2) 
CO = - mlO a b + i mAT 12ft, 

21t 
where 

T=Tb - Ta, 

LetA-+AT(remembering that (Xb,Tb IXa,Ta) = 0, for T <0), the T dependence then being lost asa result. Theparametriza­
tion labels are then also dropped [(Xb,Tb IXa,Ta) -+K(xb,xa)]. Further transform these "cylindrical polar" coordinates to 
Cartesian to yield 

.JiiWj Loo d" [. mAl [ mlO( 2 2] K(xb,xa) ex: 3/2 /I. exp 1- exp - - Xa + Xb) 
( 1rli) 0 21t 21t 

X f_COco du exp [ - ~(1 - e- i.,")U2 + N2mlO(xa - Xb )e- i.,V2U)] 

xf_COco dvexp[ -~(1 +e-i"")v2+~2mlO(xa +xb)e- i.,,,/2v)]. 

80 J. Math. Phys., Vol. 31, No.1, January 1990 A. Y. Shiekh 80 



                                                                                                                                    

but 

{"oo exp[ - ax2 +px]dx = ~exp[!:]. 
Hence 

m(J) [. m (1 (x! +x~)COS«(J)A) - 2xaXb)] 
--~-- exp 1- .I\. + (J)>---=---=-------=-=-
2i1rli sin «(J)A ) 21Z sin «(J)A ) 

(the five-dimensional s.h.o. kernel integrated over the "fifth time" A). 

Taking the limit (J)-O leads to 

K(Xb'Xa ) 0:: dA -. - exp i- A + . Loo ~ [m ( (xa -Xb)2)] 
o 211rliA. 21Z A 

Take the four-dimensional Fourier transform 

- Loo [p pi' - m
2 

] i Ko:: dAexp-i P A 0:: , 

o 2mli pppI' - m 2 - iE 

which is the usual Klein-Gordon propagator. 
This then verifies that this technique is able to identify and eliminate the symmetry overcounting, while maintaining the 

symmetry throughout. 
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APPENDIX 

In general, the result of performing the phase space inte­
grals depends on the sequence in which they are per­
formed. 23,24 It is understood that if there is any ambiguity, 
the p integrals are to be performed first. 

To understand this ambiguity, study the basic integral 

I=.foo dqfoo dp exp[i..-(p6.q -H(P,q,t)6.41 
- 00 - 00 21rli Ii 

f
OO foo d = _ 00 dq _ 00 2~ (Coo(t) + CIO(t)p + COl (t)q + ... ) 

Xexp[i(a(t)p2 + P(t)pq + r(t)q~], 
having expanded all but the Gaussian terms in the exponent. 

The presence of terms of the form pn , for n > 2, leads to 
an unhealthy theory and corresponding divergences in the 
path integral. 18 Canonical transformations leading to such 
terms are then implicitly excluded. 

The above integrals may be performed using 

f: 00 du exp[ - au
2 + bu] = ~ exp[ ~]. 

Re(a) >0, 

81 J. Math. Phys., Vol. 31, No.1, January 1990 

I 
and offspring stemming from taking derivatives with respect 
to b. 

Consider, then, performing the p integrals first. Conver­
gence requires that 1m (a) > 0 and leads to 

1= - Coo -f OO dq ( ~ 
- 00 21T a 

... ) 

The further requirement that this second integral be 
convergent leads to 

1m (Y - P2/4a) >0 

and so the overall convergence requirements 

Yi - [2arPrPi - ai(p; - P7) ]/4IaI 2 >0 

and 

ai>O, 

where 8r =.Re(8), 8 i =.lm(8). 
If the sequence of performing the integrations is re­

versed (q, thenp), the criteria read 

and 

Yi>O. 

It then follows that the same solution will be obtained 
regardless of the sequence, if it can be arranged that a = y, 
since otherwise it becomes possible that the first set of con­
vergence criteria are respected while the second are not, and 
then the two results would, in general, disagree. 

This equality can always be achieved via the trivial ca­
nonical counterscaling generated by 
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F= (aIr) 1/4 qP, 

which yields 

q-+ (aIr) 1/4 q, P-+ (rIa) 1/4p. 

This transformation introduces an overall factor of (r I 
a) 1/4 into the position to position amplitude; while generat­
ing the new Hamiltonian 

H«alr)1/4q, (rla )1/4p ,t), 

which then permits one the freedom to perform the integrals 
in any order, i.e., employ variable changes. 

This ordering dependence was encountered for the ex­
ample performed in the main body of the text, and avoided 
through the above counterscaling. 
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It is shown that even in relatively nice cases the naive approach to the quantization of 
constraints is not correct in general [i.e., the procedure that iff = 0 is a classical constraint 
and r(j) is the associated quantum operator, then the quantum constraint is r(j) = 0]. An 
explicit procedure for the quantization of constraints in the case of a configuration space with a 
symmetry group is provided and proven, where the reduced configuration space is the orbit 
space. It is not thought that the group acts freely, merely that all isotropy subgroups are 
conjugated to each other. 

I. INTRODUCTION 

It is well known that, in general, quantization of con­
straints poses insurmountable difficulties. However, one 
does not expect serious problems if at the classical level we 
have the following situation: (i) a phase space (symplectic 
manifold) (M,w) with a symmetry group G (acting as sym­
plectomorphisms) that admits an Ad-equivariant momen­
tum map J: M-+g* (g the Lie algebra of G), and (ii) a re­
duced space (B,wred ) which is obtained by the (classical) 
constraints (J(' ),5) = 0 "5Eg. In such a situation the re­
duced phase space (B,wred ) is obtained as the quotient 
B =J- 1 (O)/G (see Ref. 1). In this context, each observ­
able HEC<s> (M) that is invariant under the group action in­
duces in a natural wayan observable H red EC'" (B) by re­
stricting H to J - I (0) eM and observing that this restricted 
function descends to J-1(0)/G = B. 

Going to the quantum level we assume to have a Hilbert 
space 7t" M for the classical system (M,w ) and a quantization 
r for the constraint functions (J(' ),5) and the (invariant) 
observable H as skew self-adjoint operators on 7t" M' One 
would expect self-adjoint operators, but we have absorbed a 
factor i in the definition of the operators in order to avoid 
factors i later on. Now we note that since J is Ad-equivariant, 
the constraint functions (J(' ),5) are all first-class con­
straints, so nothing is more natural than to suppose that the 
Hilbert space 7t" B for the classical system (B,wred) can be 
identified with 

7t"red = {tf!eKMlr«J(·),S»tf=O "5Eg} (1) 

and that the quantization r(Hred ) of H red as a skew self­
adjoint operator on 7t" B coincides under this identification 
with r(H) "restricted to" 7t"red' Of course, one has to as­
sume that r maps brackets in g to commutators of operators 
(i.e., r( (J('), [5,"]» = [r( (J(' ),5 »,r( (J(' ),11»» in or­
der to get a consistent description of 7t"red' and one has to 
assume that r(H) commutes with all r(J(' ),5 »inorderto 
get a well defined restriction of r(H) to 7t"red' but those 
conditions are usually satisfied. 

However, in their paper on BRS quantization,2 Kostant 
and Sternberg gave implicitly a slightly different definition 
of 7t"red (in the case of a free action of G): 

7t"red = {tPeJY MI"5Eg:r(J(' ),5»tf = - !tr(ad(5»tf} 
(2) 

(see Ref. 3 for an explicit derivation ofthis formula). Their 

derivation uses super Poisson algebras, Clifford algebras, 
and cohomological arguments, but no reference to any spe­
cific form of quantization. Now their formula might seem 
strange, especially if one realizes that skew self-adjoint oper­
ators usually do not have real eigenvalues. Nevertheless, as is 
shown in Ref. 3 and this paper, their formula for 7t"red is 
correct and the naive formula is not. 

The outline of this paper is as follows. At the classical 
level we consider the original phase space M to be the cotan­
gent bundle of a configuration space Q: M = T*Q, and we 
suppose that there are symmetries at the level of the configu­
ration space, i.e., that a group G acts on Q (but not necessar­
ily freely). The typical example of such a situation is a gauge 
theory in which Q is the configuration space of all connec­
tions on a principal fiber bundle and in which G is the group 
of all gauge transformations. However, this particular exam­
ple is not covered by our finite dimensional manifold ap­
proach. The reduced space then is the cotangent bundle 
B= T*(QIG), where QIG is the reduced configuration 
space. Our quantization of the cotangent bundles T*Q and 
T * ( Q 1 G) consists of taking the Hilbert space of square inte­
grable functions on their configuration spaces Q and Q IG 
(with respect to a certain measure). Such a quantization of 
cotangent bundles is natural and can be "derived" by various 
quantizations, e.g., geometric quantization/ or Segal's 
quantization.5 Since our constraint operators have in general 
a continuous spectrum, neither formula ( 1 ) nor formula (2) 
will define a nonzero space 7t"red' Therefore, in order to 
obtain meaningful results, we will interpret the Hilbert 
spaces as the spaces of all C<s> functions on the configuration 
spaces, instead of only the square-integrable ones (in the 
main text we will use a correct language). This problem and 
the related fact that one has to change the measure when 
going from the original space 7t" M to the subspace 7t"red has 
been noted by several authors (e.g., Refs. 6 and 7). The ap­
propriate setting would probably be a rigged Hilbert space 
approach, but since we are interested in geometrical proper­
ties, we will ignore these questions. It is in this context that 
we discuss the identification of 7t" B with a subspace 
7t"red c7t" M and the relation between r(Hred ) on 7t"B and 
r(H) restricted to 7t" red' 

We show that in general there is no intrinsic (i.e., in 
terms of the group action) description of 7t" B as subspace 
7t" red c7t" M' but that there always is a (nonunique) identi­
fication for which r(Hred ) on 7t" Band r(H) restricted to 
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,w'red coincide. In special cases though, there is an intrinsic 
definition of 7t' B as subspace 7t' red e 7t'M' First if the ac­
tion is free, then formula (2) of Kostant and Sternberg ap­
plies. A naive explanation in the trivial case Q = G X Q IG is 
as follows. Letp be a measure on Q IG, then the pull back to 
Q is not a measure. Ifhowever So is a measure on G then p' So 

is a product measure on Q. The correction term stems from 
the behavior of So under the group action. As a second special 
case, suppose G admits a bi-invariant metric, then formula 
( 1 ) applies. Note that if G admits a bi-invariant metric, then 
G admits a bi-invariant measure (i.e., G is unimodular) 
which implies that tr(ad(s»==O, so the two cases do not 
contradict each other. 

Since the quantization we use can be derived by geomet­
ric quantization, our results generalize a result of Gotay,8 
either in the direction of nonunimodular groups or in the 
direction of nonfree actions. However, our approach is quite 
different since we impose the quantization of the reduced 
space instead of deriving it from the quantization of the 
original space. In the last section we give two examples: the 
first one to show that for nonunimodular groups G the term 
~tr(ad(s» is essential for r(Hred ) and r(H) to coincide and 
the second one to prove that in general no intrinsic descrip­
tion of ,w' B as subspace,w' red e,w' M can be given. 

For the moment it remains a mystery how the algebraic 
approach of Kostant and Sternberg without any reference to 
a specific quantization relates to our geometric description 
which makes in an essential way use of the specific structure 
of,w'M and,w'B' However, even if we are not in a situation 
covered by this paper, the term !tr(ad(s» proves to be essen­
tial.3 

II. THE CLASSICAL SETTING 

Let the original configuration space Q be a manifold and 
let the connected Lie group G act on Q smoothly and proper­
ly. We do not suppose that G acts freely, but we do suppose 
that all isotropy subgroups G q: = {geG Ig( q) = q} are con­
jugated, say to the subgroup He G. It then follows (Ref. 9; 
exer. 4.1M) that the reduced configuration space R = Q IG 
( the orbit space) is a manifold and that p: Q .... R is a locally 
trivial fiber bundle with typical fiber G I H and structure 
group NIH, where N is the normalizer of H in G, i.e., 
N = {geG IgHg- 1 = H}. 

Since we will need a more precise description of this 
bundle, we introduce some notations. For geG we denote the 
action ofgon qeQby Lg (q) to stress that we consider it to be 
an action on the left. By abuse of notation Lg will also denote 
the canonical left action of G on G I H defined by 
Lg [k) = [gk), where brackets denote taking cosets. The 
group NIH acts canonically on the right on G I H as follows: 
if neN, [n) its projection in NIH, then R[n) [k) = [kn). 
Obviously the left action of G on G I H commutes with the 
right action of NIH. 

From our assumptions it follows that each point ueR 
admits a neighborhood U such that P -I ( U) ~ U X G I H 
where the G action on P -I (U) is just the G action on the 
second factor G I H. Moreover, given two such trivializing 
neighborhoods U and U', they are related by transition func­
tions 
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U XG IH3 (u,[k) )1--+(u,R[n](u) [k) )eU'xG IH, (3) 

where [n): un u' .... NIH gives the gauge transformations 
related to these two trivializations. 

We now go over to the phase spaces by taking cotangent 
bundles with their canonical symplectic forms. Here, T·Q is 
the original phase space with symplectic form 
(J)Q = d(JQ' (JQ being the canonical one-form on T·Q; in the 
same way (T·R,(J)R = d(JR) is the phase space of the re­
duced system. The action of G on Q can be lifted canonically 
to a symplectic action of G on T·Q (which even leaves (JQ 
invariant) and this symplectic action has a canonically de­
fined Ad-equivariant momentum mapJ: T .Q .... g. (g the Lie 
algebra of G) defined by the following prescription. For Seg 
denote by S Q the associated fundamental vector field on Q 
whose flow is L exp ( _ 5t); for aeT:Q, the valueJ(a) is given 
by 

(J(a),s): = a(SQlq)' (4) 

By abuse of notation J(S) will denote the function on T·Q 
definedbyJ(S)(a) = (J(a),S). IfinlocalcoordinatesSQ is 
given by 'I-iS i(q)a I(aqi) then J(s) is given by 'I-is i(q)Pi' 
where the Pi are the associated momentum coordinates. 

With our hypotheses it is easy to show that Oeg· is a 
weakly regular value for J, that the constraint set 
J-1(O) = {aeT·Q IVseg: J(S)(a) = O} is a submanifold 
ofT·Qand that the Marsden-Weinstein reduced symplectic 
manifoldJ-1(O)IGissymplectomorphicto (T·R,(J)R)' We 
refer the interested reader to Ref. 10 for the general case of 
reduction for nonfree actions. 

III. INTERMEZZO ON d-OENSITIES 

Let Qbe a manifold and F( Q) its frame bundle, a princi­
pal GL(n,R) bundle over Q with n = dim Q. The bundle 
AdQ is the (real or complex) line bundle over Q associated 
to F(Q) by the representationp: GL(n,R) .... R+ eAut(R), 
(aij )I--+Idet(aij) Id, and ad-density'" is a global section of 
A dQ. In other words, a d-density is a map that assigns a (real 
or complex) number to each (n + I)-tuple (q;(el, ... ,en » 
where qeQ and (el, ... ,en ) == (e) a frame at (i.e., a basis of) 
TqQ. Moreover, if (ft, ... /n) is a different frame at TqQ with 
/; = 'I-jaijej then 

¢l(q;(f»==¢l(q; (ae» = Idet(aij) Id'¢l(q; (e». (5) 

Since any two frames at TqQ are related by a matrix a, 
"'(q;') is completely determined by its value on a single 
frame. 

With an appeal to the transformation law of multiple 
integrals, a one-density is just a measure on Q. Since the 
pointwise product of a d-density and ad' -density is a 
(d + d ')-density, it follows that the product of two ~-densi­
ties is a measure on Q which can be integrated over Q, giving 
rise to the Hilbert space J¥'J/2(Q) of square-integrable !­
densities on Q. An elementary partition of unity argument 
shows that A dQ is a trivial line bundle, hence the choice of a 
nowhere vanishing d-density VIa identifies the set fld(Q) of 
all smooth d-densities with the set C 00 (Q) of all smooth 
functions by '" = IVIa. In the particular case of !-densities, 
the choice of a trivializing section ",:;2 identifies J¥'1/2(Q) 
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with L 2(q.It/I~/212). the space ofsquare-integrable functions 
with respect to the measure 1t/I~/212. 

Now let t/J be a diffeomorphism of Q and tPeOd
( Q). then 

there exists a natural notion of pull-back t/J.t/I defined by 

(t/J·t/I)(q;(el •...• en»: = f/t(t/J(q);(t/J.el.···.t/J.en ». (6) 

It follows that. given a vector field X on Q. there is a natural 
definition of a Lie derivative .!L' x t/I given by 

(.!L' x t/I) (q; (el.···.en »: =!!...I (t/J~t/I)(q;(el.···.en» 
dt t=O 

= dd I f/t(t/Jt(q);(t/Jt.el.···.t/Jt.en». 
t t=O 

(7) 

where t/Jt is the flow of the vector field X. It is elementary 
to verify that [.Y x • .Y Y] =..Y x°.Y Y -.Y y0'y x 

=.Y[X,YI· 

IV. QUANTIZATION OF COTANGENT BUNDLES 

If the phase space M of a physical system is a cotangent 
bundle T·Q. it is quite natural to assume that the Hilbert 
space)J't" M that describes this system in quantum theory is a 
L 2-space off unctions on Q with respect to a certain measure 
f..L on Q. When no natural choices for f..L are available. it is 
more convenient to interpret )J't" M as the space )J't"1/2( Q) of 
(square-integrable) !-densities on Q. The main problem of 
quantization then becomes the problem of finding quantum 
operators corresponding to classical observables. 

For obvious reasons we will restrict our attention to ob­
servables H: T*Q-+R which are at the most linear in the 
momentum variables. Let Xbe a vector field on Q. then there 
is a naturally defined function Hx: T·Q-+R which is linear 
in the momenta: Hx (a) = a(X Iq) for aeT:Q (recall that 
the momentum map J is constructed in this way!). Vice 
versa. every function on T·Q that is linear in the momenta is 
of this form. It follows that we restrict our attention to obser­
vables of the form 

H=HQ01TQ +Hx (8) 

withHQ : Q-+R.1TQ: T·Q-+Q the canonical projection and 
X a vector field on Q. In local coordinates q on Q with asso­
ciated momenta this becomes H(q.p) = HQ(q) 
+ ~iS i(q)p( with X = s i(q) (a laqi) . 

For these observables there is a natural quantization as 
skew self-adjoint operators on )J't"1/2(Q): 

r(HQ01TQ + Hx)t/I = iHQ·t/I + .Y xt/l. (9) 

This quantization can be derived rigorously by geometric 
quantization (for !-densities without additional assump­
tions; for !-forms this result is guaranteed if Q is orientable). 
but can also be found in Segal's approach to quantization. In 
the case Q = iln this quantization procedure is equivalent to 
the usual prescription of symmetrization: 
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~+ Si(q)Pi)t/I(q) 

= ! +(Si(q) Z + ~<Si(q)t/I(q») 

= ~ Si(q) atf!. + .!.(~asl(~»)t/I(q). (10) 
"'7- aq' 2"'7- aq' 

It follows directly from the formula [.Y x • .Y Y ] = .Y [X,Y I 
for d-densities that this quantization maps Poisson brackets 
on commutators. i.e .• if HI and H2 are both ofthe form (8). 
then r( {HI.H2}p.B. ) = [r(HI).r(H2)]. 

V. QUANTIZATION AND REDUCTION I 

In the classical setup we had two phase spaces: the origi­
nal one T·Q and the reduced one T· R that is determined by 
the constraint functions J(s). seg. As we have seen in the 
previous section. the associated Hilbert spaces are derived 
from 01/2(Q) and 01l2(R). In this section we will try to 
identify 01l2(R) as a subspace of OI/2(Q) determined by 
the quantized constraints r(J(s». 

Contrary to all didactical rules we will directly proceed 
with the correct approach instead of presenting first the nat­
ural approach and then noticing that that does not work very 
well. Our basic object will be OI/2(R;G IN) of!-densities on 
R which depend smoothly on a parameter zeG IN. More pre­
cisely tPeOI/2(R;G IN) is a smooth function of a point 
(u,z)eR XG INand a frame (el ..... en ) at T"Rwiththeprop­
erty that if another frame if; ) is related to the frame (e i ) by 
the matrix aij' i.e .• /; = ~jaijej' then 

f/t(u,z;(f) = Idetaijll/2f/t(u.z;(e». (11) 

As with d-densities. a nowhere vanishing element 
t/loeOI/2(R;G IN) identifies 01l2(R;G IN) with 
C"'(R X GIN). 

The map gHg-Il-+g mod N is an isomorphism between 
the manifold GIN and the set I(H) = {gHg-llgeG} of all 
subgroups of G conjugated to H. Moreover. there is a natural 
map /': Q-+I(H) ~G IN given by /,(q) = Gq • With our 
assumptions. this is a smooth sUIjective map given in a local 
trivialization U XG IHofQby (u.[k] )I-+k mod N(seeSec. 
7 for a generic example of /' ). We thus obtain a natural 
surjectivesubmersionpX/,: Q-+R X G IN. explaining par­
tially our interest in the product R X GIN. 

Let So be a nowhere vanishing !-density on G I H which is 
invariant under the (right) action of NIH. A partition of 
unity argument applied to the principal NIH bundle 
G I H -+ GIN shows that such So exists and that two such dif­
fer by a nowhere zero function on GIN. Using this So we will 
define an injective map <1>: OI/2(R;G IN) -+OI/2(Q). For 
tPeO I/2(R;G IN) we define <I>(t/I) in a local trivialization 
U X G I H of Q by the formula: 

<I>(t/I)«u.[k] );(/".fikl » 
: = f/t(u.k mod N;(/" »'so([k ];(fik I»' (12) 

where (I,,) is a frame at T"R andfik I a frame at T[k IG IH. 
hence (/"Jik I) is a frame at T(",[kll Q. Since t/landsoare!­
densities this formula defines a !-density on U X G I H. This 
definition of <I> ( t/I) is independent of the local trivialization 
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because the gauge transfonnations between two such trivia­
lizations are right actions of NIH and So is invariant under 
this action (i.e., 'o'[nJeN IH: R[n l*sO = so), That <I> is injec­
tive is a direct consequence of the fact that So is nowhere 
vanishing. 

In order to describe im(<I» cn l/2(Q) intrinsically, we 
need some preparations. Denote by ~ the Lie algebra of H, 
then 'o'neNwe have Ad(n)~C~, hence there is an induced 
action Ad (n) on g/~. If Gq is the isotropy subgroup at q 
with Lie algebra gq and nonnalizer Nq, then as above '0' neNq 
there is an induced action Adq(n) on g/gq. Since Gq is 
conjugated to H there exists a geG with G q = gHg-l. It fol­
lows that gq = Ad(g)~, Nq = gNg-1, and that Ad(g) in­
duces an isomorphism between g/~---g/gq which inter­
twines the actions Ad (n) and Ad q (gng- I 

). We now recall 
that for seg, S Q denotes the associated fundamental vector 
field on Q whose flow is LexP( _ 51) • In the same way S G IH is 
the fundamental vector field on G IH whose flow is 
LexP( _ 51) ; since the G action commutes with the NIH action 
on G IHwe have R[nl. (SGIH) = SGIH' On the other hand, 
for geG we have the characteristic property of fundamental 
vector fields: Ls- (SGIH) = (Ad(g)S)GIH and the same on 
Q: Ls- (SQ) = (Ad(g)S)Q' With these preparations we now 
can state our main theorem. 

Theorem 1: ;),oenl/2(Q) is an element ofim(<I» if and 
only if 

'o'qeQ 'o'neNq: (L :~)(q .. ) 

=Idet Adq(n)II/2~(q .. ). (13) 

If ;),oeim(<I» then <I>-I(~)enl/2(R;G IN) is given by 

<1>-1 (~)(u,z;(fu» = ~q;<fu'SQ »Iso( [k ];SGIH)' (14) 

wherep(q) = u,/(q) =Z = k modN,/u any set of vectors 
inATqQ withP.fu =fu a frame at TuR, and seg such that 
( fu ,s Q) becomes a frame at Tq Q. 

ProoF We first show that <I> ( t/J) has the above property, 
using a local trivialization UXGIH for Q. Now, N(u.[k]) 
= kNk -I so ifneN(u.[k]) then no = k -lnkeNandLn [k] 
=R["ol[k]. Since G acts transitively on GIH, the map 
g---T[k lGIH, s~sGIHI[k 1 defines an isomorphism g/g[k 1 
~T[k lGIH. Hence for each frame (fik 1) at T[k lGIH 
there exist (nonunique) segsuch that (fik 1) = (SGIH I[k 1)' 
Now Ln. (fik 1) = Ln. (SGIH) = «Ad(n)s)GIH) so by de­
finition of Ad q (n) the frame «Ad(n)s)GIH) is related to 
the frame (SGIH) by the matrix Adq(n). Finally, 

(L :<1>( t/J»«u, [k ] );( fu,fik 1» 

= <I>(t/J) «u,Ln [k] );(fu,Ln• (SGIH») 

= t/J(u;(fu »'so(R[no 1 [k ];(Ad(n)s)GIH» 

= Idet Ad(u,[k]) (n)II/2t/J(u;(fu» 

'so(R[no 1 [k ]; (SGIH» 

= Idet Ad(u,[k j) (n) 11/2<1>( t/J)( (u, [k J );( fu,fik 1»' 

which shows that elements in im( <1» have the above proper­
ty. In order to show the rest of the theorem, it suffices to 
show that the fonnula for <I>-I(~) gives a well-defined ele­
ment of n 1/2(R;G IN) if ~ has the above property, i.e., that 
the right-hand side is independent of the possible choices. 
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First of all notice that a different choice of (S) does not 
affect the right-hand side because ~th ~ and So transfonn as 
!-densities. In the second place, a different choice for I" is 
related to the original one by a 2 X 2 block matrix of the fonn 
« id,O), (1 ,id» whose detenninant is one, so again the right­
hand side does not change. If k' mod N = k mod N then 
k' = kn with neN. It follows that [k'] = R[n 1 [k ] and since 
So is NIH invariant (and because R[nl.SGIH = SGIH) this 
implies that the right-hand side is independent ofthe choice 
of k. Finally a different choice q' is related to q by q' = Lnq 
with neNq, which implies that/~ = Ln. I" is also a lift of the 
framefu (usepoLn =p). We then compute 

~ (q';( 1~,sQ» = ~ (Lnq;<f~'SQ» 

= (L :~)(q;<fu,Ln-" (SQ») 

= Idet Adq (n) 11/2~ (q;(/u,(Ad(n- I )5)Q» 

= ~ (q; ( I" ,S Q ) ), 

where the last equality follows because the frames 
(/u,(Ad(n-l)s)Q) and (/",sQ) are related by the 2X2 
block matrix «id,O),(O, Adq(n- I»). Q.E.D. 

As we said before, nl/2(R;G IN) is the space oq-densi­
ties on R which depend smoothly upon a parameter zeG IN. 
There is, however, a natural injection i: 
n l/2(R)'-+n l / 2(R;GIN) describing nl/2(R) as those ele­
ments of nl/2(R;G IN) that do not depend on this param­
eter. One might ask why we did not consider the composite 
injective map <l>oi: n l/2(R)'-+nl/2(Q) directly. The reason 
is the following. We have seen that, although <I> itself de­
pends upon the choice of So, im ( <1» does not. On the con­
trary, im(<I>oi) does depend upon the choice of So and hence 
cannot, in general, be described intrinsically using only the 
group action. However, we will describe two different cir­
cumstances in which im ( <1>0 i) can be described intrinsically: 
(i) N = G and (ii) if So can be chosen to be G-invariant. 

If N = G we can immediately draw two conclusions: (i) 
the parameter space G IN is a point so iis a bijection and (ii) 
H is a nonnal subgroup implying that there is an induced 
free action of the Lie group G IH on Q. Moreover, one can 
easily show that Ad (n) = Ad ([ n]) for neN = G and 
Ad ( [n] ) the adjoint representation of G I H on its Lie alge­
bra g/~. In the following proposition we recover, in our re­
stricted cotangent bundle setting, the result of Kostant and 
Sternberg as described in the introduction. It is a direct con­
sequence of Theorem 1 and the fact that G is connected. 

Proposition 2: If G = N, then im(<I>oi) =im(<I» is char­
acterized by the conditions: 

'o'geG: L;~ = Idet Ad([g]) 11/2~ (15) 
or equivalently by the conditions: 

'o'seg: .cfSQ~= -!tr(ad(smod~»'~' (16) 
The second case we want to investigate is when, among 

all allowed choices of So there is one which is (also) invariant 
under the left action of G on G I H; in other words, when 
there exists a preferred choice for So. 

Lemma 3: There exists a G and NIH invariant nowhere 
vanishing !-density So on G IH if and only if 'o'neN: 
I det Ad (n ) I = 1. If it exists, So is unique up to a nonzero 
(real or complex) factor. 
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Proot Let So be such a !-density. Reasoning as in the 
proof of the theorem, we obtain (L !so)( [e],- ) 
= Idet Ad[e](n)11/2so([e],). Since N=N[e] and hence 

Ad[e](n) = Ad(n) it now follows from the invariance of 

So under the left action that I det Ad (n ) I = 1. 
On the other hand, suppose 'tIneN: Idet Ad (n) I = 1, 

which implies that 'tIneN(k]: Idet Ad[k ](n)1 = 1 because 
the isomorphism between g/~ and g/g[k] induced by Ad(k) 
intertwines Ad (n) and Ad [k ] (knk -I). We now construct 
So as follows. We first choose a !-density So at [e], i.e., a map 
which assigns a number to a frame at T[e]G IH with the 
correct transformation property under change offrames. We 
then define So globally by 

so([k ]; (.f[k ]»: = so([e] ;Lk - I' (.f[k ]». 
What we have to show is that this is well defined and G and 
N IHinvariant. To show that it is well defined, choose seg 
such that <.f[k]) = (sGIHI[k]) and choose any heH. Then 
[k] = [kh] and we calculate 

so([e];L(kW'· (SGIH» 

= soC [e];(Ad(h -I )(Ad(k -1)5»GIH» 

= Idet Ad[e](h) 11/2' so([e];«Ad(k -1)5)GIH» 

= so([e];Lk -I' (SGIH» 

which shows that the definition of So is independent of the 
choice of k representing [k], i.e., that So is well defined. A 
similar reasoning, which is left to the reader, shows that this 
So is invariant under both the G and NIH actions. The 
uniqueness follows from the fact that the only degree of free­
dom in the determination of So lies in the choice of the value 
of So at [e], which is uniquely determined by a nonzero num­
ber (nonzero to guarantee that So is nowhere vani­
shing). Q.E.D. 

Proposition 4: If So used in the construction of cI> is (also) 
G-invariant, then nI/2 (R) ~im(cI>oi) is characterized by 
the conditions: 

'tIgeG: L:~ = ~ or equivalently 'tISeg: .!f SQ~ = o. 
(17) 

Proot According to Lemma 3, the above condition is 
compatible with, but stronger than the condition in 
Theorem 1. It follows directly from formula ( 12) and the G­
invariance of So that cI> ( f/!) satisfies the above condition if f/! is 
independent of the parameter in GIN. On the other hand, if 
~ satisfies the above condition then it follows from the G­
invariance of So and the reconstruction formula (14) that 
cI>-I(~) is independent ofG IN. Q.E.D. 

Remark 5: If G admits a bi-invariant metric, then each 
homogeneous space G I H admits a G and NIH invariant 
metric from which one deduces that there exists a nowhere 
vanishing G and NIH invariant !-density. It follows that in 
such a case Proposition 4 provides us with a nice intrinsic 
description of n I/2 (R) as subspace of n I/2 (Q). 

Remark 6: If we recall that the classical constraint J (s) 
is given by J(s) = HSQ' then according to Sec. IV 
r(J(s» = .!f SQ' It follows that propositions 2 and 4 express 
nI/2(R) as a subspace ofnI/2 (Q) in terms ofthe quantized 
constraints. However, if the fibers G I H are not compact, 
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then the only square integrable element in im(cI>0i) is identi­
cally zero. Hence in such a case this description does not 
carry over to the Hilbert spaces. This negative result can be 
stated in several positive ways of which we give one well 
known example. 

Gorollary 7: If G is compact, then the unique positive So 
such that f G/H ISol2 = 1 makes cl>oi an isomorphism between 
the Hilbert space KI/2(R) and the Hilbert subspace K red 

CK I /2(Q) defined by the quantized constraint equations 
r(J(s»f/! = o. 
VI, QUANTIZATION AND REDUCTION II 

In this section we will justify our approach of the pre­
vious section by showing in corollary nine that quantization 
and reduction commute for all choices of So. Let H: T· R .... R 
be an observable which is at the most linear in momenta 
(Sec. IV), i.e., H=HR011'R +Hx , X a vector field on R. 
Since T·R is obtained as a Marsden-Weinstein reduction: 
T·R~J-I(O)/G, we obtain a pull-back II of H to 
J-I(O)CT·Q, which is then by definition a G-invariant 
function on the constraint set J -I (0). We now suppose that 

A 

there exists a function H: T .Q .... R which is at the most lin-A _ A 

ear in momenta such that H Ir(o) = Hand Hjs invariant 
under the G-action on T·Q. !his implies that H = HQ011'Q 
+ Hx withHQ = HRopandXa vector field on Q}..,invariant 

under the G-action on Q, which R,rojects to Jfp.X = X. In 
~e classical setting, the fact H IJ-'(o) = H means that 
HeG 00 (T.Q) represents, after reduction, the observable 
HeG 00 ( T. R). We will now show that our identification of 
nI/2(R) withasu~paceofnI/2(Q) commutes with quanti­
zation, i.e., that r(H) ocl>oi = cl>0ior(H). Since we will show 
this by using n 1/2(R;G IN), we need to define .!f xf/! for ele­
ments f/JenI/2(R;G IN) andXa vectorfieldonR. Butthis we 
do exactly as for ordinary !-densities on R, just by neglecting 
the additional parameter zeG IN. It then follows automati­
cally that .!f xOi = io.!f x (slight abuse of notation regard­
ing .!f x). 

A 

Proposition 8: Let HeGOO(T·R) and HeG OO(T·Q) be 
as above, then 

A 

r(H)ocl> = cl>0r(H). (18) 
A. A A AI 

Proot r(H)f/! = iHQ'f/! + .!f xf/! and r(H)f/! = iHR'f/! 
+ .!f x f/!. A glance at the defining formula for cI> and the fact 

that HQ = p·HR shows that HQ 'cI>(f/!) = (p·HR) 'cI>(f/!) 
= cI>(HR . f/!) , so it only t;,emains to sh~w that .!fxcl>(f/!) 
= cI>(.!f x·f/!). Deno~byt,6, theftow~Xand byt,6, theftow 

of X, then~ t,6, 0p = p0t,6, (because P.X = X), /'0t,6, = /' 
~because t,6, commutes with ~ the G-action) and for Seg: 
t,6,.SQ = sQ (again because t,6, commutes with the G-ac­
tion). Using these facts and the notations (and conditions) 
offormula 14 in Theorem 1, we get for ~im(cI» the identi­
ty: 

cI>-1 (~)(t,6, (u),z; (t,6,.fu» 

= ~~, (q);(~,.Ju'~t.SQ»lso([k ];(SGIH ». 
By taking derivatives in t we find 

.!f x(cI> -I (~»(u,z; if" » 
= (.!f x~)(q;<f"'SQ »Iso([k ];(SGIH» 

orin other words .!f X(cI>-I(~» = cI>-I(.!f x~)' Q.E.D. 
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Corollary 9: For any So used in the construction of <I» we 
have: 

A 

r(H) 0<1»0; = <l»o;or(H). (19) 

VII. TWO EXAMPLES 

In this section we give two examples to substantiate our 
claims that (i) the term !tr(ad(s» in Proposition 2 is essen­
tial and (ii) im (<I»oi) cannot be described intrinsically in the 
general case. 

In our first example we consider Q= R3 3(x,y,z), 
G = {«a,b),(O,l/a»laeR+ ,beR}CSL(2,R) and the free 
action of G on Q given by L(a,b) (x,y,z) = (x,y + log a, 
az + b exp(Ax - y», where A is a fixed real parameter. In 
this case the quotient R is the real line R:= Q IG = R with 
projectionp(x,y,z) = (x). As basis for the Lie algebra g we 
choose SI = {( - 1,0),(0,1) and S2 = «0, - 1),(0,0» 
whose fundamental vector fields on Q are given by 

SIQ = ay + zaz and S2Q = exp(Ax - y)az; 

the momentum mapJ: T*Q ..... g* is given by 

J(SI) (x,y,z,PX,Py,Pz) = Py + ZPz 

and 

J(S2) = exp(Ax - Y)Pz 

and the "correction" terms !tr ad are given by 

!tr (ad(sl» = - 1 and !tr(ad(s2» = o. 
We will identify the !-density spaces fi 1/2(Q resp. R) with 
the function spaces C 00 (Q resp. R) using the nowhere 

vanishing !-densities ~Idxdydzl, resp. ~Idxl, where 

~Idxdydzl(x,y,z;(a;jaj»= Idetal l/2 and ~Idxl(x;aax) 
= lal 1l2• The squares of these trivializing !-densities are the 

Lebesgue measures on Q resp. R, so they give us the usual 
interpretation of the associated Hilbert spaces KI/2 (Q resp. 
R) er.L 2 (Q resp. R, d Leb). In order to compute the quan­
tum operators in terms of functions we need the following 
formula (which can be obtained by a straightforward com­
putation) for a vector field X on Q resp. X on R: 

2" x (Idx dy dz11/2) = ! div (X>-!dx dy dz1 1/2, 

resp. 2"x(ldxI I/2 ) =!div (X)'ldxI I/2, (20) 

where the divergence of a vector field Y = ~/lr(y)aj is de­
fined as div(y) = ~j(aj")' It follows that the quantized 
constraints are given by 

7{J(SI»~ = ay~ + zaz~ +!~ 
and 

Proposition 2 now gives us im(<I») :=im(<I»oi) CfiI/2(Q) as 

im(<I»o;) = {¢.eCOO(Q)I~(x,y,z) = exp (y/2)~(x), 

~COO(R)}. 

One might be tempted to identify ~ = exp (y/2)~m(<I»oi) 
with ~fiI/2(R), but this is incorrect. We must use the iden­
tification as given by <I»! Since G acts freely, So is completely 
determined by its value at the identity and we choose 
so(e;(SltS2» = 1. Theorem 1 now gives us the correct identi­
fication: 

<I»-I(~ldx dy dz1 1/2 ) (x;ax ) :=ct>-I(exp (Y/2)~(x) Idx dy dzI I/2)(x;ax ) 

= (exp (y/2)~(x) Idx dy dzII/2)(x,y,z;(aX,SltS2»lso(e;(SVS2» 

= (exp (y/2)~(x) Idx dydzII/2)(x.y,z;(ax,ay + zaz,exp (AX - y)az» 

= exp (y/2)~(x) lexp(Ax _ y) 11/2 

:=exp (Ax/2)~(x) 

<=><I»-I(exp (y/2)~(x» = exp (Ax/2)~(x). 

In other words, the element ~ = exp(y/2 - Ax/2) J/I(x) has 
to be identified with J/I(x) by the map <1». 

In order to see what happens with quantized ~bserva­
bles, we determine the G-invariant vector fields X on Q, 
which are of the form 

"-
X =/(x)ax + g(x)ay + (h(x)exp (y) 

+ z(A/(X) - g(x»)az; 
A 

they project to vector fields X = p.X on R as X =/(x)ax' 
Again using formula (20) we find for the quantized observa­
bles: 

88 

r(Hx) = r(/pz + gpy + (h exp(y) + Z(A/ - g»pz) 

=fiJx + gay + (h exp(y) + Z(A/ - g»az 

+ !«a,J) + A/ - g) 
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With these formulas we can check Proposition 7: 

r(Hx )ct>( J/I) = r(Hx) (exp (y/2 - Ax/2)J/I(x» 

= (f(x)axJ/l+ !(a,J)J/I(x» 

xexp (y/2 -Ax/2) 

= ct>(r(Hx )J/I). 

This calculation shows that if we had naively identified 
~ = exp (y/2)~(x)eim(<I»oi) with ~fiI/2(R), then we 
would not have found r(Hx ) 0<1»' = <1»' or(H x), where <1»' is 
our naive identification. 

To show that we really need the term! tr(ad(s» let us 
see what happens if we do not use it. The subspace 
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of fiI/2(Q) defined by the 
1'(J(51»~ = 0 = 1'(J(52»~ is given by 

{~(x,y,z) = exp( - y/2)~(x)}. 

Computing 1'(Hx) on such an element we find 

1'(Hx )exp( - y/2)~(x) 

equations 

= exp( - y/2)(fiJx ~ - g ~ +!A f ~ + ~(aJ)~) 
which does not resemble 1'(H x )~. We can get rid of the term 
!A/~ by absorbing it in ~: ~(x) = exp ( - Ax/2)tP(x) 
which gives: 

1'(Hx ) (exp ( - y/2 - Ax/2)tP(x» 

= exp ( - y/2 - Ax/2)« 1'(Hx )tP) - gtP). 

However, since g is an arbitrary function, we cannot get rid 
of it by changing our identification (which should be inde­
pendent of the observable we want to quantize). It follows 
that if we wish to have an identification which "commutes" 
with quantization of observables, we cannot forget the term 
! tr(ad(5»· . 

As the second example we consider Q = R2 
= R2,\ {(O,O)} and G = SL(2,R) with its natural action on 
a2CR2. All isotropy subgroups are conjugated to 
H = {(b n heR} whose normalizeris N:= {(~ I~a I a~O, 
heR which has two components. N IHe:.R = R'\ {O} wlth 
ordinary multiplication as group operation and projection 
(~ t~a) 1---+(1; the right action of NIH on Q is given by 
Ra (;) = (~;). The space GIN of isotropy groups is S I and 
the isotropy map ,/: Q = G I H -+ GIN is given by ~zrz, 
where z = x + iy represents (; )eQ. Since G acts transitively 
on Q, the reduced configuration space R is a single point. 
Hence the question whether im(<I>oi) can be described in­
trinsically, using only the left action of G on Q, now boils 
down to the question whether we can describe a N I H-invar­
iant ~-density So on Q = B / H in terms of the left action of G 
onG/H. 

An elementary calculation shows that for 

n = (~t~a)eN we have Idet Ad(n)1 =a-2 which is not 
identically 1 on N. Consequently there does not exist a G and 
NIH invariant !-density on G / H, so Proposition 4 does not 
apply. The right action of N / H on G / 11. ~uggests the use of 
polar coordinates (r,rfJ) on G / H = R (x = r cos rfJ, y 
= r sin rfJ). We thus can identify !-densities So on G / H with 

functions / according to 

/( r,rfJ) = so(r,rfJ; (a, ,a t,6 », 
which is equivalent to saying that we use Idr drfJII/2 as trivia­
lizing nowhere vanishing !-density on G / H (see the previous 
example). The condition that So is NIH-invariant then be­
comes (for a > 0): 

/(r,rfJ) = so(r,rfJ;(a"at,6» 

= (R :so)(r,rfJ;(a"at,6» 

=so(ar,rfJ;(aa"at,6 » 

= lal t/2so(ar,rfJ;(a"at,6» 

= at/2/(ar,rfJ) 

~/(r,rfJ) = r- 1/2 ·/(1,rfJ)· 
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But, we should not forget the second component of N / H: 

j(r,rfJ) = (R !.lso)(r,;;(a"at,6» 

= so(r,; + 1T;(a"at,6» 

= /(r,rfJ + 1T). 

It follows that aN / H-invariant ~-density So on G I H is com­
pletely determined by a function 10 on the circle S t by the 
formula: 

/(r,rfJ) = r-1/2'1o(2rfJ)~so = r- I/2 '1o(2rfJ) Idr drfJl 1/2, 
(21) 

which is in complete agreement with our observation that 
two allowed So differ by a function on G / N since in polar 
coordinates the isotropy map,/ is given by (r,rfJ)~(2rfJ). 

In order to see whether any such So can be described in 
terms of the left action of G on G / H, let us calculate the 
fundamental vector fields on Q. We choose as basis for the 
Lie algebra g the matrices 51 = ( _ n), 52 = ( _ ? - b), and 
53 = (- b?); for these we find: 

51Q =at,6, 

52Q = sin (2rfJ)ra, + cos (2rfJ)at,6, 

53Q = cos (2rfJ)ra, - sin (2rfJ)at,6. 

Using formula (20), we compute the quantized constraints 
1'(J(5» as operators on functions / [formula (21)]: 

1'(J(51» = at,6, 

1'(J(52» = sin (2rfJ)ra, + cos (2rfJ)at,6 

+ !(sin (2rfJ) - 2sin (2rfJ» 

= sin (2rfJ) (ra, -~) + cos (2rfJ)at,6, 

1'(J(53» = cos (2rfJ)(ra, -!) - sin (2rfJ)at,6. 

A simple exercise shows that there is no way to find func­
tions/(r,;) oftheform/(r,rfJ) = r- I/2 '1o(2rfJ), using the op­
erators 1'(J(5», without introducing "arbitrary" functions 
on Q. For instance, the "natural" choicej(r,rfJ) = r- 1/2 is 
determined (up to a multiplicative constant) by the equa­
tions 1'(J(51>lf= 0 and 1'(J(52)}f= - sin (2rfJ)f This ex­
ample also shows that, although im ( <1» can be described in 
terms of the G-action only, it is not a very easy description 
because the conditions (in their infinitesimal form PDE's) 
vary from point to point. 
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The pure measurements of discrete physical quantities are characterized within quantum 
theory of measurement and their unitary representations are given. Probabilistic aspects of 
measurements related to the so-called strong correlation conditions and a probabilistic 
characterization of the first kind measurements are examined. The problem of the 
objectification of the measurement result is analyzed in terms of a classical behavior of the 
measuring apparatus. As a by-product a generalization of the Wigner-Araki-Yanase theorem 
is given. 

I. INTRODUCTION 

In this paper, we discuss the quantum mechanical de­
scription of the measuring processes of an abstract way and 
determine the general form of the final state in the combined 
system of the object system and the measuring apparatus. 
The inputs for this determination are a probability reproduc­
ibility condition and an objectification requirement. The aim 
of this paper is to clarify the connections between individual 
physical requirements on the measuring process and the gen­
eral form of the final state satisfying such requirements. 

In this paper we consider only the so-called discrete 
physical quantities. This introduces drastic technical simpli­
fications. We believe that the complete characterization of 
measurements of discrete physical quantities obtained here 
justifies this assumption. 

The usual Hilbert space formulation of quantum me­
chanics will be applied here. (For basic results in functional 
analysis, see, e.g., Ref. 1.) Let us just fix some notation and 
terminology. 

The description of a physical system Y is based on a 
(complex, separable) Hilbert space cW', with the inner prod­
uct < '1· ) . We let .Y (cW') denote the set of bounded linear 
operators on cW'; f!lJ (cW') denotes the subset of .Y (cW') con­
sisting of the (orthogonal) projections. Any physical quanti­
ty of the system Y is represented as (and identified with) a 
self-adjoint operator A in cW'. The spectral measure of A is 
denoted by PA : @(fh') --+ f!lJ (cW'), where@ (fh') is the Borel 
u algebra of the real line fh'. Any state of the system Y is 
represented as (and identified with) an element T of 
Y(cW') ,+ of positive normalized trace class operators on 
cW'. The extreme elements of the (convex) set Y (cW') tare 
the one-dimensional projection operators P[ q;] on cW', 
tpEK, so that they may be identified, modulo a phase factor, 
with the unit vectors q; of cW'. We refer to the extreme ele­
ments of Y (cW') ,+ (or unit vectors of cW') as the vector 
states of Y. In the absence of any superselection rule the 
vector states of Yare exactly its pure states. The probability 
measure P:';: @(fh')---[O,I], X~P:';(X):=tr(TPA(X» 

oj This paper is a revised version of a preprint by the authors circulated 
under the same title. 

defined by a physical quantity A and a state T is interpreted 
as the probability distribution of the values of the quantity A 
in the state T. (For further details of basic Hilbert space 
quantum mechanics, see, e.g., Ref. 2.) 

As usual in the quantum theory of measurement 
(QTM), we restrict to measurements that preserve the iden­
tity of the object system Y and the measuring apparatus vI/. 
In this way QTM can be viewed as a part of the theory of 
compound systems with its own specific questions: which 
kind of state transformations of the compound system 
Y + .-'1 may serve as measurements of a quantity Ay of the 
subsystem Y, and which kind of properties of vI/ allow us to 
determine in an unambiguous way the value of the measured 
quantity. In Sec. II we follow this approach, and we give a 
definition of the concept of measurement. In Sec. III we 
characterize all pure measurements of discrete physical 
quantities and give their unitary representations. In Sec. IV 
we deal with a characterization of measurements leading to 
strong correlations. In Sec. 5 we study some properties of 
measurements via the state transformations they induce. In 
Sec. VI we face the objectification problem by investigating 
the possibility of determining the value of the measured 
quantity. The results ofthe paper lead also to a generaliza­
tion of the Wigner-Araki-Yanase theorem, which is given in 
Sec. VII. 

II. PREMEASUREMENTS 

Let cW' Jt' be the Hilbert space of the measuring appara­
tusvl/, andA.-K the so-called pointer observable, i.e., aquan­
tity of vI/ that corresponds to the measured quantity Ay of 
the object system. (Hereafter every symbol referring to Y or 
vI/ will have the corresponding subindex.) Let T y and T Jt' 
be the initial states of Y and vI/, so that the initial state of 
Y + vI/ is uniquely determined as T y ® T Jt' since we as­
sume that prior to the measurement Y and vI/ are both 
dynamically and probabilistically independent of each oth­
er. We write W( T y ® T Jt') for the final state of Y + vI/; 
the final states of Y and vI/ will then be the reduced states 
T y.w and T Jt',w, respectively. Here, e.g., T y,W is defined 
through 

tr( T y, wP y ) = tr( W( Ts ® T Jt' )P y ® IJt' ), 
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where P ye9 (K y), and I.A' is the identity operator on 

K..-K' 
In order to qualify the four-tuple (H..-K .A.-R ,1'.A" W) as 

a measurement of the quantity Ay it is necessary that it 

reproduce the basic probabilities P ;~ via the pointer observ­
able A.A' and the final state 1'.A'. w of the measuring appara­
tus. We take this probability reproducibility condition as the 
defining property of the notion of premeasurement. 

Definition 2.1: With the above notation, apremeasure­
ment of Ay on Y is a four-tuple (K ..-K.A..-K,T1 ,W) for 
which 

P Ty (X) = P Tu.W(X) 
..4,;1' A. II ' 

for all Xef!lJ (~), and for any T yeY(K y) t. 
The additional requirement that allows us to go from 

the notion of premeasurement to the one of measurement is 
the objectification requirement. This is the requirement that 
a measurement should lead to an unambiguous result, and it 
is connected with the problem of justifying the SUbjective 
ignorance interpretation for the final state 1'.5". w of the ob­
ject system Y through that of the final state T..-K. w of the 
measuring apparatus vii. This question is put aside till Sec. 
VI. 

One of the main results ofQTM is that for each physical 
quantity A y of Y there are premeasurements. An explicit 
example of such a premeasurement was already given by von 
Neumann.3 A result ofOzawa4 shows that such premeasure­
ments exist also for continuous quantities. 

We assume that the state transformation 1'.5" ® 1'.A' 
- W( T y ® 1'.ff ) induced by the measurement preserves the 
convex structure of the set of states. In that case W can be 
viewed as a trace preserving positive linear map on the state 
space T(Ky ®K 1)' the Banach space of the trace class 
operators on K y ® JY-R . Furthermore we require that the 
map T y ® 1'.ff - W( T y ® 1'.ff) preserves the extreme 
points of the set of states of Y + vii, i.e., Wis a pure map. In 
that case the premeasurement (K.ff.A..-K' TJ/' W) is said to 
be pure. Its form is significantly constrained by the following 
result due to Davies.5 

Lemma 2.2: Every pure positive linear map W: Y (K) 
-+ Y (K) is of one of the following three forms: 

(i) WeT) =BTB*, 

where Be::!' (K), and B * is the adjoint of B; 
(ii) WeT) =BT*B*, 

where B: K -K is bounded and conjugate linear; 

(iii) W( T) = tr( TB)P[s], 

where Be::!' (K), B-,O, and sEK. 
Because of the linearity and continuity of the theory, 

and because of the fact that the vector states determine all 
the states of a physical system, we may assume, without any 
loss of generality, that the initial states of Y and vii are 
vector states rp and 4>, i.e., T y = P [rp] and 1'.A' = P [4>] 
for some unit vectors rpeK y and ct>EK ..-K' In that case 

is the initial state of Y + vii. 
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Remark 2.3: Any measurement process (K..-K.A..-K' 
T..-K'W) of a physical quantity Ay determines an instru­
mentS (i.e., a state transformation valued measure) f ..-K,W: 
f!lJ (~ ) - ::!' (Y (K y » through the relation 

tr(f ..-K,w(X)( T y)P y) 

= tr(W( T y ® T..-K )P y ® PAg (X», 

for all P ye9 (K y ), Xef!lJ (~), and T yeT(K y ) t . The 
instrument f ..-K,W contains all the information on the mea­
surement (K 1.A1 ,T..-K' W) relevant to the object system 
Y. It gives the correct probabilities as 

tr(T yPAy. (X» = tr(f.A',w(X)( T y », 
for all Xef!lJ(~), Tye.'T(Ky)t, 

and it gives the (non-normalized) final state 
f.A'. w (X) ( T y ) of Y, with the condition that the measure­
ment yielded a result in X. In particular, f ..-K,w(~) (T y) 
= 1'.5".w' The properties of a measurement, like the one of 
being ideal or of the first kind, can most directly be studied 
through the properties of their instruments (cf. Sec. V). 

III. UNITARY PREMEASUREMENTS OF DISCRETE 
QUANTITIES 

Hereafter we restrict ourselves to discrete physical 
quantities, namely, to those that are represented by self­
adjoint operators with pure point spectrum. The class of 
measurements of discrete quantities ranges from the yes-no 
measurements of the elementary quantities associated with 
the properties (projection operators) of the system to the 
measurements of discrete quantities with nondegenerate 
eigenvalues, including the measurements of discrete ap­
proximations of continuous quantities. Let us also notice 
that discrete quantities are characterized as those that admit 
repeatable measurements.4 

We shall work out the general form of a pure premea­
surement of a discrete quantity. Let A y (in K y ) be a self­
adjoint operator with a pure point spectrum. Let the distinct 
eigenvalues of Ay be a;o i = 1,2, ... ,N, whereNeN (the set of 
natural numbers), or N = 00. Let n (i) be the degeneracy of 
the eigenvalue a i [so that, again, n(i)eN, or n(i) = 00] and 
let {rpij I j = 1 , ... ,n (i)} be an orthonormal basis ofthe corre­
sponding eigenspace. Then 

{rpijli= 1, ... ,N; j= 1, ... ,n(i)}CKy 

is an orthonormal basis, and Ayrpij = airpij' for all 
i= 1, ... ,N, j= 1, ... ,n(i). The spectral projections ofAy are 

For any rpeK y, 

rp = I Cijrpij' 
i,j 

with cij = (rpij Irp ), and we have that rp e dom(Ay) if and 
only if the series 

Ilai cijl2 
i.j 

is convergent. 
Let K..-K be any (complex) Hilbert space with dimen-
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sion N (the number of distinct eigenvalues of Ay). Let 
{«I>; Ii = 1 , ... ,N} C JY .-K be an orthornormal basis. We define 
A.-K as the simple self-adjoint operator 

N 

L a;P[«I>;] 
;=1 

(in JY .-K ) with the spectral measure 

PAil: X ..... L P [«1>;) 
;(aIEX) 

and with the (nondegenerate) eigenvalues a;. i = 1, ... ,N. Let 
«I> be a fixed unit vector of JY .-K . 

We shall first show that the form (iii) of Lemma 2.2 is 
not a possible premeasurement map of a nontrivial discrete 
quantity Ay . 

Theorem 3.1: If (JY,-u ,A.-u ,P [«1>], W) is a premeasure­
ment of Ay, then W cannot be of the form 

W(P[cp ®«1>]) = tr(P[cp®«I>]B)P[5], 

withBE.?(JY y ®JY~), B>O, 5EJY y ®JY-u' 

Proof: Assume that W has this form. Then, by Defini­
tion 2.1, 

(cp IPA1 (X)cp ) 

= (cp®«I>IB(cp®«I»)(51(ly ®PA11 (X»5), 

XE&6' (~). 

For X =~, we have 

1 = (cp ® «I>IB(cp® «1»)(5 15), 

while for X = {aJ and cp = CPij we get 

1 = (cp;,j ® «I>IB(cp;,j ® «1» )(51 (Iy ®P [«1>;)5)' 

for any j = 1, ... ,n(i). We conclude that 

(515) = (51(1y ®P [«1>;)5)' 
for any i = 1, ... ,N. As ~P [«1>;] = I.-K we also have 

Hence (51 (1 . .1'" ® P [«I>; ] )5) = 0, for any i = 1, ... ,N, so that 
either 5 = 0, or P [«1>;] = ° for any i = 1, ... ,N, i.e., A,-u is 
constant. 0 

In view of this result we use the notation 
(JY .-K,A,-u,«I>,B) as a premeasurement of Ay whenever 
«I>EJY .-K is a unit vector and B is a bounded linear or conju­
gate linear map on JY y ® JY,-u' The probability reproduc­
ibility condition of Definition 2.1 then takes the simple form 

(cp IPA1 (X)cp ) 

= (B(cp® «1»1(ly ®P
A11 

(X»B(cp®«I»), (1) 

for all XE&6' (~) and cpEJY y, IIcp II = 1. 
The next theorem characterizes all pure premeasure­

mentsofAy . 
Theorem 3.2: A four-tuple (JY,-u,A.-K ,«I>,B) is a pure 

premeasurement of Ay if and only if B is a continuous linear 
or conjugate linear extension onJY y ®JY.-K ofamapofthe 
form 

Cpij ® <P ..... f/Jij ® <P;, i = 1, ... ,N, j = 1, ... ,n(i), (2) 

where {f/Jij: i= 1, ... ,N;j= l, ... ,n(i)} is any set of unit vec-
tors (in JY y ) that are orthogonal with respect to the second 
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index, i.e., for any i= 1, ... ,N, (f/Jijlf/J;k) = {)jk' for all 
j,k = 1, ... ,n(i). Moreover, B can always be chosen as a uni­
tary or an antiunitary mapping. 

Proof: Let (JY .-K,A.-K ,«I>,B ) be a pure premeasurement 
of Ay. From Eq. (1) we get 1 = IIB(cp ® «1» 112 for any unit 
vector cpEJY y. Putting X = {a;} and cp = CP;,j we obtain 

1= (B(cp;.j®«I»I(ly ®P [«I>;)B(cp;.j ®<P». 

As B(cp;.j ® «1» is a unit vector this shows that 

(Iy ®P [<P;] )B(cp;,j ® <P) = B(cp/.j ® «1» 

so that B(cpij ® «1» is of the form (2) with 

f/Jij = L (CPnm ®«I>;IB(cpij®«I»)CPnm ®«I>;. 
n,m 

The vectors f/Jij are unit vectors, for 

(f/Jijlf/Jij) = (B(cp;,j®«I»IB(cp;,j®«I») = 1. 

The orthogonality condition (f/Jij If/Ji/) = {)j;' j,l = l, ... ,n(i), 
is readily obtained from Eq. (I) when applied, e.g., to 

the vectors cP = (1/,fi)(cpij + CPi/), and cP = (1/,fi)(cpij 
+ icpi/), respectively, with X = {aJ. 

Conversely, assume that B is a continuous linear or con­
jugate linear extension of the map (2). Then a direct compu­
tation shows that (H.-K,A.-K,«I>,B) satisfies the probability 
reproducibility condition (1). 

Since {cpij ®«I>} and {f/Jij ®«I>J are orthonormal sets of 
JY y ® JY.-K they can be extended to orthonormal bases of 
JY y ® JY .-K' Any bijective mapping U between any two 
such bases such that 

U(cpij ®«I» = f/Jij ®«I>, for all i and j, 

can be extended uniquely by linearity (conjugate linearity) 
and continuity to a unitary (antiunitary) operator U satisfy­
ing the probability reproducibility condition. 0 

The nonuniqueness ofthe operator B in this theorem has 
no consequence on the physics of the measurement process 
which is completely determined by the map (2). In view of 
this fact we consider a fixed unitary premeasurement 
(JY .-K,A.-K,«I>,U) ofAy . 

The final states of.Y and 1 can be calculated from the 
final state 

[ 

N n(i) ] 

P[U(cp®«I»] =P i~t/~I cijf/Jij®«I>; 

of.Y + 1. We get 

and 
N n(;) N n(k) 

T.-K,u = L L L L cijck/(f/Jijlf/Jk/)I<Pk)(<<I>;I· 
;=lj=1 k=/I=I 

We define 
n(i) 

r; = N;- 1 L cijf/Jij' 
j=1 

with 

whenever N; #0, and r; = ° otherwise. Then 
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N 

T y.u = L N~P [ r;] (3) 
;=) 

and 
N N 

TJt'.u = L L N;Nk(r;lrk)I<I>k)(<I>;I· (4) 
;=) k=) 

A particular choice for the set {tfij} is {9'ij}' Let Vbe a 
unitary operator on J¥" y ® J¥" Jt' that has the restriction 

V(9'ij ® <1» = 9'ij ® <1>;. 

The four-tuple (J¥" Jt',AJt',<I>,V) is referred to as the von 
Neumann-Liiders measurement of Ay. The corresponding 
final states of Y and vii' will become 

N 

Ty .v = L N;P[w;], 
;=) 

with 
n(il 

w; = N;-) L cij9'ij' if N; #0, 
j=) 

(5) 

where T y and T.-H' are the reduced state of T. As shown in 
the Appendix, 

p(Py,p.-H',n = 1 iff tr(TyPy ) =tr(T.-H'P..v)' 

Let (H.-H' ,A.-H' ,<1>, U), UE9/ (J¥" y ® JY:--K ), be a unitary 
premeasurement of A y. The strong correlations 

p(P [r;],P [<1>;] ,U(9' ® <1>)) = 1 (7) 

and 

p(PAy. ({aJ ),PAI/ ({aJ ),U(9' ® <1») = 1, (8) 

i = 1, ... ,N, need not hold, in general, so that they may be 
stated as further requirements on the premeasurement 
(J¥" Jt',A.-H' ,<I>,U), and either of them will imply substantial 
restrictions on U. We shall now study these restrictions. 

Assume first that N; = 0, i.e., (9' IPAy. ({a;})9' ) = 0, 
for some i = 1, ... ,N. In that case 

r; = L cijtfij = 0, 
j 

as cij = 0, for any j = 1, ... ,nU), so that neither (7) nor (8) 
can be required. Assume next that N; = I, for some 
i = 1, ... ,N. In thatcase,ckl = 0, for any k #i, so thatthe final 
state P[ U( 9' ® <1»] of Y + vii' is the uncorrelated state 
P [ r; ] ® P [<I>; ]. The pointer observable A.-H' now has the 
value a; (with probability equal to I), though the measured 
quantity Ay does not need to have the value a;, i.e., 
(r;!PAy({aJ)r;) does not need to be 1; nor does P[r;] 
need to be equal to P[ 9' ] . 

The above considerations show that the strong correla­
tion conditions (7) and (8) can be required only for those 
i = 1, ... ,N, and ~ y, 119' II = 1, for which O#N; # 1. 

Theorem 4.1: Let (J¥" Jt',AJt',<I>,U) be a unitary pre­
measurement of A y. Then 
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while 

w; =0, if N; =0, 

and 

N 

TJt'.v = L N;P [~;]. (6) 
;=) 

IV. CORRELATIONS 

In addition to the basic probability reproducibility con­
dition (1) there are other probabilistic aspects of measure­
ments especially important for the objectification of the mea­
surement result (Sec. VI). These aspects refer to the type of 
correlations produced by a measurement. 

In the Appendix the general definition of correlation is 
given; here we recall only that for any P yEf!11 (J¥" y), 
P Jt' E f!11 (J¥" Jt' ), and Te.Y (J¥" y ® JY:--K ) t , the correlation 
pep y,P.-H',T) can be written as 

p(P [r; ],P [<1>; ],U(9' ® <1>)) = 1, 

for any i = I, ... ,N, and ~ y, 119' II = 1, for which 
O#N; # I, if and only if 

{tfijli= I, ... ,N, j= 1, ... ,nU)}CJ¥" y 

is an orthonormal system. 
Proof: We have 

p(P [r;],P [<I>;] ,U(9' ® <1>)) = I 
if and only if 

tr(Ty.uP [r;]) = tr(TJt'.uP [<1>;]). 

Moreover, 
N 

tr(Ty.uP [r;]) = L N~ tr(P [rd P [r;]) 
k=) 

=N;+ L N~I(rklr;W, 
k(k#;l 

and 

tr(TJt'.uP [<1>;]) = L eijcil (tfijltfil) = L ICijl2 = N;. 
j j 

If 

{tfijli= I, ... ,N, j= I, ... ,n(i)} 

is an orthonormal system, then 

(rklr;) =N;;W;-) ~~ekjCil(tfkjltfil} =0, 

for all k # i, so that 

p(P [r;],P [<1>;] ,U(9' ® <1>)) = 1 

(whenever O#N; # 1). To show the converse, choose, e.g., 

9' = (l1.,fi)9'ij + (lI.,fi)9'kl' i#k. 
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To obtain 

p(P [r;],P [<I>;],U(97®<I») = 1, 

it is then necessary that 1 (t/lii 1 t/lkl) 12 = 0, i.e., (t/lii 1 t/lkl) = O. 
The same argument can be repeated for any pairs (i,j) and 
(k,l) such that i#k. Hence 

{t/lii Ii = 1, ... ,N, j = 1, ... ,n(i)} 

is an orthonormal system. 0 
Theorem 4.2: Let (K.-R.A.A',<I>,U) be a unitary pre­

measurement of Ay. Then 

p(PAy. ({aJ),PA/; ({aJ),U(97 ® <1») = 1, 
for any i = 1, ... ,N, and tpe% y, 119711 = 1, for which 
O#Ni"# 1, ifand only if 

{t/liili= 1, ... ,N, j= 1, ... ,n(i)}CKy 

is an orthonormal system with PA ({aJ) ri = ri' for any 
y 

i= 1, ... ,N. 

and 

Proof As 

PAy ({aJ) = LP[97ij] 
j 

PAN' ({aJ) = P [<1>;], 

we have 

nU) 

=N7~ 1 (ril97ijW + k(~i) Ni J~II(rkl97ijW, 

tr( T.-R,UP [t/Ji ] ) = N7· 

Thus 

p(PAy({aJ)'PAN' ({aJ),U(97®<I») = 1 

if and only if 
nU) 

L 1 (rd97ijW = 1 and (rk 197ij) = 0, 
j= 1 

for any k #i. This is the case if and only if PAy ({aJ)ri = rio 
As this is to hold for any i = 1, ... ,N, tpe% y, 119711 = 1, we 
have that 

{t/liili= 1, ... ,N, j= 1, ... ,n(i)} 

is an orthonormal system. 0 
If the premeasurement (JY..K.A.A',<I>,U) of Ay pro­

duces strong correlations between the possible values of A . ..K 
and Ay, then it also produces strong correlations between 
the final "component states" P [<I> I] and P [ ri] of..,ll and 
Y. As is well known, the von Neumann-Liiders measure­
ment (K .A'.A.A',<I>,V) of Ay also has these correlation 
properties. 

v. INSTRUMENTS OF THE UNITARY MEASUREMENTS 

The probabilistic aspects of (K.A'.A.A' ,<I>,U) do not ex­
haust the physics of the measurement process. The measure­
ments that produce strong correlations may differ from each 
other in the transformations of the states they induce on the 
object system Y. Such differences can most directly be stud-
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ied by the instruments f ,..K ,u determined by the premeasur­
ements (K ,..K.A,..K,<I>,U) ofAy (cf. Remark 2.3). We shall 
now consider some properties of the instruments f ,..K,U that 
serve to distinguish the von Neumann-Liiders instrument 
f .A'.v from those associated with other unitary measure­
ments. 

Let us determine first the form of the von Neumann­
Liiders instrument f .A',v. Rewriting the final state T y.v of 
Yas 

N 

Ty,v= L Ni-2P[W;] 
i=1 

= L PAy ({aJ)P [97 ]PAy ({aJ), 
i 

one sees that f ,..K,V has the following form: 

f .A',v(X)(P [97 ]) = L PAy ({aJ)P [97 ]PAy ({aJ) 
i(aFX) 

= L N7P [w;], (9) 
i(a,EX) 

forallXeYh' (&i'),andforanytpe% y, 119711 = 1. Thisinstru­
ment has the well known properties of being ideal, i.e., 

if tr(f ,..K,v({aJ)(P [97]» = 1, for some i = 1, ... ,N, 

then f .A',v( {aJ)(P [97 ]) = P [97 ], (10) 

and ofthejirst kind, i.e., 

tr(f ,..K,v({aJ)(P[97]» 

= tr(f.-R,v({aJ) of.-R,v (&i')(P [97]», 

for any tpe% y, 119711 = 1, and for all i = 1, ... ,N. 
(11 ) 

Consider next any unitary measurement 
(K ,..K.A,..K,<I>,U) ofAy . The form off ,..K,U can again readi­
ly be extracted from the final state 

N 

Ty,u= L N;P[r;] 
1=1 

and we get 

f.-R,u(X)(P [97 ]) = i(t;X) ~ + It/lil )(97i1IP [97 ] 197ij)(t/lij I 

= L N7P [r;], 
(a,EX) 

(12) 

for any XeYh' (&i'), and for all tpe% y, 119711 = 1. 
The following theorem shows that the premeasure­

ments (K.-R.A.-R,<I>,U) ofAy that have the strong correla­
tion property (8) are characterized by instruments of the 
first kind. 

Theorem 5.1: Let (JY..K.A,..K,<I>,U) be a ullitary pre­
measurement of Ay, and let f ,..K,U be the corresponding 
instrument. Then f ,..K, u is of the first kind if and only if 

p(PAy ({aJ),PAg ({aJ),U(97® <1>)) = 1, 

for all i = 1, ... ,N, and for any tpe% y, 119711 = 1, for which 
O#Ni#1. 
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Proof By definition, f .A', U is of the first kind if and only 
if 

tr(I.A',u( {aJ)(P [tp ]» 
= tr(f .A',u({aJ)of .A',uU~)(P [tp ])}, 

i.e., 

for any i = 1, ... ,N, and q;eK y, Htp 1\ = 1. But we also have 

tr(P[tp]PA ,({aJ»=tr(T.A'UPA ({aJ», .Y , .# 

for any q;eKy, IItp II = 1, and for all i =l,oo.,N. This is ex­
actly the case when 

for any i = l,oo"N, and q;eKy', IItp II = 1, for which 
O#N;#1. 0 

The ideality of an instrument f. U', u leads to a further 
specification of U. 

Theorem 5.2: Let (~4,A.4,<I>,U) be a unitary pre­
measurement of A y , and let f .A',U be the corresponding 
instrument. If f .A',U is ideal, then U is of the form 
U(w; ® <1» = /a,V(w; ® <1», for any wjePA , ({aJ )(2y), 

i = I,oo.,N, and thus f .A',U = I.A',v. 
Proof Assume first that f-H',u is ideal, i.e., for 

any i = I,.oo,N, f .A',u({aJ)(p[tp]) = P[tp] whenever 
tr(I.A',u({aJ)(p[tp])} = 1, tp57t".Y' Iltpll = 1. Now for 
any i = I,.oo,N, 

tr(f.,N',u( {aJ)(P [tpij] » = (tpij IPAy ({aJ }tpij) = 1, 

for all j= I,oo.,n(i). Hence f. 4 ,u({aJ) (P[tpij» 

= P{'tf!ij] = P [tpij]' i.e., t/lij = /fJijtpij' OijE!!It, for all 
i = 1,oo.,N, j = I,oo.,n(i). 

Applyiftg the same argument for the vector states 

tp = (l/.j2.)(tpij + tpu) we see that, for any i = 1,oo.,N, e
jfJij 

= e;fJ", for all j, 1= I,oo.,n(i). This shows that U = U'o V 
= U y ® I.A' ° V, with U y 1M, = c;Iy 1M" Ic; I = 1, where M; 
= PA ({aJ)(2 y). Clearly, J.-H',U = J.4 • V ' 0 

VI. OBJECTIFICATION OF THE MEASUREMENT 
RESULT 

It is implicit in the very notion of a measuring apparatus 
that A.4 has an actual value in the final state of J( though 
this value can be subjectively unknown. The objectivity of 
A.4 in the final state of J( is not coded in the notion of 
premeasurement (~ff,A.A' ,T.ff,W) but it has to be taken 
as an additional requirement. The stronger requirement of 
A y being objective in the final state of Y can then be de­
duced from the objectivity of A.4 via the strong correlations. 

To discuss these highly interpretational items we intro­
duce first some appropriate definitions. We say that a dis­
crete quantity A is objective in a vector state tp if 
(tp IPA ({ak})tp) = 1, for some eigenvalue ak of A, i.e., iftp 
is an eigenvector of A. This is the case exactly when A com­
mutes with P[ tp ] . If A is objective in the state tp, then its ideal 
first kind measurement does not change the state of the sys­
tem since then J,ff, v (!!It)(P [tp ]) = P [tp ]. We say that a 
physical quantity is classical if it commutes with any other 
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physical quantity of the system (cf., e.g., Ref. 6). The only 
self-adjoint operators in 2 that commute with any other 
self-adjoint operator are the constants aI, aE!!It. Hence the 
assumption that A is a (nonconstant) classical quantity im­
plies that there is no longer either the one-to-one correspon­
dence between the physical quantities and the self-adjoint 
operators in 2 nor the one between the physical states and 
the elements of Y (2) 1+ • In particular, a physical state cor­
responds to an equivalence class of Y (2) 1+ and the pres­
ence of a one-dimensional projection in this equivalence 
class does not imply that the state is pure. A vector state is 
pure if and only if its equivalence class contains only one 
element. 2,6 

We assume now that the pointer observable A.ff is a 
classical quantity. In that case the only pure states of the 
measuring apparatus J( are the eigenstates P [<I> k] of the 
pointer observable A.U'. Moreover, the final state (4) ofthe 
measuring apparatus J( reduces to (i.e., it is in the same 
equivalence class as) 

N 

T .A',U = L NTP [<1>;]. (13) 
;= 1 

We stress that a mixed state never has a unique decom­
position into the vector states. 2, 

7 The assumption that A.A' is 
classical implies that ( 13) is the only decomposition of T .A',U 
into pure states of J(. This also means that the subjective 
ignorance interpretation can be adopted for the final state 
T.ff.U of the measuring apparatus: when J( is in the state 
1'.4, u' it is actually in one of the pure states P [<I> k ], the 
coefficients N; describing the degree of our knowledge on 
the actual state of J(. The actual value of the pointer observ­
able A.U' can be read (by an ideal first kind test), without 
changing the actual state of J(. In that state AU' is clearly 
objective. 

The final state of the object system Y is now 
N 

T.y.u = L NTP [r;]· 
;=1 

This state is not directly affected by the assumption that A.ff 
is classical. But, if 

pep [r;],P [<I>;],U(tp®<I>)) = 1 

holds true for each i = 1,oo.,N (for which O#Nj # 1), then 
the ignorance interpretation of T.ff.U can be adopted for 
T .Y,U' too. According to Theorem 4.1 this occurs exactly 
when {t/lij} is an orthonormal system. Assuming that this is 
the case, if P [<I> k ] is the actual final state of J(, then P [ r k ] 

is the actual final state of Y. Then (rk IPAy ({ak} )rk) is the 
probability that in the actual final state P [ r k] of the object 
system Y the measured quantity Ay has the value ak • This 
number needs not to be 1, however. If, in addition, the strong 
correlation condition (8) is required, then r;'s are eigenvec­
tors of A y , and A y is objective in the actual final state of Y. 

There is, however, a puzzling fact that arises from the 
present approach, to which we shall now turn. 

Consider again a unitary measurement 
(2.ff ,A4,<I>,U) of the quantity Ay. The pointer observ­
able A .. N' can be interpreted through l.y ® A.ff as a quantity 
of the compound system Y + J(. As the von Neumann 
algebra .2' (2 y ® 2,.N') of the bounded operators on 
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K,9' ® JY:.K is generated by the operators of the product 
formA ® B, AE.5t' (K,9'), BE.5t' (K J( ) (see Ref. 8), we see 
that if A . .AI is a classical quantity of the measuring apparatus 
J/, then 1,9' ® A . .K is a classical quantity of the compound 
system Y + J/. This fact has two interesting consequences. 
First, the physical state represented by the projection opera­
tor P(U(q?®cI»] is equivalent to l'.N7P[r;] ®P[cI>;]. 
(Recall that this result also can be obtained as a solution of 
the so-called consistency problem of the measurement theo­
ry.2) Second, the unitary measurement U, which can be giv­
en the form eiH, does not qualify H as a physical quantity 
(like a Hamiltonian between Y and J/) of the compound 
system. Indeed, if His a physical quantity and A . .K is a classi­
cal quantity of J/, then 

pP[<I>] _ pP[cp®<I>] _ pP[U(CP®<I»] _ P T 11 •u 
04,// - Iy·®A 11' - 1.:/,(8.4.// - A.u' 

for any unit vector q?EK'.Y" as U commutes with 1,9' ® A . .K . 
In particular, this would imply that for any i = I, .. ,N, and 
for any vector state q? of Y, 

I (cI>ilcl>W = L I (q?ijlq? W, 
j 

and thus 

p [cI>] = L l(cI>ilcl»12p [cI>;] 
i 

= L I (q?ij IlP WP (cI>;] = T.J/.u· 
i~j 

These results show that the following two assumptions are 
mutually incompatible: (a) A.R is a classical quantity, and 
(b) U = eiH qualifies H as a physical quantity. 

Such an incompatibility has been independently pointed 
out by van Fraassen.9 

We do not go deeper into this issue: we remark only that 
the inconsistency of assumptions (a) and (b) seems to be in 
accordance with the ideas that the measurement evolutions 
could be irreversible and thus nonunitary (see, e.g., Ref. to), 
or that, instead of a sharp objectification, only an unsharp 
objectification might be realized. The latter proposal can be 
justified, e.g., by the results of Ozawa4 and by the fact that 
the so-called realistic measurement of position, momentum, 
and spin Seem to define not sharp but unsharp quantities. II 

I 

(lPij ® cl>IL(lPkl ® cI») = (lPij ILylPkl) + l5ik l5jl (cI>IL.R cI» 

VII. WIGNER-ARAKI-YANASE THEOREM 

The quantum theory of measurement shows up some 
limitations on the measurability of physical quantities. Com­
plementary physical quantities like position and momentum 
cannot be measured together, i.e., none of the measurements 
(in the sense of Definition 2.1 ) of complementary quantities 
can be combined as ajoint measurement of such quantities. 12 

Continuous quantities, like position or momentum, do not 
admit an ideal first kind measurement; in particular, none of 
the measurements with a completely positive measurement 
map (like a unitary one) of such quantities can satisfy the 
(weak) repeatability condition.4 

Another type of limitation of measurability of physical 
quantities is said to arise from the existence of conservation 
laws, like, e.g., the conservation oflinear momentum or an­
gular momentum. This type of limitation was discovered by 
Wigner13 and it was later cast in the form of a theorem by 
Araki and Yanase l4 which, with our notations, would read 
as follows. 

Theorem 7.1: Let (.JY.K.A . .K,cI>,V) be the von Neu­
mann-Liiders measurement of A,9'. Let L = L,9'; 
® I . .K + Iy ®L . .K be a (bounded) self-adjoint operator on 
.JYY' ® K.K' Assume that L is a constant of motion of 
Y + J/ with respect to V, i.e., [L, V] = O. Then also 
[Ly.Ay] = O. 

The results of previous sections suggest a formal gener­
alization expressed by the following theorem whose proof 
includes, as a particular case, that of Theorem 7.1. 

Theorem 7.2: Let (K . .K.A . .AlcI>,U) be a unitary mea­
surementofAy.LetL=Ly ®I . .K +Iy ®L . .K be abound­
ed self-adjoint operator on K y ® K.K . If L commutes with 
U, then 

Ly commutes withAy , (14) 

provided that either 

p(P [r;],P [cI>;],U(lP®cI») = 1, (15) 

for any i = I, ... ,N and q?EK'y, IIlP II = 1, for which 
o =1= Ni =1= 1, or 

L.R commutes with A. R. (16) 

Proof' As U is unitary and L commutes with U we have, 
for any pair of indices (i,j) and (k,/), 

= (lPij ® cl>jU* UL(lPkl ® cI») = (U(lPij ® cI» ILU(lPkl ® cI») 

= (tPij ®cI>iIL(tPkl ®cI>d) = (tPij IL.Y' tPkl)l5ik + (tPijltPkl)(cI>iIL.RcI>k)' 

If (15) holds, then by Theorem 4.1 (tPijltPkl) = l5ik l5jl' If 
(16) holds, then (cI>iIL.qcl>k) =g(ak)l5ik' for some Borel 
function g. In both cases we obtain 

(lPij ILylPkl) = l5ik (lPij ILylPkl)' 

for all i,k = 1,2, ... ,N. 

LetPn =PAy({an}), n = 1,2, ... ,N. Then 

(lPij ILyPnlPkl) - (lPij IPnLylPkl) 

= (I5nk -l5ni )t)ik (lPij ILylPkl) = 0, 
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I 
for any i,k,n = 1,2, ... ,N, independently of the indices j and I. 
As {lPij} is an orthonormal base of K y we thus have LyPn 

= PnL.Y" for any n = 1,2, ... ,N, i.e., Ly and Ay com­
mute. 0 
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APPENDIX: PROPERTIES OF CORRELATION 

Let A and B be commuting self-adjoint (not necessarily 
bounded) operators in a (complex, separable) Hilbert space 
~. Then A an4,B have a joint projection valued measure, 
which we denotePA,B' We recall only that the spectral mea­
sures of A and B are related to PA,B as follows: 

PA (X) = P,4,B(X Xffll), PB(Y) = PA,B(ffII x y), 

for all X, Ye3O' (ffII). 
Let cp be any unit vector in the common domain of A and 

B, and consider the probability measures P~['I'l and p~['I'l 
(on ffII) and P ~,11 (on ff112). Then we have the following 
facts: (a) the function X-+X2 is both p~['I't and P~['I'l-inte­
grable; and (b) the function (x,y) -+xy is P~,11-integrable. 
By (a), the expectations fff(A,cp) and fff(B,cp), the variances 
r(A,cp) and r(B,cp) , and the standard deviations 
u(A,cp) = r(A,cp) 1/2 and u(B,cp) = r(B,cp) 1/2 of the 
probabilitymeasuresP~['I'l andP~['I'l are well defined. Fact 
(b) assures that we may define the correlation 01 A and Bin 
the state cp, denoted by p (A,B,cp) , as the (normalized) corre­
lation of the probability measure P ~,11. Explicitly 

S(x - fff(A,cp»(y - fff(B,cp»dP~.11(x,y) 
p(A,B,cp) = u(A,cp)u(B,cp) . 

To simplify the notation we define 

A' = A - fff(A,cp)l, B' = B - fff(B,cp)l. 
u(A,cp) u(B,cp) 

Then, by the properties of the spectral measure P A,B' we have 

p(A,B,cp) = (A'cp !B'cp). 

Moreover, a quick calculation shows that the following three 
conditions are equivalent: 

p(A,B,cp) = 1, 

rCA /u(A,cp) - B /u(B,cp),cp) = 0, 

A'cp = B'ip. 

Let I be a bounded Borel function on ffII. If A ' cp = B ' cp, then 
I(A ')cp =/(B')cp, and, in particular, p~!'I'l = p~!'I'l since 
A ' and B ' are commuting self-adjoint operators. The condi­
tion p~!'I'l = p~!'I'l is obviously also sufficient for the equa­
lity A ' cp = B' cpo We may thus conclude that 

p(A,B,cp) = 1 iff p~!'I'l = p~!'I'l . (Al) 
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We remark that (AI) is the Hilbert space counterpart of a 
classical result in probability theory that can be found, e.g., 
in Ref. 15. 

In case A andBarecommutingprojectionsin~, (AI) is 
easily seen to take the form 

p(A,B,cp) = 1 iff (cp !Acp) = (cp !Bcp). (A2) 

In Sec. IV the previous results are used in the particular 
context of the Hilbert space ~ being the tensor product 
~ y ®~.-R. If &' ye&' (~y) and P .-Re&' (~.-R)' then 
Py ®11 and ly ®P1 are commuting operators on 
~ y ® ~ 1 and their correlation is well defined. If 
TeY(~ y ®~ 1)t, then 

fff(Py ®/.--K,T) = fff(Py,Ty ), 

fff(/y ®p,./!,T) = fff(P1 ,T1 ), 

r(py ®11,T) = r(py,Ty ), 

r(/y ®p,./!,T) = rep 1,T1 ) 

(where T y and T../! are the reduced states of n. Thus we 
obtain the definition of correlation stated in Sec. IV, and 
(A2) can be written as 

p(Py ®11,ly ®P1 ,T) = 1 

iff fff (P y ,T y ) = fff (P 1 ,T../! ). (A3) 
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A variational analysis of the spiked harmonic oscillator Hamiltonian operator 
- d 21dx2 +x2 + 1(1 + 1)/x2 +A lxi-a, where a is areal positive parameter, is reported in 

this work. The formalism makes use of the functional space spanned by the solutions of the 
SchrOdinger equation for the linear harmonic oscillator Hamiltonian supplemented by a 
Dirichlet boundary condition, and a standard procedure for diagonalizing symmetric matrices. 
The eigenvalues obtained by increasing the dimension of the basis set provide accurate 
approximations for the ground state energy of the model system, valid for positive and 
relatively large values of the coupling parameter A. Additionally, a large coupling perturbative 
expansion is carried out and the contributions up to fourth-order to the ground state energy 
are explicitly evaluated. Numerical results are compared for the special case a = 5/2. 

I. INTRODUCTION 

A general problem connected with the so-called spiked 
harmonic oscillator (SHO) Hamiltonian - d 21 dx2 

+ x 2 + 1(1 + 1 )!x2 + A Ixl- a, where a is a positive con­
stant, has been thoroughly studied by Harrell.1 The name 
spiked derives from the graphical appearance of the pertur­
bative term A Ixl- a. The quantity A, is a positive definite pa­
rameter and measures the strength of the perturbative poten­
tial. The angular momentum term is represented by the 
expression 1(/ + 1)/x2. The spiked harmonic oscillator 
problem is of practical importance as it occurs in both chem­
ical and nuclear physics. 1-7 In the elegant work reported in 
Ref. 1, a modified perturbation series to a finite order is em­
ployed to obtain analytical expressions for the eigenenergies 
of a SHO Hamiltonian for small values of A, and arbitrary 
values of the exponent a. In this work, we report attempts to 
solve the SHO problem, employing a variational procedure 
and a large coupling perturbative calculation. A short review 
of the SHO problem is presented in Sec. II. The variational 
approach is outlined in Sec. III. The large coupling expan­
sion is discussed and developed in Sec. IV, and a summary of 
the results and conclusions is found in Sec. V. 

II. BACKGROUND 

To compare our results with those reported by Harrell,1 
we concentrate ourselves on the zero angular momentum 
case. The Hamiltonian associated with the SHO then reads 

d 2 

H(a,).) = ~ + x2 +A,lxl-a=Ho + A, v, (2.1) 
dx 

where Ho is formally equal to the simple harmonic oscillator 
Hamiltonian, and V = Ixl- a. The sum of Ho and AV must 
be understood to be the Friedrichs extension of the quadratic 
form defined by Eq. (2.1) on the domain of the Schwartz 
space with the boundary condition u(O) = 0, with u(x) de-

noting a solution of the Schrodinger equation for the simple 
harmonic oscillator. The latter condition is necessary since 
not all functions in the domain of Ho are in the domain of V. 
Therefore, when A--.O, a fixed, the operator H(a,).) con­
verges to an operator formally equal to - d 21 dx2 + x 2

, but 
supplemented by the Dirichlet boundary condition (DBC) 
that all functions in its domain vanish at x = O. This opera­
tor is Ho. With this definition, the family of ,operators 
H(a,).) is both analytic for A, > 0, and continuous for A, --.0+. 

The spectrum of Ho consists of the (two-fold degener­
ate) simple harmonic oscillator eigenvalues, whose eigen­
functions vanish at x = O. Since one purpose of the present 
work is to consider the perturbation expansion of the eigen­
values of H (a,). ) , all operators will be restricted to the space 
L 2[0,00], with theDBC u(O) = 0, to avoid problems stem­
ming from the degeneracy of the spectrum. 

As has been pointed out elsewhere, the perturbation V 
considered in this article is singular. I

.4--6 The series expan­
sion for the eigenvalues En (a,).) of Ho + A, V, calculated by 
means of the Rayleigh-Schrodinger procedure, yields diver­
gent expressions for the second- and higher-order perturba­
tive corrections. Harrell' has thus utilized an improved per­
turbation scheme to obtain corrections for order greater 
than unity for the eigenvalues. For instance, his expression 
for the SHO ground state energy and for a = 5/2 reads, I 

E(~,).)=3+ 2r(1/4) A, 
o 2 r( 112) 

+ 16 A21nA +O(A,2). (2.2) 
r( 112) 

In the expression above, we have corrected for a misprint in 
the sign of the log term. 

The presence in Eq. (2.2) of an explicit term between 
first and second orders in A should be mentioned. This equa­
tion, valid for small values of the coupling parameter A, is 
strikingly similar to the expansion for the ground state ener-
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gy per particle for .a boson system.8 An alternative scheme 
will be employed in the present work to obtain corrections to 
Eo( a,A.). The methodology followed here is well known and 
is briefly presented in the next sections. 

III. THE VARIATIONAL APPROACH 

In the variational approach, the first step is to choose a 
complete set of basis functions. Although in principle one 
can employ an arbitrary basis of sufficiently smooth func­
tions, in numerical practice the rate of convergence for sin­
gular problems depends a great deal on how the basis is cho­
sen. The more clever one is in choosing a set off unctions, the 
faster the convergence of the method. In this article, we take 
the basis set constructed with the normalized solutions of the 
Schrodinger equation for the linear harmonic oscillator with 
a DBC, i.e., the harmonic oscillator eigenfunctions u(x) 
normalized in the interval O';;;x < 00, with the prescription 
that U (0) = O. As is well known, these energy eigenfunc­
tions are essentially the product of Hermite polynomials of 
odd degree with a Gaussian function. We write 

(xln) =Un (x) = Ane-x'/2H2n+ I (x), n = 0,1,2, ... , 
(3.1 ) 

An being a normalizing factor. The functions Un (x) define a 
complete orthonormal set of solutions of Ho in the interval 
O,;;;x';;;oo, with 

(3.2) 

Now, let ip(x) be an eigenfunction of the SHO Hamilto­
nian (1), and let us expand ip(x) in terms of Un (x), namely, 

00 

ip(x) = L anUn (x). (3.3) 
n=O 

Next, we want to minimize the eigenenergies of (2.1), with 
respect to the variational parameters an' n = O,l, ... ,N - 1, 
in the finite dimensional subspace spanned by the N func­
tions UO,UI' ... 'U N _ I. This variational problem is equivalent 
to diagonalizing the Hamiltonian (2.1) in the chosen basis 
representation. By varying the dimension N, we get the trend 
of the method. 

All we need is to evaluate the matrix elements of H(a,A.) 
in the basis (3.1). They can be separated into two contribu­
tions (/3= - a), 

Hm + I.n + I (a,A.) = (mIHoln) + A (mlxP In), 

m,n = O,l, ... ,N - 1. (3.4) 

Since Ho is diagonal in the chosen basis, we see that the 
first term on the right hand side of Eq. (3.4) is simply the 
expression for the energy eigenvalues of the harmonic oscil­
lator with DBC, that is, 

(mIHoln) = (4n + 3)8m•n, m,n = 0,1,2, ... ,N - 1. 
(3.5) 

Alternative procedures exist for deriving the matrix ele­
ments of the operator xP appearing in (3.4). A direct way we 
develop here is to use the following representation for the 
odd-degree Hermite polynomials, 
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H () _ ( - 1)n(2n + 1)!r(1/2) 
2n+ I X - , 

n. 

n ( n ) x2m+ I 

Xm~o (_1)m m rem + 3/2) . (3.6) 

The desired result, which involves finite double summations, 
reads 

(mlxPln) = Tm Tnr(3/2) 

xi ± (_l)k+I(m)(n) 
k=O/=O k I 

X r[k+l+ (/3+3)/2] (37) 
r(k + 3/2)r(l + 3/2) , . 

with 

Ts = ( - 1 )S~ (2s + 1 )!/2Ss!. (3.8) 

Equation (3.7) is simple enough to be used in practical 
applications. However, it may be still reduced by carrying 
out explicitly one of the sums, e.g., the sum over I. The rel­
evant terms for this sum are 

s= ± (_l)/(n) r(l+u) , 
/=0 I r(l + 3/2) 

(3.9) 

where U = k + (/3 + 3 )/2. Now we note that the binomial 
coefficient can be expressed as 

(~) = ( - 1)/( - n)/II!, 

where (- n)/ is the Pochhammer symbo1.9 Moreover, 
r(l + z) = r(z)(z)/, so that (3.9) is the same as 

S = r(u) ± 1. ( - n)/(u)/ . (3.10) 
r(3/2) /=0 I! (312)/ 

As n is integer, the sum in (3.10) corresponds to the hyper­
geometric function 2F] ( - n,u;3/2; 1) which has a very sim­
ple known expression.9 Thus we can write (3.10) as 

s = r[ k + (/3 + 3) 12] r( n - k - /3 /2) . 

r(n + 3/2)r( - k - /3 12) 
Finally, the matrix element of interest is given by 

(mlxPln) = T T r(3/2) 
m n r(n + 3/2) 

X k~O ( - 1) k ( ; ) 

(3.11 ) 

X r[k + (/3 + 3)/2]r(n - k - /3 12) 
r(k + 3/2)r( - k - /3 12) , 

(3.12) 

where the sum can be shown to be a polynomial of degree 
m + n in /3. A case of particular interest is the matrix ele­
ment (OlxP In) which, after some trivial algebra, reduces to 

(OlxPln)= 1 r[(/3+3)/2] 
~(2n + I)! r(3/2) 

x/3(/3 - 2)'" (/3 - 2n + 2), n = 1,2, .... 
(3.13) 

Equation (3.12) is an exact closed form expression for 
the matrix elements of the operator xP in the simple harmon-
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ic oscillator representation supplemented by DBC. Explicit 
forms of the first few matrix elements of xf1 are given in the 
Appendix. The same procedure leads to similar closed form 
expression for the matrix elements of xf1 in the regular har­
monic oscillator representation. 

IV. LARGE COUPLING EXPANSION 

The idea behind the large coupling expansion is to con­
sider the potential 

Vex) =x2 +Ax- a (4.1) 

and Taylor expand it around its minimum. Let x m and V m be 
the values of x and V(x), respectively, at the minimum. It is 
easy to see that 

xm = (Aa/2) l/(a + 2) 

and 

(4.2) 

Vm =A2/(a+2)[(a/2)2/(a+2) + (2/a)al(a+2)]. (4.3) 

Let z = x - x m. The expansion of Vex} around z = 0 
can be written as 

where (a}k is the Pochhammer symbol9 and 

p = (2/Aa}l/(a+2). (4.5) 

Now let us rewrite the Schrodinger equation as 

[ ~~2 + V(z) ]Y = Ey. (4.6) 

The zero-order contribution to E is given by 

Eo = Vm = (1 + 2/a}p-2 (4.7) 

and the next contribution comes from a harmonic oscillator 
in z, characterized by the energy parameter 

{J)=~a+2. (4.8) 

Thus, in the large coupling expansion method we have 

E(p} = (1 + 2/a}p-2 + (a + 2) 1/2 

+ higher-order terms in p. (4.9) 

For the particular case a = 5/2, we have 

E(A} = ~ (! yl9 A 4/9 + ( ~ y12 + .... (4.1O) 

Numerical results for several values of A are displayed in 
Table I. 

The higher-order contributions can be obtained through 
a special perturbation expansion as shown in the following 
discussion. Consider 

00 

H=Ho+ I pnHn' (4.11 ) 
n=l 

(4.12) 

where, as before, z = x - x m , and Vm and (J) are given by 
(4.3) and (4.8), respectively. In (4.11), Hn is given by 

H m_ 2 = (_l)m(2/a)(a}m(zm/m!) (4.13) 

with p, defined in (4.5), playing the role of a coupling con­
stant. 

Now, as usual, set 

(4.14 ) 

TABLE I. Ground state energy eigenvalues of the spiked harmonic oscillator for a = 5/2. The superscripts in the energy E denote the dimension of the 
harmonic oscillator basis set (supplemented by Dirichlet boundary condition) employed for diagonalizing the matrix of the energy operator defined by Eq. 
(3.4). Also shown are the energies obtained from Eq. (4.10) and from fourth-order large coupling perturbative calculation Eq. (4.33). For comparison, the 
values obtained from Ref. 1 and from numerical integration of the corresponding Schrodinger equation, labeled "Exact," are also tabulated. All energies are 
displayed in arbitrary units. 

Large coupling 4th order 
A. Ell) E (2 ) EIlOl E I20l expansion perturbation Ref. 1 Exact 

0.001 3.004 091 3.004086 3.004078 3.004075 3.004028 3.004022 

0.005 3.020455 3.020346 3.020148 3.020071 3.019259 3.019 142 

om 3.040910 3.040475 3.039701 3.039409 3.036753 3.036729 

0.05 3.204 553 3.193800 3.177840 3.172 753 3.136946 3.152429 

0.1 3.409 106 3.366866 3.316061 3.302485 2.835650 3.201 251 3.266873 

0.5 5.045531 4.216199 3.919691 3.882167 3.581992 3.860 533 3.481 265 3.848553 

7.091062 4.688097 4.354247 4.329449 4.108987 4.323602 4.317311 

5 23.455313 6.304223 6.297319 6.296712 6.185725 6.297553 6.296472 

10 43.910 626 7.951033 7.735637 7.735 136 7.652122 7.735582 7.735 111 

100 412.106269 36.802319 17.541891 17.541890 17.511 104 17.541916 17.541889 

1000 4094.062 688 324.897482 44.967048 44.955485 44.944 307 44.955486 44.955485 
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rP(p,) = rPo + P,rPl + p,2rP2 + .... 
From 

HrP(p,) = EprP(p,) 

( 4.15) 

(4.16) 

and collecting terms in powers of p" we get 
n n 

L HmrPn-m = L Em'l1n_m, n=0,1,2 .... (4.17) 
m=O m=O 

To solve this hierarchy of equations, let us project on the 
complete basis IN) generated by the harmonic oscillator 
eigenvalue problem 

HoW) = ( ~~2 + (Jir )W) 

( 4.18) 

The solution to (4.18) is well known and given by 

( 4.19) 

with 

eN = 2w(N + 1/2), ( 4.20) 

where H N is a Hermite polynomial normalized in the inter­
val - ao "Z" ao. Moreover, Eqs. (4.17) are to be supple­
mented by the following orthogonality conditions 

(rPolrPo) = 1 and (rPolrPn) =0, forn>O. (4.21) 

The energy expression is obtained by projecting (4.17) 
on I rPo > == 10 > . In doing so, we get 

n-I 

En = L (OIHn_m I rPm ), n = 1,2, .... (4.22) 
m=O 

From parity considerations, it can be seen that EI (as 
well as any E2n + I ) vanishes. So, the first high-order contri­
bution comes from E2 and is given by 

(4.23) 

with HI and H2 given by (4.13). The first contribution to E2 
is easily calculated. To evaluate the second one, we need to 
express IrPI) in terms of the basis functions IN). To do this, 
let us first project (4.17) on IN). From 

n 

L (NIHm -EmlrPn-m) =0, (4.24 ) 
m=O 

it is straightforward to obtain that (N ;60,n = 1,2, ... ) 

1 N 

(NlrPn) = 2Nw m~1 ~ (NIEm -Hm~)(PlrPn-m)' 
(4.25) 

wherep runs over the complete set (4.19). For n = 1, we get 

(NlrPI) = (a + ~~: + 2) (NIz310), (4.26) 

which tells us that the only possibilities for N are N = 1 and 
N = 3, as in (4.26) we have harmonic oscillator matrix ele­
ments. These can be easily obtained through direct calcula­
tions. The results are 

102 

(01z311) = (9/8w3
) 1/2, 

(01z3 13) = (6/8w3) 1/2. 

(4.27) 

(4.28) 

Thus, from (4.26) and the results above, we obtain 
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(4.29) 

Going back to (4.23), we see that to get the contribution 
E2 we need the following harmonic oscillator matrix ele-
ments 

(0IH2 10) = (a + l)(a + 2)(a + 3)/16w2
, (4.30a) 

(OIHIIl) = - (a+ l)(a+2)/(8w3)1/2, (4.30b) 

(0IHI13) = -../6(a+ l)(a+2)/3(8w3 )1/2. (4.3Oc) 

Thus, using (4.8) we get the total second-order contri-
bution 

(4.31 ) 

The calculation of the next correction is quite involved, 
because of the long emerging expression to be manipulated. 
We have used a (deceptively simple) algorithm using the 
symbolic manipulation package SMP 10 to get the next E4 
correction. We ran out of memory when trying to evaluate 
E6 • The contribution is given by 

4 _ (a+ 1){a-2){a2 -a-74) (2 )4/(a+2) 

p, E4 - 1728(2 + a) 1/2 • Aa ' 
(4.32) 

and putting everything together we finally obtain, for a 
=5/2, 

E(A) =- - + - +--9 (5,1 )4/9 ( 9 ) 112 77 (4 )4/9 
5 4 2 288 5,1 

_ 1967 (~)1/2(-±-)8/9 + .... 
27648 9 5,1 

(4.33 ) 

Numerical results for several values of A are displayed in 
Table I. 

To go further we must abandon algebraic methods and 
use some kind of seminumerical algorithm. The hierarchy of 
equations (4.22) and (4.25) can be quite easily coded in 
FORTRAN, in order to obtain the value of the amplitudes 
(N IrPn) for a given value of a and subsequently the corre­
sponding energy corrections En + I in a chained way. Note 
that in order to obtain -En + I we require all wavefunctions 
rPO,rPI, ... ,rPn, but to obtain (N IrPn + I ) we need the value of 
En + I' The calculation does not involve any approximation, 
aside from rounding errors. The values of the first twenty 
coefficients of the expansion corresponding to a = 5/2 are 
displayed in Table II. The notation is such that the energy 
E(A) is given by 

TABLE II. Coefficients for the large coupling perturbation expansion equa­
tion (4.34), for a = 5/2. 

n 

2 
4 
6 
8 

10 
12 
14 
16 
18 
20 

0.267361 111 
- 0.033 537 785 
- om 7 395 489 

0.011679410 
0.001 109577 

- 0.006 825514 
0.002 542 598 
0.008 178874 

- 0.Q11 093 142 
- 0.014427769 
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9 (5A )4/9 ( 9 )112 ( 4 )2n/9 
E(A) =- - + - + L En - . 

5 4 2 n=2 5A 
(even) 

(4.34) 

Here, En behaves quite erratically with n, and probably 
this is not a well behaved series expansion. When A is large 
enough, say larger than 2, one can expect to get very precise 
results from the expansion. However, A = 4/5 is certainly 
outside the convergence radius, if such radius exists. 

One can try to understand this strange behavior. The 
large coupling perturbation method expands both interac­
tion and wavefunction around the classical minimum of the 
potential, extending the new coordinate z = x - Xm to the 
full real axis. Certainly the region ( - 00,0] is spurious be­
cause of the mere statement ofthe problem. When A is large, 
the minimum is placed at a large value of x, so that the har­
monic oscillator wavefunctions centered at Xm will not pene­
trate too much into the forbidden region. Obviously this is 
not the case for small A. Probably the proper way of control­
ling this unwanted characteristic is to change variables to a 
new coordinate extending along the full real axis and carry 
out afterwards the large coupling perturbative expansion. 

v. NUMERICAL RESULTS AND CONCLUSION 

Since it is of some interest to have an idea of the relative 
size of the ground state spiked harmonic oscillator energies 
as the potential parameter increases, we have numerically 
integrated the SchrOdinger equation. The exponent a was 
fixed at 5/2 to compare with Harrell's result Eq. (2.2). The 
energies so obtained are displayed in Table I under the entry 
"Exact." 

From the computational point of view it resulted in a 
quite complex problem. First of all, because of the singular 
character of the potential near the origin, we could not use a 
small error integration formula, like, e.g., Numerov's meth­
od. 11 Instead, we had to use the lowest order approximation 
to the second derivative 

D 2 =tP/h 2
, 

where tP represents the second-order centered differences, 
and h is the mesh spacing. Nevertheless, the results could be 
improved and tested by means of the Richardson extrapola­
tion algorithm. To give an idea of the numerical difficulties, 
let us mention that to obtain the energy for A = 0.001 with 
six decimal places, we had to use a mesh with 80 000 points. 

From Eqs. (3.4), (3.5), and (3.7) and the results given 
in the Appendix, it can be readily seen that the first vari­
ational approximation (subspace of dimension 1) to the 
ground state eigenenergy of the SHO is 

E(l)=Hll = (OIHIO) =3+Ar[ (P;3) 1/r(3/2), 

(5.1) 

which coincides with the O(A) correction of Harrell, Eq. 
(2.2). 

When N = 2 the diagonalization can also be easily per­
formed analytically, via the secular equation approach, and 
we have 
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E(2)=~ [1O+~Ar 
2 24 

± ( 16 + ~A 2425 A 2y2 )112]. 
3 r+ 576 

(5.2) 

From this expression, we notice that when the spikelike per­
turbation vanishes (A = 0), the two eigenvalues become 3 
and 7, as expected. 

For higher values of N we have to resort to numerical 
diagonalization procedures and we employed the known Ja­
cobi method. Table I shows the convergence of the results for 
the ground state energy of the SHO, for selected values of A, 
as the dimension of the basis set is increased. 

To analyze the results of the variational calculation it is 
convenient to distinguish among three cases, corresponding 
to a) large values of the coupling constant (A# 10); b) small 
values of A ( < 0.1 ); and c) medium values (A = 1). 

For large A the calculations involving few basis states 
are definitely poor, but very good results are obtained when 
the basis space is enlarged (dimension 10 or more). In this 
region of A, the variational method converges quite rapidly 
to the exact results. 

In the case of very small A, one can get the wrong 
impression that the variational method behaves properly. 
Just to clarify the previous statement let us consider the 
number 3.004 075 which appears in the column labeled E(20) 
corresponding tOA = 0.001, in Table I. That numberis actu­
ally 3 + 4.09U - 1M 2, where the first term is the unper­
turbed energy, the second is the first-order perturbation cor­
rection, Eq. (2.2), and the third is the contribution of all 
remaining nineteen states. The coefficient of A. 2 varies very 
slowly with the number of states of the basis: adding more 
figures, it changes from - 14.97 for N = 10 to - 16.16 for 
N = 20. Certainly, the energy eigenvalue decreases when in­
creasing the number of basis states, but very slowly. This 
behavior is a direct consequence of the abnormal properties 
of the perturbation, as pointed out by Harrell in Ref. 1. 

It is interesting to study this point more closely. Assume 
a very small A and solve the matrix eigenvalue problem by 
expanding the determinant in powers of A up to and includ­
ing A 2. As it is well known, we end up with the perturbation­
like formula 

E=Eo+ (OlxfiIO).,.t _,12 i:. 1(0Ixfi ln)1
2

, (5.3) 
n¥O En -Eo 

with the difference that the sum in the A. 2 correction is limit­
ed to the chosen number of basis states. Analyzing this sum, 
we will understand the slow variation of the matrix eigenval­
ue problem solutions. 

Using (3.13) for P = - 5/2 there results 

(2n + !)2 

2n(2n + 1) , 
(5.4) 
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where y = r[ (,8 + 3) /2]1r( 3/2) and the factors 
(2n + 1)! and P(P - 2)'" (P - 2n + 2) have been or­
dered in a special form. The ratio of the (n + 1) th and nth 
terms of the sum in (5.4) is 

(OlxPln + 1)2/(En+ I - Eo) 

(0IxPln)2/(En - Eo) 

(2n + 2 +!)2 
-----=---- ..... 1, 

n + 1 2(n + 1 )(2n + 3) n- '" 

n 

so that successive contributions to the coefficient of A 2 are of 
the same size. Moreover, each ofthe grouped terms in (5.4) 
is bigger than 1, i.e., 

(2k + 1/2)/2k(2k + 1) > 1 

and each term of (5.4), apart from a global constant, is big­
ger than the corresponding term of the harmonic series 
l: ( 1/ n) which is known to be divergent. 

Thus, the standard perturbation theory, Eq. (5.3) for 
N ..... 00, makes no sense, and our variational method will give 
a ground state energy which converges very slowly when the 
number of basis states increases. Note finally that Eq. (5.3) 
is no longer an upper bound formula, and it is only valid for 
N sufficiently small. 

The variational results are somewhat poor for small A 
and quite good for large A. At small A the non-power series 
expansion of Harrell I is appropriate, as well as at large A our 
large coupling perturbation expansion gives a proper de­
scription of the ground state energy. 

Finally we have the region of intermediate A ( == 1). In 
this region, the best method is the variational one. By using 
sufficiently large basis one could obtain the correct value of 
the energy, but no definite statements about the speed ofthe 
convergence can be drawn from our results. 

In conclusion, it seems that the appropriate method to 
deal with this class of potentials is to use a nonpower series 
expansion for small coupling constant, and a large coupling 
perturbative expansion for large A. Both expansions should 
be an appropriate extension of the presently known forms. 
Moreover, it would also be of interest to find a connection of 
both expansions for intermediate values of the coupling con­
stant. 
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APPENDIX 

A program has been written in BASIC for symbolically 
handling the evaluation of the matrix elements ofthe opera­
tor xp

. A listing of the program can be obtained from the 
authors on request. The first ten matrix elements of xP run as 
follows; where 

x~n =(m - llxPln -1), 

xfl =Y = r (P ~ 3 )/ r(3/2), 

Xf2 = py/{3!, 

xf3 = P(P - 2)y/~, 

xf4 = P(P - 2)(P - 4 )y/.j7i, 

x'f.2 = (P 2 + 2P + 6)y/3!, 

x'f.3 = P(P 2 + 2f3 + 12)y/.J3!5!, 

x'f.4 = P(P 3 + 14P - 36)y/.J3!7!, 

x'f3 = (P 4 + 4p 3 + 36p 2 + 64p + 120)y/5!, 

x'f4 = P(P 4 + 4p 3 + 56p 2 + 104,8 + 360)yl.J5!7!, 

~ = (,86 + 6p 5 + 106p4 + 454,83 

+ 1660,82 + 3968,8 + 5040)y/7!. 
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Some remarks on the Feynman-Kac formula 
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A simple necessary condition for the existence of the representation of solutions of partial 
differential equations is found. This condition is applied to obtain the known results on the 
Schrooinger equation and the Dirac system in a unified way. Applications for further 
equations are also possible (Weyt's equations are discussed). 

I. INTRODUCTION 

The aim of this paper is to find a necessary condition for 
the existence of the Feynman-Kac representation for the 
solutions of evolution equations or systems of equations in 
terms of their fundamental solutions; the condition does not 
seem to be far from sufficient (see Remark 1). This global 
condition can be applied to many systems of equations, in­
cluding Schrooinger and Dirac. Thus we are able to obtain in 
a simple way the result of Zastawniak. 1 Moreover, that con­
dition can be expressed in a very simple way: in order that the 
Feynman-Kac measure does exist, the fundamental solution 
K (t), being a priori a distribution, should be a finite (matrix 
valued) Borel measure. 

In recent years a growing interest in finding representa­
tions of solutions to some evolutionary systems by the so­
called Feynman-Kac formula in terms of some vector val­
ued measure, which we shall call the Feynman-Kac 
measure, has been observed. Such a representation for a two 
space-time dimensional Dirac system was found by several 
authors in different ways (see, for example, Ichinose,2 Zas­
tawniak,3,4 Ichinose and Tamura,5 and Blanchard et al.6

). 

However, until recently such a representation for other sys­
tems (including the four space-time dimensional Dirac sys­
tem) had been unknown. It was observed by Ichinose2 that 
the existence of the Feynman-Kac measure for the two 
space-time dimensional Dirac system does not seem to gen­
eralize easily to the four space-time dimensional Dirac sys­
tem for the lack of an L"" estimate. It was Zastawniak 1 who 
first proved that such an L"" estimate does not exist and 
therefore the Feynman-Kac measure does not exist either. 

For a long time it has been well known that solutions to 
parabolic equations can be represented in terms of the Feyn­
man-Kac formula (see Kac7 and Reed and Simon8

). It is 
also known that one cannot represent solutions to the Schro­
dinger equation in terms of that formula; this fact was first 
observed by Cameron.8,9 As was observed by Zastawniak,l 
the corresponding proofs of nonexistence for the Schro­
dinger equation and the Dirac system are completely differ­
ent, although both rely on showing the nonexistence of L ",,­
estimates for solutions to the corresponding Cauchy prob­
lems. 

Our approach unifies in a certain sense the Schrooinger 
equation and the Dirac system. It also explains the difficul­
ties with constructing the Feynman-Kac measure, and it 
may prove useful in the future. 

II. THE MAIN RESULT 

Let us consider on R" a system of m differential opera­
tors with constant coefficients acting on em valued func­
tions. We denote that system by A (ax)' Let us consider the 
following Cauchy problem: 

au~;) =A(ax)u(t,x), t>O, xeR", 
(2.1) 

u(O,x) = uo(x), xeR". 

We assume that there exists a fundamental solution of (2.1), 
i.e., a ..@'(R",cmxm

) valued function {K(t)}t;>o such that 
for any uoe..@(R",Cm

) the unique solution u to problem 
(2.1) is given by 

(2.2) 

Definition 1: If, for any t> 0, there exists a measure 
space (n,l:,p), where n consists of R" valued paths r(s), 
O<s<t, r(O) = 0, while p is a emxm valued measure, such 
that for any uoe..@(R",em

) the unique solution u to (2.1) 
can be represented by the Feynman-Kac formula 

u(t,x) = L dp(r)uo(rU) + x), (2.3) 

then we say that problem (2.1) possesses a Feynman-Kac 
measure. 

Proposition 1: Assume that problem (2.1) possesses a 
Feynman-Kac measure. Then for any t> 0 there exists C> 0 
such that, for any uoe..@(R",em

), 

lu(t,o) I ... <Cluol.... (2.4) 

Proposition 1 can be easily deduced from the fact that 
the variation IIJLII of the measure p is finite (see, also, Ref. 
to). 

Now we are ready to state our main result. 
Theorem 1: Assume that the Cauchy problem (2.1) 

possesses a fundamental solution {K(t)}t;>o, 
K(t)e..@'(R",emxm ), for t>O. Assume that problem (2.1) 
possesses a Feynman-Kac measure. Then K(t) is a finite 
emxm valued Borel measure on R". 

Theorem 1 follows immediately from Proposition 1 the 
following propositions. 

Proposition 2: If a distribution Te..@'(R",emxm
) satis­

fies IT.~I ... <CI~I ... for some constant C>O and any 
t/JefiJ (R",em ), then Tis a finite Borel measure. 
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ProojojProposition 2: For ~ (Rn,cm
), T*; is a ~ "" 

function defined by (T*;)(x) = T(1"x,~)' where (1"",,,,) 
(y) = ",(y - x), ~(y) = "'( - y). Hence 

IT<;)I"" = 1T<1"o~)loo = I(T.~)(O)I"" <CI;I",,· (2.5) 

We conclude the proofby applying the Riesz Representation 
Theorem. 

Let us also observe that Proposition 2 can be also de-
rived from Proposition 5.20 in Ref. 11. 

Remark 1: In the future the author will investigate the 
problem of sufficiency of the condition in Theorem 1, i.e., the 
existence of the Feynman-Kac measure under the assump­
tion that the fundamental solution is a finite (matrix valued) 
measure, of course, with some additional technical assump­
tions. This should be a straightforward corollary from the 
Kolmogorov-Jessen Extension Theorem. 

Also some applications to hyperbolic systems will be 
considered. In that case we may consider problem (2.1) with 
the operator A (a", ) perturbed by some "nice" potential 
function V(x), i.e., 

_au--,-(t,-,x~) = A(a
x 

)u(t,x) + V(x)u(t,x), 
at 

t>o, xelRn
, 

u(O,x) = uo(x), xeRn. 

(2.6) 

Then we are interested in.representing a solution u to (2.6) 
in the following form: 

u(t,x) = Sa dp.(r)uo(r(t) + x) 

xexp{f Jl(r(s) + X)ds} . (2.7) 

The precise meaning of the above expression will be given. 
The problem of continuity of paths should be discussed 

also. For example, it is known2
-4 that almost all paths of the 

underlying Feynman-Kac space for the two space-time di­
mensional Dirac system are continous (in fact, they are zig­
zag functions) . 

Remark 2: Once one knows that the fundamental solu­
tion K(t) for the system (2.1) is a finite (matrix valued) 
Borel measure, then, under some additional assumptions, 
one can infer that the same is true for the following system: 

au(t,x) = A (a", )u(t,x) + B u(t,x) , 
at 

t>o, xeRn
, (2.8) 

u(O,x) = uo(x), xeRn
, 

where B is a linear differential operator satisfying a certain 
growth condition with respect to A (for example, one can 
take as B, u-+miKu, where meR, KeCmxm are fixed, 
;2 = _ 1). Indeed, if problem (2.1) generates a ~ 0 semi­
group on X: = Co(Rn,cm

), then under the assumptions con­
cerning the operators A and B (these assumptions are satis­
fied when B is of the form miK as above) we get, by standard 
theory on 9ff 0 semigroups (see Ref. 12, Chap. '111), that 
problem (2.8) generates a 9ff 0 semigroup on X. Thus by 
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Theorem 1 we conclude that the fundamental solution for 
(2.8) is a finite (matrix valued) Borel measure. 

III. SOME EXAMPLES AND APPLICATIONS 

Example 1: Consider the Cauchy problem for the fol­
lowing first-order equation: 

au(t,x) + au(t,x) = 0, ° R t> , xe , 
at ax (3.1 ) 

u(O,x) = uo(x), xeR. 

As the fundamental solution is given by K(t) = lJ" it is not 
difficult to show that the Feynman-Kac measure does exist. 

Example 2: For the two space-time dimensional Dirac 
system 

au(t,x) + A au(t,x) 'K ( ) 
a 

= ml u t,x , 
t ax 

t>o, xeR, 

u(o,x) = uo(x), xeR, (3.2) 

where the 2 X 2 matrices are given by 

A = [~ ~ J K= [~ ~], 
the fundamental solution E(t) is given by 

[ 

aD(t) _ aD(t) , imD(t) ] 

E(t) = at ax 
imD(t) , aD(t) + aD(t) . 

at ax 

Here D( t) is the fundamental solution to the Klein-Gordon 
equation. It is given by the following formula: 

D(t,x) = !Jo(m.jt Z -XZ)1( -t,tl (x). 

Here lo(z) is the Bessel function of zeroth order: 

In (z) = (lTl/2r(n + !»-1(z/2)n 

xf~leISZ(1-s2)n-1/2dS' zeR, neN. 

By direct calculations we find that both aD(t)/at and 
aD(t)/ax are finite Borel measures, and so is E(t). There­
fore (see Remark 1) we get Ichinose's result on the existence 
of Feynman-Kac measure (cf. Ref. 2). 

Remark 3: Using the ideas described in Remark 2 one 
can also derive the existence ofthe Feynman-Kac measure 
for the system (3.2). 

Example 3: The fundamental solution K(t) for the 
Schrooinger equation in Rn X [0,00 ) has a density 

K(t,x) = (41Tit) -n12 expUlxI 2/4t). 

Thus, although K (t) is a locally bounded Borel measure, it is 
not a finite Borel measure and therefore the Feynman-Kac 
measure for the Schrodinger equation does not exist. 

Example 4: Consider the four space-time dimensional 
Dirac system (in Weyl representation) 

au(t,x) ~ A au(t,x) iK ( ) ° 
- ~ j - m u t,x = , at j= I aXj 

t>o, xeR3
, (3.3) 

u(o,x) = Uc (x), xeR3
, 
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where the 4 X 4 matrices Aj , K are given by 

~ 1]' 
and m>O denotes the mass. In order to write down the fun­
damental solution of (3.3) let us introduce the distribution 
D(t) defined by the following formula: 

D(t)(¢J) = -t-i ¢J(ty)du(y) 
417' Iyl = I 

_ mt2i ¢J(ty)JI(mt~I-IYIZ) dy, 
417' Iyld ~1_IYlz 

where t/JEifP (R3
), du(y) denotes the Lebesque measure on 

I 

the unit sphere in R3
, and J I is the Bessel function of the first 

order. Then the fundamental solution E(t) for the Dirac 
system (2.3) is as follows: 

E(t) = aD(t) 1+ miK D(t) + ± A j aD(t) 
at j= I aXj 

= aD(t) + miK D(t) + ± ( _ 1 )jAj aD(t) . 
at j=1 aXj 

Observe that a matrix valued distribution E(t) is a finite 
measure iff all the entries ofthe matrix E(t)' are finite com­
ple~ Borel measures. Since the entries on the main diagonal 
of the matrices Aj aD(t)! aXj vanish (due to the form of the 
matrices Aj) and miKD(t) is obviously a finite measure, in 
order to show that E(t) is not a measure it is enough to show 
that neither is aD(t)!at. For ¢JEifP (R3,C) we have the ex­
plicit formula 

aD(t) (¢J) =_1 i ¢J(ty)du(y) _ mt2i (V¢J(ty),y)Jl(mt~I-IYIZ) 
at 417' Iyl = I 41T Iyld ~1_lyIZ 

_ mti ¢J(ty) {2Jl(mt~1 -IYIZ) - tmJi (mt~ 1 - IYIZ)} dy + _t i (V¢J(ty),y)du(y). 
41T Iyld ~1_lyIZ 417' IYI=I 

Since the last term in the above expression, contrary to the 
others, is not a measure, the proof that aD(t)/at is not a 
measure is completed. Therefore, in view of Theorem 1, the 
Feynman-Kac measure for the four space-time dimensional 
Dirac system does not exist (see, also, Zastawniak).1 

Example 5: Now we consider the so-called Weyl equa­
tion, i.e., 

au(t,x) + u-V u(t,x) = 0, t>O, XER", 
at 

u(O,x) = uo(x), xER", (3.4) 

where u is a 2x2 matrix with complex entries satisfying 
u2 = I, V stands for the gradient operator, and the unknown 
function u takes values in C2

• 

The form of the fundamental solution E(t) for (3.4) 
depends on n, the dimension ofthe space R". Indeed, 

E(t) = aD(t) 1- (u-V)D(t), 
at 

where 

107 

D(t,x) = p( _ t,t) (x), for n = 1, 

1 1 
D(t,x) = - 1( _ t,t) (Ixl), for n = 2, 

217' ~tZ _ Ixlz 

D(t) = _1_ times the Lebesque measure 
417't 

supported on S(O,t), the 

sphere of radius t, for n = 3. 
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Once again, by direct computation, we infer that E(t) is a 
finite Borel measure for n = 1,2, while E(t) is not a measure 
(thus not a finite measure) for n = 3. Hence the Feynman­
Kac measure should exist for n = 1,2 and does not exist for 
n=3. 
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Singular anharmoniclties and the analytic continued fractions. 
II. The potentials V(r)=a~+br-4+cr-8 
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The c = 0 results of Paper I [J. Math. Phys. 30, 23 (1989)] are extended. In spite of the 
presence of an additional coupling constant, the Laurent series solutions of the SchrOdinger 
equation that are obtained remain similar to Mathieu functions. Indeed, the recurrences for 
coefficients preserve their three-term character, their analytic continued fraction solutions still 
converge, etc. The formulas become even slightly simpler for c#O due to a certain symmetry of 
the equations to be solved. An acceleration of convergence is better understood and a few 
numerical illustrations of efficiency are also delivered. 

I. INTRODUCTION 

For the class of potentials 

VCr) =a,-2+br-4 +cr-6
, a>O, c>O, (1.1) 

the radial Schrodinger bound-stale problem 

[ _ :; + 1(1; 1) + VCr) ]tP(r) = EtP(r), 

1=0,1, ... , 1/JeL2(0,ex;), (1.2) 

may easily be solved numerically, by some standard (say, 
Runge-Kutta 1) method. Indeed, in both the threshold and 
asymptotic domains, the required logarithmic derivatives 
have a simple WKB form: 

and 

tP' (ro)/tP(ro) = Uro- 3 + O(ro- 1), 

A=~.[c>o, ro<l, 

tP'(r co )/tP(r co) = - 2p,r co + O(r~ I) 

p, = !.[a> 0, roo > 1, 

( 1.3) 

( 1.4) 

respectively. Nevertheless, a few extremely interesting fea­
tures of the interaction (1.1) emerge after its deeper non­
numerical analysis. 

(A) The finite polynomial interpolation between r = 0 
(1.3) and r = ex; (1.4), namely, 

N 

tP(r) = r" exp( - p,,-2 - Ar-2) L hm,-2m, ( 1.5) 
m= -M 

may coincide with the exact bound states for certain values 
of the couplings.2 

(B) In the infinite "polynomial-approximation" N -+ ex; 
and M -+ ex; limit, the Laurent-series Ansatz (1.5) remains 
useful: It converts our second-order differential equation 
(1.2) into its second-order difference-equation counterpart: 

A"+,h,, +B,,+lh,,+, +C"+lh,,+2 =0, 

A,,+ I = 2p,(4n + 2x + 1) - E, 

B,,+ I = - (2n + x + 1)(2n + x + 2) + 1(/ + 1) + 8p,A, 

Cn+1 = -U(4n+2x+5) +b, 

n = .... , - 1,0,1, .... ( 1.6) 

This motivated the present paper: In the spirit of its preced-

ing part I (Ref. 3) [devoted to the c = 0 special case of ( 1.1') 
where only property (B) holds], we shall show how our 
transition to (1.6) simplifies the original problem (1.2). In 
Sec. II, we relate the "redundant" n -+ ex; boundary condi­
tions to the "Ploquet" parameter4 x. In the improved nota­
tion of See. III, we then define the continued fraction solu­
tions to ( 1.6) and describe a new type of acceleration of their 
convergence. Finally, we illustrate and summarize the re­
sulting bound-state prescription in Sees. V and VI, respec­
tively. 

II. THE DIFFERENCE SCHRODINGER EQUATION 

A. The r .... 1/rsymmetrles 

The form of our differential equation (1.2) remains un­
changed after the reflection of coordinates r-+ T, tP-+ ¢, i.e., 
say, 

r = 1/r, ¢(r) = tP(r)/r, (2.1a) 

which implies merely the change of notation 
A A A 

1=1, a=c, b= -E, c=a, E= -b. (2.lb) 

The related interchangeofasymptotics (1.3) and (1.4) may 
be characterized by an introduction of the "capped" symbols 

{l =A, 1 =p,. (2.1c) 

Moreover, we may put Ii = - n, denote 
A A A 

All = C", BII =B", CII =A", 

;C = 1 - x, hll = h", 
(2.1d) 

and extend the same formal symmetry to our difference 
SchrOdinger equation (1.6). As a consequence, a transition 
n -+ - n may formally be interpreted as mere "capping" 
transformation of the parameters. 

B. The Inl .... 00 asymptotlcs 

The leading-order asymptotical form of (1.6) reads 

Sp,nh" -4n2h,,+1 -SAnhn+2 =0, Inl>l, (2.2) 

and admits the two independent "Jost" solutions h ~i), 
i= 1,2, with 

h ~'l,/h ~I) = 2p,/n + 0(n- 2
) (2.3) 

and 
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h~2~2Ih~2~1 + -nIU+O(I), Inl>1. (2.4) 

Obviously, the "large" C(nl"l) components contradict the 
M, N-+ 00 convergence of our Laurent series (1.5), so that 
we must demand 

(2.5) 

and 

h_m~h~)m' m>1. (2.6) 

The latter two boundary conditions do not replace the 
physical requirements (1.3) and (1.4): In light of the Flo­
quet theory,4 they merely fix the values ofthe "additional" 
free parameters x. 

III. SCHRODINGER EQUATION AS RECURRENCES 

A. The Improved asymptotlcs 

An insertion of the asymptotics (2.3) and (2.4) in the 
difference Schrodinger equation (1.6) or (2.2) recovers its 
asymptotical degeneracy to the two-term recurrences. Thus, 
for the positive or negative large n, respectively, the third or 
first item in (1.6) or (2.2) represents just a small correction 
of the order O(n- 2

). 

In the former case, the Ansatz 

h _ (2jL)"r(n+a+l) 
n+l-nn+P+l)nn+r+1)P'" 

(3.1 ) 

with 

a = !x + ! - E 18J.t, p, r = !x + ~ ± ! U, 

U 2 = (I + !)2 + 8jLA., 
(3.2) 

improves the first boundary condition (2.5) by a few further 
corrections. It also simplifies the difference SchrOdinger 
equation which, in the new notation, acquires the form 

Pn-I -p" =lP"P,,+I' 

= 4jLA. (n + a + l)(n + 8) 
lPn (n + p)(n + r)(n + P + l)(n + r + 1) 
8=!x+i-bl8A. (3.3) 

Similarly, the second boundary condition (2.6) finds an 
adequate gamma-function representation in the alternative 
Ansatz 

h - (u)mnm +s+ 1) q (3.4) 
-m-l- r (m+v+1)r(m+w+1) m' 

with the parameters 

s= -!x+~+b/8A, W,v= -!x+i+!U. (3.5) 

Obviously, the related new difference Schrodinger equation 

qm-I -qm =1/Imqm+l' 

= 4J.tA (m + s + l)(m + E) 
1/Im (m + v)(m + w)(m + v+ l)(m + w+ I) 

E= -!x+~+EI8J.t, (3.6) 

remains related to (3.3) by the capping transformations 
(2.1), with 

p" = q", qm = Pm' q,,, = 1/1", ~m = lPm' (3.7) 

and 
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a=s, P=v, r=w, 8=E. (3.8) 

Thus, without any loss of generality, we may work with one 
ofthe two limits In 1-+ 00 only. 

8. The Initial value. 

Strictly speaking, the boundary conditions (2.5) and 
(2.6) need not necessarily be postulated in a capping-sym­
metric manner. Indeed, both these respective requirements 
are easily seen to represent just the conditions P n ~ const and 
qm ~const for nand m> 1. In light ofEqs. (3.3) and (3.6) 
we may replace them immediately by an alternative require­
ment 

PN+ I = 0, qM+ I = 0, N-+ 00, M-+ 00. (3.9) 

Equation (3.9) admits arbitrary normalizations (say, 
p~J> = 1 and q~) = I) and we may then use Eqs. (3.3) and 
(3.6), respectively as recurrences. In such an interpretation 
(see, also, Paper I), the respective alternatives (3.3) (with 
n;>O) and (3.6) (with m;>O) are equivalent to the n;>O and 
n< - 2 rows of our original SchrOdinger difference equation 
( 1.6), and define the "asymptotically correct" (equivalent­
ly, "lost-like") sequences p}J~ "P}J~2'''',P<!.)1 and 
q~~ I , q~~ 2 , ... ,q~)1 , respectively. The remaining n = - 1 
row, 

Aoh ~)l Ih ~2) + Bo + Coh P) Ih ~1) = 0, (3.10) 

may be employed as a matching condition for the two recur­
rences. Computationally, the latter equation restricts only 
our freedom in choosing parameters: In what follows, we 
shall use it as a definition of x's for each choice of energy E. 

IV. THE ANALYTIC CONTINUED FRACTIONS AND AN 
ACCELERATION OF THEIR CONVERGENCE 

We may introduce the quantities 

In =Pn1Pn-" gm =qm1qm-I' (4.1) 
and rewrite our SchrOdinger equation (recurrences (3.3) 
and (3.6)] in the form . 

In = 1/(1 + lP"/n + 1)' gm = 1/(1 + 1/Imgm + I ) (4.2) 

In combination with (3.9), they represent the standard ana­
lytic continued fractionsS

-
7 

In = ----1-1---
1 + lPn -------

1 + lPn+ 1 ---
1+'" 

gm =----------
1 

1 + 1/Im -----1-

1+1/Im+' 1+'" 

(4.3) 

With the finite truncation parameters and initial values 

IN+ I = 0, gM+ I = 0, (4.4) 

our recurrences (4.2) still define good approximants since 
the corresponding coefficients are asymptotically very 
small, 

(4.5) 
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Numerically, it is therefore reasonable to define our solu­
tions (3.1) and (3.4) as products, with 

p" =/"/"-1" '/",,+ IF"", qm =gmgm-I . "gm" + Iq""" 
(4.6) 

where P"" and q"", represent the two alternative normaliza­
tions. 

In general, the continued fractional convergence may be 
accelerated by means of the fixed-point technique as de­
scribed in Paper I. An alternative rearrangement will be de­
scribed now-it seems to be much more efficient for the par­
ticular form of our recurrences ( 4.2) [with the small 
parameters (4.5)]. For the sake of brevity, we shall recall 
the capping symmetry (3.7) and restrict our attention to In's 
in what follows. 

Starting from the slightly modified form ofEq. (3.3), 

_ (0) (0) 
P,,+I -X"+IP,, -qJ,,+IP,,+2' 

X~o~ I = 1, qJ ~o~ I = qJn+ I , 
(4.7) 

we shall eliminatepn+1 from Eq. (3.3). We get thej= 1 
formula 

_ U) U) 
PIt -x" P,,-I -qJ" P"+J+I' 

where 
(0) 

(I) _ X" 
X" - 1 + m (O)X(O) 

T" ,,+1 
=---, 

1 + qJ" 
(0) (0) 

(1)_ qJ" qJ,,+1 
qJ" - - 1 + m (O)X(O) 

T" ,,+1 

qJ"qJ" + I = -
1 + qJ" 

(4.8) 

(4.9) 

Next, we modify the precedingj = 0 andj = 1 formulas, 

P,,+2 = X~0~2P,,+ I - qJ ~ol2P"+3' 

Pn+1 =x~llIP" -qJ~llIPn+3' 
(4.7') 

eliminate p" + I and p" + 2 from (4.8) withj = 1, and getthe 
explicit j = 2 form of the latter prescription, with 

(I) 

X(2)- X" 
" - 1 + m (I)X(O) X(I) 

T" ,,+2 ,,+1 

1 + qJ,,+ I 
= , 

1 + qJ" + qJ" + I 
(0) + (0) (I) 

(2) _ (I) qJ ,,+2 X,,+2qJ ,,+ I = 
qJ" - -qJ" 1 (I) (0) (I) 

qJ"qJ" + I qJ" + 2 

+ qJ" X,,+2X,,+ I 1 + qJ" + qJ" + I 
(4.9') 

For the subsequentj 's, the coefficients may also be found in 
the same manner. 

In combination with definition (4.1), our relation (4.8) 
implies that 

(4.10) 

These recurrences have the structure of the "extended" con­
tinued fractions8 and degenerate back to the ordinary con­
tinued fractions and Eq. (4.2) for j = O. Since 
qJ !() = O( n - 2) - 2) is extremely small for large n's, even the 
drastic truncations of (4.10), e.g., 

I" = X!()(1 + O( 1/nt' + 2» 
= X!() /(1 + qJ !()X!(~ I . "X!(~)+ I )(1 + O( 1/n4) +4», 

(4.11 ) 

etc., represent the extremely efficient approximants. 
The first nontrivial formulas (4.11) may already be de-
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rived from the explicit equation (4.10), 

In = 1/(1 +qJ" -qJ"qJ,,+d,,+tln+2)' (4.12) 

Its simplicity is, surprisingly, preserved also by the higher­
order formulas 

where 

Q ~ - I) = Q ~O) = 1 

and 

(4.13) 

(4.14) 

Q!(+I)=Q~?.t +qJ"Q!(;i), j=O,I, ... , (4.15) 

in general. The proof by induction is a simple consequence of 
the identity (a + b)-t = a-t + a-Ib(a + b)-t. A rear­
rangement 

J- 2 

Q!() = 1 +qJ" + L qJ"+I+tQ~/), j= 2,3, ... , (4.16) 
1=0 

of (4.15) quickly gives the final algorithm for each reasona­
blej. 

v. THE PHYSICAL BOUND STATES 

A. An Imposition of boundary conditions 

In a way paralleling Paper I, we may pick up two roots 
x t (E) and x2(E) of the "Hill determinant" [Eq. (3.10)] or 
of its equivalent continued fractional (or extended contin­
ued fractional) form 

1 + .p _ Igo + qJ _ do = O. (5.1) 

The corresponding pair of the Laurent-series solutions 
.p(il(r) = .p(r,xi ), i = 1,2, maybe then used in asuperposi­
tion 

(5.2) 

and defines the general solution of our differential equation 
(1.2) of the second order. We have to avoid the cases where 
the two functions .p(i)(r) are linearly dependent (e.g., for 
x I = X 2 + an even integer). 

In accord with the standard oscillation theorems,4 the 
number of nodes (zeros) of.p(r) may only increase with the 
increasing energy E. As a consequence (see, also, Paper I), 
all the binding energies may be characterized by an asympto­
tic emergence ofa node in .p(r), 

.p(ro) =0, .p(r",,) =0, ro<l, r"" >1. (5.3) 

In the limit ro ..... and r"" ..... 00, such a pair of equations will 
specify the exact binding energies and coefficients d, in (5.2) 
in principle. Thus an insertion of (5.2) gives 

dtVft)(ro) + d2Vf2) (ro) = 0, 

dtVft)(r"" ) + d2Vf2)(r"" ) = 0, 

defines the spectrum of energies. 

(5.4 ) 

(5.5) 

In place of the simple-minded requirement (5.3), we 
may also employ our knowledge of the more precise asymp-
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totics ( 1.3) and ( 1.4). This leads to a pair of equations simi­
larto (5.4), 

dlAIO + d~20 = 0, 

diAl .. + d~2 .. = 0, 

where .. 
(5.6) 

Aij = L hm (" = "i )lm + "I. (2m + "i + I1j ), 
m= -00 

i = 1,2, j = 0,00, (5.7) 

and the constants I1j represent the explicit second-order 
WKB corrections 

110 = - ~ - b 14"t, 11 .. =! - E 14/l. (5.S) 

The energies may also be computed as roots ofthe modified 
secular equation 

det(A lo A20 )=0 (5.9) 
AI.. A2 .. 

in principle. 

B. Numerical examples 

For a given set of couplings in our Schrooinger equation 
[ ( 1.1) and (1.2) 1, we may employ Eq. (5.1) as an implicit 
definition of functions "I (E) and "2(E), and determine nu­
merically the binding-energy root from Eq. (5.5). The for­
mer procedure resembles a search for solutions of quadratic 
equations: We have chosen our examples in such a manner 
that the two roots happen to be complex conjugated, 

"1.2 = Re" ± i{U(E). 

We have also scaled r ..... constxr in such a way that a = 1. 
Then, we have employed the purely numerical Runge-­
Kutta I algorithm (cf., also Paper I) and determined the 
"reference" exact energies Eex&Ct. Their sample is listed in 
Table I for c = O.S and for a few different values of b. For our 
choice of the matching points (quite close to the semiclassi­
cal turning points: rbWKB

) =,=0.74 for E = 4.S, and rbWKB
) 

=,=0.66 for E = 9.44, etc.), the ground-state precision is al­
ready quite satisfactory. For the first excited state, high pre­
cision is not yet achieved. 

The first comparison of roots E of Eq. (5.5) with Eexact 
is displayed in Table II. Again, very good precision is 

TABLE I. The convergence of energies with ro-O and r ~ - 00 (the stan-
dard Runge-Kutta method, a = I, c = 0.8): (A) ground states, (B) the 
first excited states. 

b 1.00 1.02 1.04 1.06 
ro r~ ECQI;t 

(A) 0.3 3.5 4.87670 4.88368 4.89063 4.89754 
0.25 4.0 4.87598 4.88295 4.88989 4.89680 
0.2 4.5 4.87593 4.88294 4.88986 4.89677 

(B) 0.3 3.5 9.4414 9.4487 9.4560 9.4631 
0.25 4.0 9.3787 9.3857 9.3926 9.3995 
0.2 4.5 9.3736 9.3806 9.3875 9.3944 
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TABLE II. A comparison of present results [E from Eq. (5.5) J with Eo...." 
of Table I. (A) E - Eo_,' ground states. (B) E - Eo""", the first excited 
states. 

b 1.00 1.02 1.04 1.06 

'0 ,~ E- Eou.:' 

(A) 0.3 3.5 0.00730 0.00734 0.00739 0.00743 
0.25 4.0 0.000370 0.000 373 0.000376 0.000379 
0.2 4.5 0.000016 0.000016 0.000016 0.000016 

(B) 0.3 3.5 0.063 0.520 0.185 0.021 
0.25 4.0 0.023 0.023 0.023 0.023 
0.2 4.5 0.0013 0.0013 -0.0005 -0.064 

achieved for ground states, and good results also appear in 
the excited states. An exception (the last excited-state col­
umn) may immediately be understood after an inspection of 
Table III where the corresponding ,,'s are listed: Close to the 
real axis, the values of (U(E) remain still strongly sensitive to 
the variation ofro and r .. . This represents one of the imman­
ent limitations of the method-in a way analogous to the 
theory of Mathieu functions,9 a modification of the Ansatz is 
needed at the singularity (U(E) ..... 0. Because of the worsen­
ing of convergence as observed above, such a situation is less 
interesting in the present context; vice versa, the increase of 
I{U(E) I becomes reflected by an improvement of precision­
this may be illustrated by a comparison of Tables II and III 
in the ground-state cases (A). 

A priori, an improvement of the boundary conditions 
[equal to a transition to the secular equation (5.9) 1 should 
also improve the rate of convergence. In practice, it is not 
always so-this problem appears even in implementations of 
the Runge--Kutta method sometimes. Here, an explanation 
is quite easy-the differentiation worsens the rate of conver­
gence of the expansions (5.7). As a consequence of the relat­
ed rounding errors, Eq. (5.9) is not always superior to Eq. 
(5.5) in the numerical sense. A typical illustration of this 
ambivalence is presented in Table IV. Again, the position of 
singularities is relevant-in accord with Table V, the 
ground-state root "I (E) moves towards the real axis during 
an increase of the coupling b from the value O.S. In fact, the 
complex conjugate roots meet [reach (U(E) = 01 some­
where in between the values of b = 0.904 and 0.90S. Table V 
illustrates also the further movement of "I (E)-presum­
ably, it reaches the value "I = 1 at b = 1. 

TABLE III. Parameters "1.2 = 0.5 ± ;w [ = roots ofEq. (5.1) I pertaining 
to Table II. 

b 1.00 1.02 1.04 1.06 

'0 ,~ w 

(A) 0.30 3.5 0.66042 0.67822 0.69515 0.711 30 
0.25 4.0 0.660 58 0.67835 0.69524 0.711 35 
0.20 4.5 0.66059 0.67835 0.69525 0.711 35 

(B) 0.30 3.5 0.568 0.651 0.490 0.305 
0.25 4.0 0.534 0.469 0.383 0.253 
0.20 4.5 0.525 0.458 0.367 0.137 
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TABLE IV. A comparison of results for the simple and WKB boundary 
conditions [Eq. (5.1) for X'.2 = 1.5 ± iw(E) and the respectiveEqs. (5.5) 
and (5.9) for energies). (A) The ground state with a = c = I and b = 0.8. 
(B) The first excited state with a = c = I and b = I. 

(A) 

(B) 

Boundary 
conditions 

'0 roo 

0.3 3.5 
0.25 4.0 
0.2 4.5 

0.3 3.5 
0.25 4.0 
0.2 4.5 

Simple 
w(E) E - Eex .. , 

0.444 35 0.00775 
0.44105 0.00044 
0.44088 0.000 14 

1.1702 0.200 
1.1445 0.258 
1.141 3 0.002 

VI. CONCLUDING REMARKS 

WKB 
w(E) E - Ee""" 

0.459 0.044 
0.452 0.029 
0.447 0.016 

1.14249 0.0641 
1.141 25 0.0049 
1.141 17 0.0004 

In a way that resembles the use of the exact Mathieu 
solutions for potentials V -1/1' (see, e.g., Ref. 10 or the 
review 1>y Newtonll), we have described here the quasi-ex­
act construction of bound states in the potential (1.1). 

A core of our construction lies in the use of continued 
fractions. In this respect, our method and, in particular, the 
related new technique of acceleration of their convergence, 
might prove relevant in a broader methodical context. In 
conclusion, let us mention at least the following three possi­
bilities. 

(a) In a number of papers, we may find an analytic 
continued fraction rearrangement of the three-term recur­
rences that resemble our Eq. ( 1.6) even by their power-series 
origin. In the underlying spectrum of technical problems, we 
may distinguish between the mathematically "safe" vari­
ational tractability of the potentials derived from 

r + fr/(l + gr) (6.1) 

(see e.g., Ref. 12), and the straightforward (so-called "Hill­
determinant") treatments of the forces of the type 

or + hI' + cl' (6.2) 

(see, e.g., Ref. 13). Both these techniques lie very close to 
our present construction: The acceleration of the continued-

TABLE Y. The first ground-state root x,(E) ofEq. (5.1). An example of 
its transition in the complex plane (a = c = I). 

ro 0.30 0.25 
roo 3.50 4.00 

b Rex, Imx, Rex , Imx, 

1.00 1.0005 0.0 1.0000 0.0 
0.98 1.0705 0.0 1.0699 0.0 
0.94 1.2259 0.0 1.2251 0.0 
0.92 1.3331 0.0 1.3319 0.0 
0.908 1.4639 0.0 1.4590 0.0 
0.904 1.5000 0.1035 !.SOOO 0.0843 
0.90 1.5000 0.1383 1.5000 0.1247 
0.88 1.5000 0.2438 1.5000 0.2367 
0.80 1.5000 0.4443 1.5000 0.4410 
0.60 1.5000 0.6686 1.5000 0.6669 
0.20 -0.5000 -0.8731 -0.5000 - 0.8721 
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fractional convergence plays an important role in it. 
(b) Formally, a very broad class of applications of con­

tinued fractions has been inspired by the Lanczos ideas l4 

related to the theory ofmoments.s-7 For a sketchy illustra­
tion, we may recall, e.g., the diagonalization ofthe so-called 
chain models in the condensed-matter physics IS or the ex­
tensive Lanczos-type computations in nuclear physics. 16 
Also, we may mention here the closely related rearrange­
ments of the divergent Born series17 or the whole rich do­
main ofthe nonequilibrium statistics, 18 etc. Often, an accel­
eration of convergence remains an open problem in this 
context. 19 

(c) Whenever we interpret continued fractions as a spe­
cial case of the Pade resummation,20 we immediately get in 
close contact with the perturbation theory.21 In this setting, 
an acceleration of convergence is of extreme importance22 

and, presumably, new inspiration could stem from the pres­
ent results. Unfortunately, this question already lies too far 
beyond the scope of the present paper. 
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One of the distinguishing features of soliton equations is the fact that they can be written in 
Hamiltonian form in more than one way. Here we compare the different quantized versions of 
the soliton equations arising in the AKNS inverse scattering scheme. It is found that, when 
expressed in terms of the scattering data, both quantized versions are essentially identical. 

In 1975, one of the present authors 1 showed how to ob­
tain the quantized levels of the nonlinear Schrodinger equa­
tion using the action-angle variables (canonical coordi­
nates) of the AKNS scattering data. The symplectic form 
used to effect the reduction to canonical coordinates was 
based on the standard Hamiltonian structure for the nonlin­
ear Schrooinger equation. The method used was a nonlinear 
generalization of one of the standard methods for the second 
quantization of the electromagnetic field. As presented in 
the textbook by Schiff,2 one takes the classical electromag­
netic field and decomposes it into normal modes (Fourier 
components). The key idea in this approach is that the clas­
sical electromagnetic Hamiltonian will decompose into a 
sum of noninteracting classical Hamiltonians, each of which 
has just two degrees of freedom and· is easily quantized by 
itself. This method of quantization bypasses all the inherent 
difficulties of fully quantizing the system, including the fac­
tor-ordering problem, defining the quantum field operators 
for the fundamental fields, etc. 31t is fundamentally based on 
the symmetries of the classical system, and reduces the prob­
lem to one of quantizing noninteracting particles.4 In this 
way, the original difficult second quantization problem is 
reduced to a simpler set of noninteracting problems. The 
advantage of this simpler solution is tremendous when one 
considers the information that one can glean from it. First, 
one can obtain the spacings of the energy levels. One also 
discovers which quantum variables will commute, and 
which modes will have a particle-like behavior. Of course, 
for a full quantum theory, one still has to deal with a number 
of remaining difficult problems, including finding a consis­
tent factor-ordering for the quantum operators, evaluating 
matrix elements, etc. Unfortunately, the solution to this 
larger quantization problem may well be multivalued.3 

However, in the meantime, one has been able to immediately 
isolate the above mentioned important features of second 
quantization, and, very importantly, those quantities which 
would have the same common solution for every possible 
consistent second quantization. Thus, any difficulty which 
would be found at this level would also be present in any 
quantum field theory. And a study by this method can pro­
vide valuable insight into the structure of the more thorny 
parts of the second-quantization problem. 

The symplectic form used in Ref. 1 to effect the reduc­
tion to canonical coordinates was based on the first Hamilto-

nian structure for the nonlinear Schrooinger equation. In 
1978, Magris showed how many soliton equations, including 
the nonlinear Schrooinger equation, could be written as bi­
Hamiltonian systems, meaning that they have two distinct, 
but compatible, Hamiltonian structures. Indeed, his funda­
mental result showed that, subject to some technical hypoth­
eses5.6 any bi-Hamiltonian system is completely integrable in 
the sense that it has infinitely many conservation laws in 
involution and corresponding commuting Hamiltonian 
flows. 

From the viewpoint of quantum mechanics, the exis­
tence of more than one Hamiltonian structure for a given 
classical mechanical system raises the possibility of there 
existing more than one quantized version of this system, 
even at the level of quantization considered in Ref. 1. The 
resulting ambiguity in the quantization procedure raises se­
rious physical doubts as to the mathematical framework of 
quantization. However, the main result to be proven here is 
that, for AKNS soliton equations,7 both quantized versions 
are essentially the same. We demonstrate that, in terms of 
the respective canonical coordinates on the scattering data, 
the two Hamiltonians have identical expressions, and hence 
identical quantum versions. Indeed, we conjecture that this 
phenomenon is true in general: quantization does not depend 
on the underlying Hamiltonian structure. (The results of Do­
donov et aI., 8 in which an ambiguity in the quantization pro­
cedure for certain finite-dimensional bi-Hamiltonian sys­
tems is supposedly demonstrated, are erroneous, since they 
fail to incorporate the important topological properties of 
phase space properly in their picture. Indeed, their ambigu­
ity is just a version of the ambiguity inherent in the quantiza­
tion of two-dimensional Hamiltonian systems, which we dis­
cuss in detail below.) Moreover, we will see that for the other 
members of the associated hierarchy of soliton equations the 
only difference in the quantum versions is in the choice of 
weighting factor for the quantum operators corresponding 
to the continuous spectrum, the weight being determined by 
the classical dispersion relation, and the replacement of the 
bound state Hamiltonians. Thus, the effect of quantizing dif­
ferent members of the soliton hierarchy will only be signifi­
cant for the bound states/solitons. 

Our presentation relies heavily on the notation and re­
sults in earlier papers by Kaup and NeweU I

•
9

•
IO on the clo­

sure of the squared eigenfunctions for the AKNS scattering 
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problem. The key to our result is the well-known fact that the 
recursion operator, which is built out of the two Hamilto­
nian operators for the system5

•
6 is essentially the squared 

eigenfunction operator. Since variations in the potential for 
the AKNS scattering problem are expressed in terms of the 
squared eigenfunctions, the second symplectic form can be 
simply written down in explicit form. In terms of the scatter­
ing data, it differs from the first symplectic form only by a 
weighting factor in the continuous spectrum, and a change 
in the discrete components. However, the corresponding dif­
ference in weighting factors for the two Hamiltonians exact­
ly cancels out the weighting factor for the two symplectic 
forms, while the discrete components reduce simply to the 
quantization of a two-dimensional Hamiltonian system, 
based on different symplectic structures. Thus, the entire 
quantum ambiguity reduces to the simple matter of an ambi­
guity in the quantization of two-dimensional Hamiltonian 
systems, a problem that is easily handled. 

Our notation is as follows. Hamilton's equations are 

a,Qa=JapapH, (1) 

where Q = {~} are the dynamical variables (the p's and 
the q's), J = [,FP] is the Hamiltonian operator, which de­
termines the underlying Hamiltonian structure of the phase 
space, and H is the Hamiltonian function or density. For 
instance, for a harmonic oscillator, one would take 

Q=~). J=(_~ ~). and H=!(p2+t/). 

When Q is a function of a continuous variable, the sum over 
the dummy indices in (1) is understood to include the ap­
propriate integration, and the partial derivative is under­
stood to be a functional derivative instead. The Poisson 
bracket determined by such a Hamiltonian operator has the 
form 

{F, G} = (aa F)Jap apG, (2) 

which requires the symplectic two-form to be 

fl = ! dQ a A J ;/ dQ p . (3) 

For the harmonic oscillator, this reduces to the familiar ca­
nonical form 

fl = dpAdq. (4) 

Therefore, the operator J needs to be skew adjoint, and satis­
fy the additional condition that the Poisson bracket (2) sat­
isfy the Jacobi identity, which is equivalent to the require­
ment that the two-form fl can be closed. 6 

Before presenting the main results, we discuss a simple 
but crucial fact that any two-dimensional Hamiltonian sys­
tem has a unique quantized version, even though it has many 
different Hamiltonian structures. In terms of the standard 
Hamiltonian structure prescribed by the canonical two-form 
( 4), Hamilton's equations take the classical form II 

aH aH 
p, = --, q, =-. 

aq ap 
(5) 

In H2, any nonzero two-form A(p, q)dpAdq is always 
closed, and hence determines a Hamiltonian operator 
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( 0 -1) 
j= ~ Ao' 

It is easy to see that (5) can be written in Hamiltonian form 
using this second Hamiltonian structure if and only if A is a 
function of the Hamiltonian H. In this case, the new Hamil­
tonian function is 

H 2(p,q) =~[H(p,q)], 

where ~(s) is any nonvanishing scalar function, and 

fl2 = ~'[H(p,q) ]dpAdq (6) 

is the second symplectic form. Re-expressing fl2 in canonical 
form will lead to new canonical variables p, q, and an ostensi­
bly different quantized version. However, provided this 
transformation does not affect the phase space topology, it is 
not hard to see that these two quantized versions will end up 
being identical, at least in the semi-classical limit, and so 
there is no ambiguity in the (semi-classical) quantization of 
two-dimensional Hamiltonian systems. 

We now turn to our problem at hand. For simplicity, we 
will consider the general nonlinear Schrooinger equation 

iq, = - qxx + 2rt/, (7a) 

ir, = rxx + 2qr, (7b) 

in detail. However, our arguments will work equally well for 
any other soliton equation associated with the AKNS spec­
tral problem7

; see the remarks at the end of the paper. For 
r = ± q*, (7) reduces to the single equation 

iq, = - qxx ± 2(q* q) q, (8) 

which is the form of the nonlinear SchrOdinger equation in 
which all physical constants, e.g., Ii, m, etc., have been set 
equal to 1. According to Magri,s the nonlinear Schrooinger 
equation can be written as a bi-Hamiltonian system 

'1', = J I aHI = J2 aH2 . (9) 

The first Hamiltonian can be identified with the (signed) 
energy 

HI = ± E = fO "" (qxrx + t/r)dx , 

while the second Hamiltonian is the field momentum 

H2 = P = i L"""" (rqx - qrx )dx . 

The two Hamiltonian operators are given by 

-i'l 
0) , 

( 10) 

(11 ) 

(12) 

(13) 

(In our notation,6 we have omitted the delta functions used 
by some authors.) Moreover, these Hamiltonian structures 
are compatible, in the sense that any linear combination 
CIJI + C~2 is also Hamiltonian. Therefore, according to the 
theorem of Magri the operator 
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(14) 

is a recursion operator for the general nonlinear SchrOdinger 
equation, leading to an infinite hierarchy of mutually com­
muting bi-Hamiltonian flows. 

To determine the two quantized versions of the nonlin­
ear SchrOdinger equation, we need to introduce canonical 
coordinates and momenta, which will be found among the 
scattering data for the associated eigenValue problem. We 
begin by recalling how this was done in Ref. 1 for the first 
symplectic form. The general nonlinear SchrOdinger equa­
tion can be solved using the AKNS eigenvalue problem 7 

vl,x + itvl = qV2' v2,x - itV2 = rol . (15) 

We let 

~ = (::) 

be the solution to (15) satisfying the boundary conditions 

. (1) (a(t)e - ;'X) 
~->e-I'x 0' X-> - 00, ~-> b(t)e;'X ' X->oo, 

for 1m t> O. Similarly, let 

be the solution to (15) satisfying the boundary conditions 

:;: ;,x( 0 ) .,,->e- _ l' X-> - 00, 

_ (b(t)e-;'X) 
~-+ _ o(t)e;'X' X-+ 00 , 

for 1m t < O. This serves to define the scattering coefficients 
a, b, 0, b, which also satisfy 

(16) 

Theratiop(s) = b(s)/a(s), sreal, serves to define the con­
tinuous spectrum of the scattering data for (16). The zeros 
of a(t) in the upper half plane correspond to the bound 
states, and are denoted as t) = s) + ill),j = 1, ... ,N. Finally 
let bj denote the value of b at t j , and let Pj denote the residue 
of p at the pole t j • Similar quantities are defined for the 
eigenvalues 1. 

In Ref. 1 it was shown how to express the first symplec­
tic two-form in terms of the scattering data in the case 
r = ± q*. Tracing through the calculation there in the more 
general case, we find that 

0 1 = if"oo {8q1\ 8r}dx 

= ~ J: 00 {810g b(s) 1\ 810g[0(s)a(s) ]}ds 

N 

- 2 L (8tj 1\8 log bj + 8'j 1\8 log b) , 
j= I 

(17) 

I 

where the last sum is absent if r = + q*, since there are no 
bound states. When r = ± q*, then o(s) = a(s)*, and 
b(s) = =fb(s)*. In this case one can choose canonically 
conjugate variables by letting 

Aj = 411), p) = - 45), p(s) = - (i/11')logla(s) 1 , 
represent the momenta (p's), and letting 

Bj = arg b), q) = loglbjl, q(s) = arg b(s) 

represent the conjugate coordinates (q's) for the system. 
The first Hamiltonian functional is then expressed as 

(18) 

From this expression, the quantized form follows directly as 
in Ref. 1. 

For the second symplectic form, we first recognize that 
by (12), (13) and Ref. 7, 

(19) 

where LA is the recursion operator for the squared eigen­
functions. Recall that the squared eigenfunctions corre­
sponding to (15) are the functions 

We define the corresponding quantities'll) for the bound 
states t) similarly. The key resuleo is that the recursion oper­
ator LA, given in (19), has the squared eigenfunctions as 
eigenstates: 

(20) 

Thus we can compute the second symplectic form 

Now, according to (B3) of Ref. 10, 

N 

- 2i L (8p) 'IIj + Pj 8tjX) + 8p) ~j + p) 81x). 
j= I 

Therefore, using (20), 

(L A )-18V = !f: 00 [8p(s)(L A )-I'II(S) - c5p(S)(LA)-I~(S)]ds 
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N 

- 2iL (8pj(L A)-I'IIJ +p)8tJ(L A)-IXJ + c5p)(LA)-I~j +p)81(L A)-li,;) 
j= I 

= ~foo (8p(s)~(s) - ¥(s)~(s») ds - 2i f (8(P))'II) + Pj 8tjX) + 8(~)~J + ~ 81x)) , 
1r - 00 S + IE S - IE )= I t) tJ tJ tJ 
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where we have moved the integral over the continuous spec­
trum off the real axis to avoid the singularity at' = O. There­
fore the only difference between the computation of 0 1 and 
the new symplectic form 02 are the weighting factors 1/ S' in 
the continuous spectrum, and 1/ 'j in the discrete spectrum. 
A similar calculation as was used to produce ( 17) now gives 

02 = ..!.. {c510g[ii(S')a(S')] 1\15 arg b(S')}-. f'" dS' 
ff -'" S' 

+ ..!..b(0)b(0)c510g 0(0) 1\ 15 log [;(0) 
2 a(O) b(O) 

N __ 

- 2 L {c510g 'j 1\ 15 log bj + 15 log 'j 1\ 15 log bj } , 

j= I . 
(21) 

where the two complex integrals have combined to give the 
principal value in the leading term, and extra discrete term 
comes from the associated residues at the pole, = O. When 
r = ± q*, canonically conjugate variables are provided by 
the momenta 

Aj = 4 arg '1' Pj = - 410gi'j I, 
p(S') = - (i/ffS') 10gla(S') I, 

and the conjugate coordinates 
'" Bj = arg bj , qj = loglbj I, q(S') = arg b(S') , 

provided S' #0. In addition, the point S' = 0 appears sepa­
rately as the extra residue term in the expression for 02' so 
this particular mode survives the principal value cancella­
tion in a new discrete form. However, there is no simple 
formula for the relevant canonical variables there. Also, in 
the case r = ± q*, this term vanishes because a( 0) = a( 0), 
and so this extra complication does not arise. All the other 
modes for the continuous spectrum are related according to 
the simple reweighting 

p(S') = S'p(S'). (22) 

For the second Hamiltonian structure, the Hamiltonian 
functional giving the nonlinear SchrOdinger equation is the 
momentum (11). According to the calculations in Ref. 1, it 
can be expressed in terms of the scattering data as 

4 f'" N -2 2 
H2 =P=-; _'" S'logla(S')ldS'-4ij~1 ('J -'j)' 

(23) 

Comparing with ( 18), we see that, in terms of the respective 
canonical variables, the continuous spectrum contribution is 
exactly the same weighted sum of the continuous canonical 
momentum variable associated with the respective symplec­
tic two forms: 

4 f'" HI: -; _ '" S'2p (S')dS' versus 

H 2: : S: '" S'p(S')dS' = : S: '" S' 2p (S')dS'. 

Therefore, the continuous modes have identical quantiza­
tions. (The singular point S' = 0 plays no role as both Hamil­
tonians make no contribution to this mode.) As for the 
bound states, we are reduced to the case of a collection of 
integrable two-dimensional Hamiltonian systems with dif-
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ferent Hamiltonian structures. For the original symplectic 
form 0 1, the Hamiltonian system corresponding to the dis­
crete eigenvalue 'j has the form 

(logbj)t = - ~ ~~I =4i'J, ('j)t = ~ a~=lbj =0, 

and similarly for the eigenvalues ~. (We are just reproduc­
ing the classical calculation of the evolution of the discrete 
scattering data for soliton equations.) For the second sym­
plectic form 02' the Hamiltonian system corresponding to 
the discrete eigenvalue '} now takes the form 

I b 1 aHI 4'1- 2 (og j) t = - - = l~ J' 
2 alog'} 

(l I- 1 aHI 0 
og~j)t = 2 alogb) = , 

and similarly for the eigenvalues~. Thus, these two dimen­
sional Hamiltonian systems are identical, even though they 
use two different Hamiltonian structures: 

- 2c5'j 1\ 15 log bJ versus - 215 log 'j 1\ 15 log bj • 

However, as we remarked above, we take as fundamental the 
fact that a two-dimensional Hamiltonian system has a 
unique quantization, even though it has many different 
Hamiltonian structures. Therefore the bound states for the 
nonlinear SchrOdinger equation also have identical quanti­
zations. We conclude that both Hamiltonians lead to the 
same quantized verison of the nonlinear SchrOdinger equa­
tion. 

As a final remark, we recall that the other soliton equa­
tions appearing in the AKNS scheme can be written in the 
form 

(;)t = O(LA)(;t, 
where O(S') determines the linear dispersion relation.7 

These can all be written in bi-Hamiltonian form using the 
same two Hamiltonian structures as above. An identical cal­
culation, which we omit for the sake of brevity, will show 
that the two quantized versions of any member of these 
AKNS hierarchies will lead to the same quantum version. 
Moreover, it is not hard to see that the only difference be­
tween the quantized versions of two different members of the 
same soliton hierarchy is in the weighting factor O(S') for 
the modes corresponding to the continuous spectrum [with 
appropriate discrete contributions at the points where 
O(S') = 0] and replacement of the discrete Hamiltonians by 
0('1) and O(~), respectively. Thus the only distinction 
between the various quantized versions of a soliton hierar­
chy is in the weighting assigned to the continuous modes, 
and the replacement of the Hamiltonian governing the evo­
lution of the bound states. Finally, we note that the same 
considerations will apply to other soliton equations, such as 
the Korteweg-de Vries equation, as the key fact that the 
recursion operator is the squared eigenfunction operator re­
mains valid. 
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The solution of the Yang-Baxter equation for integrable systems is shown to be equivalent to 
the existence of a differential identity. Quantum integration formulas for the calculation of 
commutators of monodromy matrices are given. Based on the integration formulas and the 
systematic use of differential identities, the Yang-Baxter equations for the nonlinear 
Schrodinger model for the quantum case of both bosons and fermions are derived. The case for 
discrete models is also included. The parallelism between the classical and quantum case and 
the classical limiting process from the latter to the former are discussed. 

I. INTRODUCTION 

The calculation of Poisson brackets for the scattering 
data for the KdV equation by the CISM (classical inverse 
scattering method) was first carried out by Zakharov and 
Faddeev. t The calculations depended on a set of differential 
identities and on the evaluation of certain limits in the sense 
of distributions. After the formulation of the QISM (quan­
tum inverse scattering method) by Faddeev and his colla­
borators/ in which the solution of the Yang-Baxter equa­
tion is the important step of the problem, the CISM was 
recast in terms of the solution of a classical Yang-Baxter 
equation.3 In this paper, we first repeat the calculation of 
Poisson brackets for monodromy matrices ofthe NS (non­
linear Schrodinger) model by the use of an integration for­
mula3 and differential identity, and then generalize the for­
mula to the quantum cases to calculate commutators and 
obtain the Yang-Baxter equations of the NS model for both 
bosons and fermions by carrying out the integration with the 
use of corresponding differential identities. We present a 
simple proof that the Yang-Baxter equation is equivalent to 
a differential identity. These differential identities can be 
chosen to be the same as those that have been used to derive 
Yang-Baxter equations by our generalized formulas. 
Further, the differential identity is shown to be equivalent to 
the local Yang-Baxter equation. We do not claim that the 
establishment of differential identities is always simpler than 
the algebraic solutions of local Yang-Baxter equations but 
aim to clarify the relations between them in various contexts. 
Finally, we show how the classical results are obtained by 
the classical limit from the quantum ones. The correspond­
ing results for discrete models are similar where the differen­
tial identities are replaced by difference identities. We dis­
cuss the discrete model of the Heisenberg chain as an 
illustration. 

II. POISSON BRACKETS FOR CLASSICAL SYSTEMS 

In this section we recapitulate the calculation of the 
Poisson brackets by the use of differential identities. We use 
the following integration formula for the Poisson bracket of 
monodromy matrices (see Ref. 3, p. 192): 

{T(x,yIA) ® T(x,ylp)} 

= f'LX dzdz' T(x,zIA) ® T(x,z'lp) 

X {U(z,A.) ® U(z',p)}T(z,yIA) ® T(z',ylp) , (2.1) 

where T(x,yIA) is the monodromy matrix defined by 

~ T(x,yIA) = U(x,A.) T(x,yIA) , 
ax 

T(x,xIA) = 1. 
(2.2) 

For the NS model, the Hamiltonian takes the form 

H = f dx(au*(X) au(x) + cu*(X)u*(X)U(X)U(X»), 
ax ax 

(2.3) 

where c, the coupling constant, is positive for repulsive inter­
action, and 

U(x,A) = (i/2)A0'3 + i/Cu(x)O'+ - i/Cu*(x)O'_. 
(2.4) 

Here O'± =!(O't ±i0'2)' where O';(i= 1,2,3) are the Pauli 
matrices. 

Let F and G be (2 X 2) matrix valued functionals of u 
and u*. The Poisson bracket ofF and Gis (see Ref. 3, p. 187) 

{F®G}=iJ"" (~® 8G 
- 00 8u(x) 8u*(x) 

_ 8F ®~)dx. 
8u*(x) 8u(x) 

Considering U(x,A) as a functional ofu(z) and u*(z), 
we have 

8U(x,A) . 1-£( ) 
= l"cu X - Z 0'+, 

8u(z) 

8U(x,A.) = _ i/C8(x -z)O'_. 
8u*(z) 

Hence 
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{U(x,A) ® U(y,p)} = if dz(t5U(X,A) 
t5u(z) 

® t5U(y,p) _ t5U(X,A) ® t5U(y,p,») 
t5u*(z) t5u*(z) t5u(z) 

= ict5(x - y)(u+ ®u_ - u_ ®u+) 

= (ic/2) (U3 ® I - I ® ( 3)Pt5(x - y), 

where the identity 

(2.5) 

(u+ ® u_ - u_ ® u+) = !(u3 ®I - I®(3)P (2.6) 

has been used. In (2.6) the symbol P stands for the permuta­
tion matrix, equal to 

P=l.(I®I+ ± u;®u;), (2.7) 
2 ;=1 

where I is the 2 X 2 identity matrix. The matrix P acts on 
V® V by (S®"I)P="I®S and on matrices by 
P(A®B) = (B®A)P. Clearly,p2 = land 

[(A ®B)P h,kl = (A ®B)ij,/k' 

[peA ®B) ]ij,kl = (A ®B)j;.kl· 

Substituting (2.5) into (2.1), we obtain 

{T(x,ylA.) ® T(x,ylp)} 

= ic (X dz(T(x,zlA.)u3T(z,ylp) ® T(x,zlp)T(z,ylA.) 
2 Jy 

- T(x,zlA.) T(z,ylp) ® T(x,zlp)u3T(z,ylA.»P. 

Performing the integration with the help of the differential 
identity 

a 
7-(T(x,zlA.) T(z,ylp) ® T(x,zlp) T(z,ylA.» az 

= - (i12)(A. - p) 

X (T(x,zIA.)U3T(Z,ylp) ® T(x,zlp)T(z,ylA.) 

- T(x,zlA.) T(z,ylp) ® T(x,zlp )u3T(z,ylA.». 

we finally obtain3 

(2.8) 

{T(x,ylA.) ~ T(x,ylp)} = [r(A.,p),T(x,ylA.) ® T(x,ylp)], 

where 
r(A.,p) = - cP.I(A. - p). (2.9) 

III. THE QUANTUM CASE 

In Sec. II, we showed that the classical Yang-Baxter 
equation for the monodromy matrix can be obtained from 
the differential equation for the monodromy matrix by the 
use of a .certain differential identity. This is also true for the 
quantum case. We demonstrate this point for the NS model 
for bosons. The Hamiltonian in this case is again (2.3), but 
now u, u* are operators acting on Fock space satisfying the 
commutation relations 
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[u(x),u*(y)] = t5(x - y), 

[u(x),u(y)] = [u*(x), u*(y)] = o. 
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(3.1 ) 

The monodromy matrix T(x,ylA.) satisfies the forward and 
backward differential equations 

a 
-T(x,yIA.) = : U(X,A) T(x,y\A.):, ax 
a 

- T(x,yIA.) = - : T(x,ylA.) U(y,A):, ay 
T(x.xIA.) = 1, 

where U(x,A) is given by (2.4). 

(3.2) 

The notation :A: means that an operator A, depending 
on the creation and annihilation operators u* and u, is to be 
written in normal order, meaning that the destruction opera­
tors u are to appear all the way to the right. For example, 
u*u2 is in normal order, while u u*u is not. The reasons for 
writing expressions in normal order are subtle. (In particu­
lar, we found that the order in which the operators appear in 
an expression can have an effect on the asymptotic behavior 
of its expectations as x -+ ± 00.) 

The following commutation relations hold4
•
5 (y < x): 

[u(z),T(x,ylA.)] = [u*(z),T(x,ylA.)] = 0, zE[y,x] , 

[u(x),T(x,ylA.)] = - i(~/2)u_T(x,YIA.), 

[u(y),T(x,ylA.)] = - i(~/2)T(x,YIA.)u_, 

[u*(x),T(x,ylA.)] = - i(~/2)u+T(x,YIA.), 

[u*(y),T(x,ylA.)] = - i(~/2)T(x,YIA.)u+, 

[u(z),T(x,y,A)] = - i~T(x,zlA.)u_T(z,ylA.), y<z<x. 
(3.3) 

With the help of (3.3), Eqs. (3.2) can be rewritten in stan­
dard order as 

a 
-T(x,yIA.) = V(x,A)T(x,ylA.), ax 
a 
-T(x,ylA.) = - T(x,ylA.) V(y,A), ay 

where 

V(X,A) = U(x,A)(cI2)u+u_. (3.4) 

We now generalize (2.1) to the quantum case. First, we 
define 

[T(x,ylA.) ~ T(x,ylp) ] 

to be a matrix with elements 

[T(x,yA.) ~ T(x,ylp)]ij.kl = [T;dx,ylA.),1jI(x,ylp)]. 

(3.5) 

It is easy to see that 

[T(x,ylA.) ~ T(x,ylp)] 

= T(x,ylA.) ® T(x,ylp) - PT(x,ylp) ® T(x,ylA.)P. 
(3.6) 

We state our generalized formula as the following theorem. 
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Theorem 3.1: 

[ T(x,yIA) ~ T(x,yIJt] 

= LX LX dzdz' T(X,zIA) ® T(x,z'IJt) 

Substituting this into Theorem 3.1 and using (2.6), we ob­
tain 

[T(X,yIA) ~ T(x,yIJt) ] 

= ~ rx dz T(x,zIA) ® T(x,zIJt)(0'3 ®1 - 1® 0'3) 
2 Jy 
X T(z,yIJt) ® T(z,yIA )P. 

where 

X [V(Z,A) ~ V(z',Jl)] 

XPT(z',yIJt) ® T(z,yIA)P, (3.7) Since [T(x,zIJt),T(z,yIJt)] = 0, the right-hand side can be 
written as 

~ T(x,yIA) = :U(x,A)T(x,yIA): = V(x,A)T(x,yIA). 
ax 

ProoflThe (a{J,r8) component of the right-hand side of 
(3.7) is f: LX dz dz' Tap (X,zIA) T fJq (x,z' II') 

X(V po' (z,A) V.,. (z',jt) - Vu" (z',Jl) 

xV pt1 (z,A»T (/>6 (z',yIJt) T Qy (Z,yIA), 

where, as usual, repeated indices mean summation. Using 
the forward and backward equations in component form 

Vu" (z',Jt)T(/>6 (z',yIJt) = ~, Tu/i(z',yIJt), 

- Tpu (x,z' II') VU" (z' ,I') = ~ T M (x,z' 11'), 
az' 

we can write this as 

r dz Tap (X,zIA) [ r dz'~TfJq(x,z'IJt) Jy Jy az 

X v pO (z,A) T u6 (z' ,yIJt» ] Toy (Z,yIA). 

Integrating with respect to z' and using the fact that 
T fJq(x,xIJt) = 8p<7' for example, we get 

LX dz[ Tap (X,zIA) Vpo (z,A) Tp/i (x,yIJt) TO/i (Z,yIA) 

- Tap (X,zIA) T PIi (x,yIJt) VpiJ (z,A) Toy (Z,yIA) ]. 

Similarly, by the use of 

a 
Tap (x,zlx) v pO (z,A) = - az Tao (X,zIA), 

a 
Vpo'(z,A)TQy(z,yIA) = az Tpy(z,yIA), 

the integration of z is carried out. Finally, we obtain 

- T PIi (x,yIJt) Tay (x,yIA) + Tay (X,yIA) T PIi (x,yIJt) , 

which is just [T(x,yIA) ® T(x,yIJt) ] aP.r/i; thus, by defini­
tion, the theorem is proved. 

By a straightforward calculation, we have 

[ V(z,A) ~ V(z' ,I') ] 

= [U(z,A) ~ U(z',Jt)] 

=C(O'+ ®O'_ - 0'_ ®0'+)8(z-z'). 
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Because of (3.4), the differential identity (2.8) remains val­
id in this case for bosons. So the integral is calculated using 
(2.8). In this way, we obtain 

[ T(x,yIA) ~ T(x,yIJt) ] 

= [iC/(A - 1') ](T(x,yIJt) ® T(x,yIA) 

- T(x,yIA) ® T(x,yIJt) )P. 

Using (3.6), Eq. (3.8) may be rewritten in the form 

R(A,Jt)T(x,yIA) ® T(x,ylll) 

= T(x,yIJt) ® T(x,yIA)R(A,Jt), 

where 

R(A,Jt) = [ - iC/(A - I' - ic)]1 

+ [(A - Jt)/(A - I' - ic) ]P. 

In fact, from (3.2) and (3.8), we have 

T(x,yIA) ® T(x,yIJt) - PT(x,yIJt) ® T(x,yIA)P 

= [iC/(A - 1') ](T(x,yIJt) ® T(x,yIA) 

- T(x,yIA) ® T(x,yIJt»P. 

Multiplying on the right by P we obtain 

T(x,yIA) ® T(x,yIJt)P- PT(x,yIJt) ® T(x,yIA) 

= [iC/(A - 1') ](T(x,yIJt) ® T(x,yIA) 

- T(x,yIA) ® T(x,yIJt»; 

hence 

[P + ic/ (A - 1') ] T(x,yIJt) ® T(x,yIA) 

= T(x,yIA) ® T(x,ylll) [P+ iC/(A - 1')]. 

(3.8) 

(3.9) 

Equation (3.9) is now obtained by interchanging A and I' 
and multiplying by the factor (A - Jt)/(A - I' - ic). This is 
the result of Refs. 2 and 4. 

For the NS model of fermions,5 the Hamiltonian takes 
the form 

(3.10) 

Here we again consider only the case of repulsive interaction 
c>O. The dummy indices i,j are now summed over 1,2; 
uouT act on Fock space and satisfy the anticommutation 
relations 
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[U i (X),uj(y)] + = 8ijb(x - y), 

[Ui(x),U/y)] + = [Ur(x),uj(Y)] + =0. 
(3.11 ) 

The monodromy matrix T(x,yl..i) is a 3 X 3 matrix defined 
by 

~ T(x,yl..i) = :U(x,..i)T(x,yl..i):, 
ax 

T(x,xl..i) = 1, 
(3.12) 

where 

U(x,..i) = (iA/2)J + iJCuj (x)ej3 - iJCuj(x)e3j , 
(3:13) 

J = diag (1 , 1, - 1), and ejk is a 3 X 3 matrix defined by 
(ejk )/m = 8j/8km . 

For fermion fields, the normal product is 

:ui(x)uj(y): = - uj(y)ui(x), 

and for the monodromy matrix we get as a result6 

:uj(x)T(x,yl..i): = JT(x,yl..i)Juj(x). 

Therefore Eq. (3.12) can be written 

aT (x,yl..i) = (..!......iJ - iJCUj(X)e3j )T(X,yl..i) 
ax 2 

+ iJCej3JT(x,yl..i)Juj (x). 

The following relations hold6 (y < x), for j = 1,2: 

uj(z)T(x,yI..i) =JT(x,yl..i)Juj(z), ~[x,y), 

T(x,yl..i)uj(z) = uj(z)JT(x,yl..i)J, ZE[X,y) , 

uj (x) T(x,yl..i) 

= JT(x,yl..i)Juj(x) - UJC/2)e3j T(x,yl..i), 

uj (y) T(x,yl..i) 

= JT(x,yI..i)Juj(y) - UJC/2)JT(x,yI..i)Je3J , 

T(x,yl..i)uj(x) 

= uj(x)JT(x,yl..i)J + (iJC12)JT(x,yl..i)Jej3 , 

T(x,yl..i)uj(Y) 

= uj(y)JT(x,yl..i)J + (iJC/2)T(x,yl..i)ej3' 

From (3.12) and the third equation in (3.14), we find 

a 
- T(x,yl..i) = V(x,..i)T(x,yl..i) 
ax 

(3.14) 

where 

V(x,..i) = U(x,..i) - (c/2)ej3 e3j . 

Similarly, 

a 
iJy T(x,yl..i) = - T(x,yl..i) V(y,..i). 

(3.15) 

In dealing with problems involving fermions, it is neces­
sary to introduce supermatrices. S For a supermatrix we as­
sign a parity p(i) of the ith row (column) = ° when the 
parity is even, and p(i) = 1 when the parity is odd. The su­
pertensor product of two supermatricesA and B is defined by 

(A ®B)ij.k/ = AikBj/( - 1)p(j)(p(i)+p(k». 
s 

We define [A ~B ] to be the matrix with elements given by 

[A ~B ]ij.k/ = AikBj /( - 1)p(j)(P(i) +p(k») 

- Bj/A jk ( - 1 )p(l)(P(i) + p(k»). 

It is easy to see that 

[A®B] =A®B-PsB®APs' 
, s s 

(3.16) 

where Ps = l:eij ® eji ( - 1 )p(i)p(j) is the superpermutation 
operator. In analogy with Theorem 3.1, we have the follow­
ing theorem. 

Theorem 3.2: 

[ T(x,yl..i) ~ T(x,ylp) ] 

= LX LX dz dz' T(x,zl..i) ® T(x,z' Ip) 
y y s 

X [ U(z,..i) ~ U(z',p) ]PsT(z',Ylp) ~ T(z,yl..i)Ps' 

(3.17) 

Proof: The proof is similar to that of Theorem 2.1 with 
consideration of the additional signs due to the parity. 

We now return to the NS model for fermions, described 
by the Hamiltonian (3.10). For the present problem the par­
ity should be chosen as 

pU) = {O, ~ = 1,2, 
1, 1=3. 

It follows from a straightforward calculation that 

Substituting this into (3.17) and taking into account the identity 

1 
(e3j ® ej3 + ej3 ®e3j )PS = - (/®J - J®I), 

s s 2 s s 

we obtain 
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[
T(x,yI.1) ® T(X,YIP)] = ~ LX dz T(x,zI.1) ® T(x,zlp)(1®J - J®1)T(z,ylp) ® T(z,yI.1)P •. 

s 2y S s s s 

For nonoverlapping intervals (x,z) and (z,y) (x <z <y), [ T(x,zlp) ~ T(z,ylp) ] = 0 so (3.18) becomes 

~ LX dJ T(x,zI.1) T(z,ylp) ® T(x,zlp)JT(z,yl.1) - T(x,ZI.1 )JT(z,ylp) ® T(x,zlp) T(z,yl.1 »)Ps. 
2 y .i:\ s s 

Making use of the differential identity 

~ (T(x,zl.1)T(z,Ylp) ® T(x,zlp)T(z,YI.1») az s 

=.!.... (A. - P)(T(x,zI.1) T(z,ylp) ® T(x,zlp)JT(z,yl.1) - T(x,zl.1)JT(z,ylp) ® T(x,zlp) T(z,YI.1») 
2 s s 

[ (3.20) follows from (3.15)], the integral of ( 3.19) is reduced to 

[ - c/(.1 - P)]( T(x,ylp) ~ T(x,yl.1) - T(x,yl.1) ~ T(x,ylp) )Ps. 

Thus, we have shown that 

[ T( xJ'IA) ~ T(xJ'll') ] ~ [ - jc/ (A -I') J ( T(xJ'lI') ~ T(xJ'IA) - T( xJ'IA) ~ T(xJ'lI') )p,. 
According to (3.16), the left-hand side of (3.21) is 

T(x,yl.1) ® T(x,ylp) - PsT(x,ylp) ® T(x,yl.1)Ps • 
s s 

Therefore, it is easy to see that (3.17) contains the Yang-Baxter equation 

R(.1,p)T(x,yl.1) ® T(x,ylp) = T(x,ylp) ® T(x,yl.1)R(.1,p), 
s s 

where 

R(.1,p) = [ic/(.1 - p + ic)]1 + [(A. - p)/(.1 - p + ic) ]Ps. 

Here 1 denotes the 3 X 3 identity matrix. This is the result obtained in Ref. 5. 

(3.18 ) 

(3.19 ) 

(3.20) 

(3.21 ) 

(3.22) 

We point out that both Theorems 3.1 and 3.2 are valid in general for the quantum case, but that Theorem 3.1 is useful for 
the boson case, while Theorem 3.2 is useful for the fermion case. Further, Theorem 3.1 can be considered as a particular case of 
Theorem 3.2 whenp(i) = 0, for all i. 

For a discrete model on a one-dimensional lattice, define 

(3.23 ) 

where L j (A.) is the associated linear operator of the given model. If we define the difference operator 11; by I1J(i) 
= I( i + 1) - I( i), then the forward and backward difference equations are, respectively, 

I1;T(i,jl.1) = U; (A.) T(i,jl.1), I1j T(i,jl.1) = - T(i,j+ l)U;(.1), where U;(.1) =L;(.1) -1. (3.24) 

The analogs of Theorems 3.1 and 3.2 are as follows. 

Theorem 3.3: 

[ T(i,jIA) ~ T(i,jlp) ] = ~t~ ~~lj T(i,k + 11A) ® T(i,k' + lip) [Lk (A) ~ L k· (p) k T(k ',jilL) ® T(k,jIA)P. (3.25) 

Theorem 3.4: 

[ T(j,jIA) ~ T(j, jll') ] ~ ~:: ~'J T(j,k + 11,1) ~ T(j,k ' + 111') [L' (A) ~ L,. <!') ]p, T( k ',jll') ~ T( k,jlA )P,. (3.26) 

Since Theorem 3.3 can be considered as a particular case of Theorem 3.4 when all parities are even, it is sufficient to give 
the prooffor Theorem 3.4. 

Take the (a/3,y8) component of the right-hand side of (3.26): 
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i-I i-I 

(rhs)aP,r6 = L L Tap (i,k + IIA) T pq (i,k' + IIp)( - 1)P(P> (p(al+ pep») 
k=jk'=j 

X (Lk (A)".,Lk, (p)~ ( - 1)P(U)(P(Pl+ p("») - L k, (P)~Lk (A)"., ( - 1)P(~)(P(Pl+ P("») 

XT~(k',jlp)T6y(k,jIA)( _1)p(6)(P("l+p(r». 

Notice that 

T pq(i,k' + IIp)Lk, (p)~ = Tt¥(i,k 'Ip), L k, (p)~T ~ (k',jlp) = T u6 (k' + I,jp), 

and perform the summation of k ' by the use of 
i-I 

L (f(k' + I) -f(k')}=f(i) -f(j)· 
k'=j 

We obtain 
i-I 

(rhs),.p,r
6 

= L(Tap(i,k+ IIA)Lk(A)".,Tp.s(i,jlp)T6y(k,jIA)( _1)p(p)(p(al+ P("»)+p(6)(p("l+P(r» 
k=j 

- Tap (i,k + IIA) T p.s (i,jlp)Lk (A)p" T"r (k,jIA)( - l)p(6)(P(rl+ pep») +p(p)(p(al+ P(P»). 

Repeating the process for the summation on k, we arrive at 

(rhs)aP,r6 = Tar (i,jIA) Tp6 (i,jlp)( _1)p(p>(p(al+ p(r»_ Tpr(i,jlp) Tar (i,jIA)( _1)p(6)(p(a» 

= [T(i,jIA) ~ T(i,jlp) ]ap,r6 

= (lhs)aP,r6 ' 

As an example we consider the Heisenberg spin chain, for which Lk (A) is a 2X2 matrix given by2 

LdA) =AI + iUaS~, 
where the S~ are spin operators satisfying the commutation relations 

[S~,Sf] = i~kk'EaPrSr· 
By a straightforward calculation, we obtain 

(3.27) 

(3.28) 

[Lk (A) ~Lk' (P)] = - i~kk'Ea{JrSrUX®up. (3.29) 

Substituting (3.29) into (3.25), we have 

[T(i,jIA) ~ T(i,jlp)] = - <~~ T(i,k + IIA) ® T(i,k + IIP)EaPrUa®uppSrT<k,jlp) ® T(k,jIA)P. (3.30) 

From the algebraic identity 

we obtain 

EaPrUX ® aPSrp= Lk (A) ®I - I ®Lk (A). (3.31 ) 

Using (3.31) and thefactthatLdA) commutes with T(i,k + lip) and T(k,jlp), the right-hand side of (3.30) can be written 
as 

;-1 

- i L (T(i,k + IIA)Lk (A) T(k,jlp) ® T(i,k + lip) T(k,jIA) - T(i,k + IIA) T(k,jlp) ® T(i,k + IIp)LdA) T(k,jIA»P 
k=j 

i-I 

= - i L (T(i,k IA)T(k,jlp) ® T(i,k + lip) T(k,jIA) - T(i,k + IIA)T(k,jlp) ® T(i,k + IIp)T(k + l,jIA»P. 
k=j 

(3.32) 

The next step is to use the difference identity 

AdT(i,k IA)T(k,jlp) ® T(i,k Ip)T(k,jIA» 

= «A - p)( T(i,k IA) T(k,jlp) ® T(i,k + lip) T(k,jIA) - T(i,k + IIA) T(k,jlp) ® T(i,k + lip) T(k, + l,jIA)} 

to carry out the summation. Finally we obtain 
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[T(i,jIA) ~ T(k,jlp,)] = [ - il(A - p,) ](T(i,jlp,) ® T(i,jIA) - T(i,jIA) ® T(i,jlp,»P, 

which is equivalent to 

R(A,p,)T(i,jIA) ® T(i,jlp,) = T(i,jlp,) ® T(i,jIA)R(A,p,), 

with 

R(A,p,) = [iI(A - p, + i)]J + [(A - p,)/(A - p, + i) ]P. 

This is the result obtained in Ref. 2. 

IV. CONCLUDING REMARKS 
In the preceding section, we derived the Yang-Baxter equations on the basis of integration (summation) formulas and 

with the help of certain differential (difference) identities. In fact, we may show that the Yang-Baxter equation is equivalent 
to a differential identity. 

Theorem 4.1: The Yang-Baxter equation 

R(A,p,)T(x,yIA) ® T(x,ylp,) = T(x,ylp,) ® T(x,yIA)R(A,p,) (4.1) 

is equivalent to the differential identity 

a -(T(x,zlp,) ® T(x,zIA)R (A,p,) T(z,yIA) ® T(z,ylp,» = o. az 
(4.2) 

Proof: Integrating this identity over the interval y<:z<:x, we get the Yang-Baxter equation. Conversely, if the Yang­
Baxter equation holds for all x and y, then it certainly holds for y = z. Multiplying the Yang-Baxter equation for x,z on the 
right by T(z,yIA) ® T(z,ylp,), we get 

R(A,p,)(T(x,zIA) ® T(x,zlp,»(T(z,yIA) ® T(z,ylp,» = T(x,zlp,) ® T(x,zIA)R(A,Jl)T(z,yIA) ® T(z,ylp,). 

Since T(x,zlp,) and T(z,yIA) depend on field operators on nonoverlapping intervals, and since the field operators commute on 
nonoverlapping intervals, 

(T(x,zIA) ® T(x,zIp,»(T(z,yIA) ® T(z,ylp,» = T(x,yIA) ® T(x,ylp,)· 

Therefore the left side above is independent of z, and the differentiation of this identity with respect to z proves the other half of 
Theorem 4.1. 

The differential identity (4.2) for the NS model for bosons can be written 

a k a 
~PT(x,zlp,) ® T(x,zIA)P T(z,yIA) ® T(z,ylp,» = --P ~T(x,zlp,) T(z,yIA) ® T(x,zIA) T(z,ylp,». (4.3) 
& A-p, & 

On the other hand, we have4 

!.... T(z,yIA) ® T(z,ylp,) = :r (ZIA,p,) T(z,yIA) ® T(z,ylp,):, az 
!.... T(x,zlp,) ® T(x,ZIA) = - :T(x,zlp,) ® T(x,zIA)r(zlp,.A):, az 

where 

r(ZIA,p,) = U(z.A) ®J + J® U(z,p,) + ca+ ® a_. 

The term ca + ® a_is the quantum correction due to the noncommutativity of the field operators. 
Using (2.6), Eq. (4.3) may be reduced to (2.8). 
In general, if we write the forward differential equation for the tensor product of two monodromy matrices in normal 

order 

!.... (T(z,yIA) ® T(z,ylp,» = :r(ZIA,Jl) T(z,yIA) ® T(z,ylp,):, az 
then the backward differential equation in normal order is 

!....(T(x,zIA) ® T(x,zlp,» = - :T(x,ZIA) ® T(x,zlp,)r(zIA,p,):. az 
We have the following theorem which was proved in Ref. 4 by another method. 
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Theorem 4.2: The Yang-Baxter equation is equivalent to From Ref. 6, 

R(Jt,Jl)r(zIJt,JL) = r(zIJl,A)R(Jt"u). (4.6) 

Proof: From (4.2) and (4.4), we have 

4-<T(x,zIJl) ® T(x,zIJt)R(Jt,Jl)T(z,yIJt) ® T(z,yIJl» 
az 

=: T(x,zIJl) ® T(x,zIJt){ - r(zIJl,A)R(Jt,JL) 

+ R(Jt,JL)r(zIJt,JL»T(z,yIJt) ® T(z,yIJl): = o. 
The theorem follows from the conclusion of Theorem 4.1. 

Similarly, if we write the differential equations for the 
tensor product ofmonodromy matrices in standard order, 

4-<T(z,YIJt) ® T(z,yIJl» 
az 

= A(zIJt,Jl)T(z,yIJt) ® T(z,yIJl) , 

a 
7-(T(x,zIJt) ® T(x,zIJl» 
az 

= - T(x,zIJt) ® T(x,zIJl)A(zIJt,Jl), 

then the Yang-Baxter equation is equivalent to 

(4.7) 

R(Jt,Jl)A(zIA,Jl) = A (zIJl,Jt)R (Jt,Jl). (4.8) 

Analogously, for supermatrices with assigned parities, 
we have the following theorem. 

Theorem 4.3: The Yang-Baxter equation 

R(A,Jl)T(x,yIA) ® T(x,yIJl) 
s 

= T(x,yIJl) ® T(x,yIJt)R(A,Jl) 
s 

is equivalent to the differential identity 

4-<T(x,zIJl) ® T(x,zIJt)R(Jt,Jl)T(z,yIJt) 
az s 

® T(z,yIJl» = 0; 
s 

and the latter is equivalent to 

R(Jt,Jl)r(zIJt,Jl) = r(zIJl,Jt)R(Jt,Jl) 

or 

R (Jt,Jl) A (zIJt,Jl) = A (zIJl,Jt)R (Jt,Jl) 

provided that 

i. (T(z,YIJt) ® T(z,yIJl») 
az s 

= :r(zIJt,Jl)T(z,yIJt) ® T(z,yIJl): 
s 

= A (ZIA"u) T(z,yIJt) ® T(z,yIJl)· 
s 

(4.9) 

(4.10) 

(4.11 ) 

(4.12) 

(4.13) 

On account of(3.22), thedifferentialidentity (4.10) for 
the NS model of fermions with repulsive interaction can be 
written as 

i. (PsT(x,zIJl) ® T(x,zIJt)PsT(z,yIJt) ® T(z,yIJl») & s s 

-ic a ( = --Ps - T(x,zIJl)T(z,yIJt) 
Jt-Jl az 

~ T(x,zIJt) T(z,yIJl) ). (4.14) 
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i. (T(z,yIJt) ® T(z,yIJl») 
az s 

= :(U(Z,A) ®I + I ® U(Z,JL) + cei3 ® e3i ) 
s s s 

x T(z,yIJt) ® T(z,yIJl):, 
s 

i.(T(x,zIJl) ® T(x,zIJt») 
az s 

= - :T(x,zIJl) ~ T(x,zIJt) ( U(Z,JL) ~I 

+ I ® U(z,A) + cei3 ® e3i ):, 
s s 

the differentiation on the left side of (4.14) can be complet­
ed. Then, (4.14) turns out to be just the differential identity 
(3.20). 

For the discrete model on a lattice the corresponding 
theorem is as follows. 

Theorem 4.4: The Yang-Baxter equation 

R(A,Jl)T(i,jIJt) ® T(i,jIJl) = T(i,j IJl) ® T(i,JIA)R(A"u) 
(4.15 ) 

is equivalent to the difference identity 

t::.k(T(i,k IJl) ® T(i,k IJt)R(A,Jl)T(k,jIJt) 

® T(k,jIJl» = o. (4.16) 

In the classical theory of inverse scattering transform 
the following theorem is true. 

Theorem 4.5: The classical Yang-Baxter equation 

{ T(x,yIJt) ~ T(x,yIJl) } 

= [r(A,Jl),T(x,yIJt) ® T(x,yIJl)] 

is equivalent to 

!({ T(x,zIJt) ~ T(x,zIJl) }T(z,YIJt) ® T(z,yIJl) 

+ T(X,ZIA) ® T(x,zIJl)r(Jt,Jl)T(z,yIJt) 

® T(z,yIJl») = o. 

(4.17) 

( 4.18) 

Proof Integrating (4.18) from y to x we obtain (4.17). 
To prove the converse, set y equal to z in (4.17), multiply on 
the right by T(z,yIJt) ® T(z,yIJl), and differentiate with re­
spect to z; this yields (4.18). 

If the mondromy matrix T(x,yIJt) is a functional of 
u(x) and u*(x), as in the case of the NS model, and the 
Poisson bracket can be put in the form (cf. Ref. 3) 

= {T(x,YIJt) ~ T(x,yIJl)} 

= i f"(8T(X,YIJt) ® 8T(x,yIJl) 
Jy 8u(z) 8u*(z) 

_ 8T(x,yIJt) ® 8T(x,yIJl»)dZ, 
8u*(z) 8u(z) 

then 

F. Pu and D. H. Sattinger 125 



                                                                                                                                    

!( {T(X,ZIA) ~ T(x,zlp) } T(Z,yIA) ® T(Z,Ylp») 

= _ i(I5T(x,yIA) ® I5T(x,ylp) 
l5u(z) l5u*(z) 

_ I5T(x,yIA) ® 15 T(x,y Ip ») . 
l5u*(z) l5u(z) 

This follows from the fact that 

I5T(Z,yIA) = 0 when WE£[yz]. 
I5U(W) , , 

Therefore, (4.18) takes the form 

4-<T(x,yIA) ® T(x,ylp)r(A"u)T(z,yIA) ® T(z,ylp» az 
= i(I5T(x,yIA) ® I5T(x,ylp) 

l5u(z) l5u*(z) 

_ I5T(x,yIA) ® I5T(x,Ylp»). (4.19) 
l5u*(z) l5u(z) 

For the NS model with repulsive interaction we recall 

r(A,p) = -~P, 
A.-p 

I5T(x,yIA) = T(X,zIA)U+T(z,yIA), 
l5u(z) 

I5T(x,yIA) = T(x,zIA)U_T(z,yIA). 
l5u*(z) 

Then (4.19) is just the same differential identity (2.8). 
Finally, we mention that all formulas obtained in the 

classical theory can be derived from those in quantum theory 
by taking the classical limit Ii-O, 

~Ii 1 
[ T(X,yIA) ~ T(x,ylp) ] - { T(x,yIA) ~ T(x,ylp) }. 

(4.20) 

For example, (2.1) can be obtained from Theorem 3.1 in this 
way. Likewise, by taking the limit Ii-O, 

~Ii 1 
[ T(x,yIA) ~ T(x,ylp) ] - { T(X,yIA) ~ T(x,ylp) } , 

, (4.21) 

we obtain, from (3.17), 

{T(x,yIA) ~ T(x,Ylp)} 

= J.xJ.x dzdz' T(X,zIA) ® T(x,z'lp) 
y y S 

X { U(X,A.) ~ U(z'"u)} T(z,yIA) ~ T(z',ylp) (4.22) 

where 
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{T(X,yIA) ~ T(x,Ylp)} ij.kJ 

= i J.x di l5T;k (X,yIA) I5Tjl (x,ylp) ( _ 1 )p(j)(P(i) + p(k» 
y '"'\ l5u(z) 8u* (z) 

_ 81jJ (x,ylp) I5Tik (X,yIA) ( _ 1 )p(/)(P(i)+ P(k»). 
l5u(z) l5u*(z) 

This equation can also be derived directly by taking into 
account the parity ofmonodromy matrices in classical theo­
ry. The parities of monodromy matrices are defined in the 
same way for both the quantum and classical cases. In the 
classical case corresponding to fermion fields, the field oper­
ators are anticommutative and form a Grassmann algebra. 
The monodromy matrices are then supermatrices. 

The anticommutators for fermion fields, with Planck's 
constant written explicitly, are 

ui(x)uj(y) + uj(y)ui(x) = Mij8(x - y), 

ui(x)uj(y) + uj(y)ui(x) = O. 

In the classical limit Ii-O, we have 

ui(x)uj(y) + uj(y)ui(x) = 0, 

ui(x)uj(y) + uj(y)ui(x) = O. 

Thus in the classical limit the fermion fields are anticommu­
tative, and the monodromy operators are supermatrices. 

The differential identity (4.18) equivalent to the classi­
cal Yang-Baxter equation (4.17) can be obtained from the 
differential identity ( 4.10) equivalent to the quantum 
Yang-Baxter equation (4.9) by putting2 

R(A,p) = P(1 + ilir(A,p» (4.23) 

and taking the limit according to (4.20). 
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The structure of a directing field is determined by the projective structure of space-time and by 
various tensor (force) fields. Given a sufficient variety of such directing fields, which can be 
measured directly given only the ability to track material bodies with respect to an arbitrary 
coordinate system, it is shown how the projective and tensor fields involved can be determined 
(and hence measured) ~ This method employs the technique of harmonic analysis on the 
forward unit hyperboloid. For the important and physically relevant case of an 
electromagnetic directing field, the projective structure and the electromagnetic field tensor 
can be determined using only one class of charged monopoles characterized by a given charge­
to-mass ratio. The method also provides a new empirical criterion for determining whether or 
not a directing field is geodesic. 

I. ACCELERATION AND DIRECTING FIELDS 

Let M be an n-dimensional, Cao manifold. A curve ele­
ment of order k at peM is an equivalence class j~ y of curves 
through p that have the same Taylor expansion with respect 
to some (and hence every) coordinate chart (U,x) p up to 
and including order k at DER. A path element of order k at 
peM is an equivalence class of paths j~s consisting of all 
paths corresponding to curves inj~y, where reS. 

A second-order curve element j~ y has local coordinates 
y; and 71, called n-velocity and n-acceleration, respectively, 
and given by 

. d. . d 2 . 
y; = dA x'oy(O), ~ = dA 2 x'oy(O). (1) 

A second-order path elementj;s has local coordinates sf 
and s~, called (n - I)-velocity and (n - 1)-acceleration, 
respectively, and given by 

dxaoy I d
2
xaoy I sf=--- , s~= . 

dxnoy p (dXnoy)2 p 
(2) 

Under a change of coordinate chart from (U,x)p to (U,x)p, 
the coordinates ofj~ y transform according to 

rt =1'5Y;, ri =1'5y{ +1';kyf11, (3) 

and the coOrdinates ofj;s transform according to 

and 

ga _ 1'~s~ +1';Us'i'sf + 2X~s'i' +1':n 
2 - (X: +X;S02 

gf(1';s~ +1';Us'i'sf +2X~s'i' +1':n) 
(X: +X;S02 

(5) 

where X = xox- I
• 

Denote by 2": (M) and 2"f (M) the bundles of first­
and second-order curve elements and by ~ I (M) and 
~2(M) the bundles of first- and second-order path ele­
ments. In each case, the bundle of second-order elements can 
be regarded as a bundle over the corresponding bundle of 
first-order elements. 

An acceleration field is a cross section A: 
L : (M) -L f (M). Such a field is described in terms oflocal 
coordinates by functions A ~ (x i,71), which transform under 
a change of coordinates according to 

A~(xi,rD =X5(Xi)A~(Xi,y;) +1'5dxi)yf11. (6) 

An acceleration field is called geodesic iff for every peM, 
there is some coordinate chart (V,x) p such that the func­
tions A ~ (Xi, r; ) vanish at p. A geodesic acceleration field is 
denoted by r and has the special functional form 

q (Xi,y; ) = - r5k (xi)Y; 11. (7) 

A directing field is a cross section E: DI(M) _JI}2(M). 

Such a field is described in terms of local coordinates by 
functions E~ (Xi,S f), which transform under a change of co­
ordinate chart according to 

3~(.Xi,gf> = [1'~(xi)E~ (xi,sf> + 1'~u(xi)s'i'Sf + 2X:p (xi)s'i' + 1':n (Xi>]/(1': (Xi) + 1';(Xi)Sn2 

- gnx; (xi)E~ (Xi,sf> + 1';U(xi)s'i'sf + 2X~p (Xi)S'i' + 1'~n (Xi) ]/(1'~ (Xi) + x; (Xi)S 0 2
• (8) 

A directing field is called geodesic iff for every peM, there is 
some coordinate chart (V,x) p such that the functions 
3~ (Xi,g f) vanish at p. A geodesic directing field is denoted 
by n and has the special functional form 

n~(Xi,sf> = Sf(n;u(xi)s'i'sf + 2n~p(xi)s'i' + n~n (Xi» 

- (n~u(.t)s'i'Sf + 2n:p(~)s'i' + n:n(xi», 
(9) 
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where the projective coefficients n;k (Xi) are traceless so that 
n~n (Xi) and n~ (Xi) may be eliminated from (9). 

An acceleration field A determines a directing field E iff 
A is of the form (see Ref. 1, Theorem 3.1) 

A ~ (xi,Y;) = B(xi,Y;)Y; + Ci(Xi,Y;), 

where 

C i(Xi, A Y; ) = A 2C i(Xi,Y; ). 

II. ANALYSIS OF DIRECTING FIELDS 

( 10) 

( 11) 

The directing fields E~ (Xi,S f) considered in this section 
are all those of the form 

(12) 

where A ~ (Y; ) is any member of the following multiple-pa­
rameter family: 

A ~ (Y; ) = PI (grs Yt Y. ) 1/
2TJ, y{' - nJ,j, Y{'Y{' 

+ P3(grsYt y.) -1/
2TJ,M, Y{'Y{'Y{' + ... 

+ 1/. (g .,r.,,)(k-2)/2Ti ,yj""yA 
r-k rsfl fl J,"'1k I I' 

(13) 

where gjk is the space-time metric tensor, the nJ,j, are the 
projective coefficients, and the 

(14) 

are tensors antisymmetrized on the first two indices and then 
symmetrized on the last r indices so that 

(15) 

and 

A~.a =0. (16) 

The fact that the fields A ~ (Y; ) are homogeneous of degree 2 
in the variables Y; yields the relation 

A ~ (Y;) = YtA t,(Y;)· (17) 

The relations (12), (16), and (17) may be used to express 
the fields A ~ (Y; ) in terms of the fields E~ (5 f). The result is 

A ~(Y;) = (11 )22~(sf) - [11rf/(n + 2) ]2~.p(sf), 

A;(Y;)= - [(11)2/(n+2)]2{p(sf). (18) 

Elsewhere2 we have shown that the fields E~ (5 f) can be 
measured directly in a noncircular manner given access only 
to the differential topology of space-time, that is, the ability 
to track material bodies with respect to an arbitrary coordi­
nate system. It follows that the fields A ~ (Y; ) are also mea­
surable. 

Although the full space-time metric cannot be measured 
in a direct manner, the conformal structure of space-time 
can be directly measured. The remaining unknown scale fac­

I 

yi = W], yi'yi2 = [yi'yi2] + !gi,i2, 

tor can be determined provided that it is possible to measure 
the projective structure of space-time.2

•
3 In this section we 

show that the projective structure and the tensor fields that 
occur in the fields (13) can be determined provided that the 
(measurable) directing fields corresponding to the fields 
( 13) are known. Our procedure employs harmonic analysis 
on the forward unit hyperboloid. 

We denote the coefficients that determine the conformal 
structure locally by gij' which for definiteness we assume to 
be normalized to satisfy 

det(gij) = - 1. (19) 

Define 

r; = Y; I ~ grs Yt Y. . (20) 

Since the terms on the right-hand side ofEq. ( 13) are homo­
geneous of degree 2 in the n-velocities Y; , division by gij Y; y{ 
yields 

Ai (:J ) = I/. yi yA j, _ W ' yA j'yA j, 
2 f I r-I J, I J,h I I 

+ I/. CTi ,yA j, • •• yA A 
r-kV J,"'1> I I , (21) 

where the unknown conformal factor has been absorbed into 
the coefficients y. It is worth noting that these functions 
defined on the forward unit mass shell satisfy the Lorentz­
finite property; that is, the set of functions (for any k and for 
any coefficients Y and n) 

{A ~ (Aj -
Iiyf> IAJeSO(1,n - 1)} (22) 

is a finite-dimensional vector space with respect to pointwise 
addition and scalar multiplication. Helgason4,s has shown 
that such functions must be the restriction to the forward 
unit hyperboloid of a polynomial on Rn . 

The analysis of the fields is carried out on a pointwise 
basis as far as the space-time coordinates Xi are concerned. 
Let i be coordinates for the interior of the forward light 
cone at the given space-time point so that 

gijiyj>O. (23) 

At the given point, the microinvariance group of the confor­
mal structure acts on the interior of the forward light cone. 
The generators for the action of the Lorentz subgroup are 

J'S = y'V:' ~ - y'g" ~. (24) 
ay' ay' 

Set 

(25) 

Denote by [Yi'Yi,. , 'i'] the product Yi'Yi, . . 'i' with all traces 
removed so that 

yi'yi'yi, = [yi'yi'yi,] + [lI(n + 2)] (gi,i'yi, + gi2i'yi, + gi,i'yi2), (26) 

and 

y'yi2yiji4 = W'y2yiyi4] + [lIn(n + 2)] (gi,i2gi,i4 + gi,i'gi2i4 + gi,i4gi2i,) 

+ [lI(n + 4) ](gi,i2[yiyi4] + gi,i'W'yi4] + gi,i4W'yi,] + gi2i'W'yi4] + gi,i'W'yi,] + gi"i4 [yi'yi' 1> . (27) 
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The Laplace-Beltrami operator on the forward unit hyper­
boloid is given by 

L = !graKsbJrsrb. (28) 

Note that this operator does not depend on the arbitrary 
normalization of g. The functions [Yi'Yi, ... i'] satisfy 

- L [Yi'Yi, .. 'i'] = (r + (n - 2)r)[Yi'Yi, .. 'i'] . (29) 

By expressing the field (21) in terms of the quantities 
[Yi'Yi, .. ·i'], one obtains 

Ai W) =Si+Si [y~j,] +Si, [yj'yj,] + ... 
2 h J~ 

+ S5'"'jJyi''' ./k]. (30) 

The first task is to determine the coefficients S 5", 'j,' For con­
venience, write A for A ~ (yi), L, for the operator 

-L - (r + (n - 2)r), and S, for S5''''j, [yj""yj,]. The 
operator L, multiplies the corresponding term S, by zero 
and any other term, say Ss by the nonzero integer 
(52 + (n - 2)s) - (r + (n - 2)r).HencethefieldA hasthe 
form 

A =SO+SI + ... +Sk 

for some integer k, just in case 

LkLk _ I ... LILoA = 0, 

but 

L k_ IL k_ 2 " 'LILoA :;60. 

In fact, one has 

L k_ IL k_ 2 "'L 1LoA 

(31) 

(32) 

(33) 

= C~X [(k 2 + (n - 2)k) - (r + (n - 2)r)] )Sk' 

(34) 

from which one can obtain Sk' Moreover, 

L k_ 2 L k_ 3 "'L 1LoA 

= Ct( [«k _1)2 + (n - 2)(k - 1» 

- (r + (n - 2)r)] )Sk_1 

+ ()X [(k 2 + (n - 2)k) - (r + (n - 2)r)] )Sk' 

(35) 

Since Sk is known, one can subtract the second term and 
hence determine Sk _ I . Clearly, this process can be used to 
determine all of the coefficients S,. 

In general, the coefficients S L", 'j, are mixtures of the 
coefficients Y5,j""j, and TIL, that one desires to determine, 
and the procedure used to determine them can, in principle, 
be quite complex. Fortunately, the analysis of directing 
fields for neutral monopoles and electrically charged mono­
poles is relatively straightforward. We therefore consider 
these physically relevant and important cases before consid­
ering the complications that arise in a case involving terms 
up to fourth order. For an electromagnetic directing field, 
only the first two terms of (21) occur, and It I is the electro­
magnetic charge-to-mass ratio. One obtains 
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SJ, =ItIYJ" (36) 

SJ,j, = TIJ,j, - (1!n)gj,j,gk,k'TI~,k,. 

The projective structure is easily recovered from the first and 
third of these equations. One obtains 

(37) 

It is important to note that the projective structure so deter­
mined does not depend on the arbitrary normalization of 
gj, j, . The projective structure TIJ,j, and the conformal struc­
ture gj, j, together uniquely determine2

,3 the affine structure 
rJ,j, and hence a Weyl structure3

,6 on space-time provided 
that the projective and conformal structures satisfy a sec­
ond-order compatibility constraint. Moreover, provided 
that r k = r~k satisfies 

r kJ - rj,k = 0, (38) 

the conformal structure reduces to a Riemann structure. 
Thus the scale factor A(Xi

), where 

gj,j, (Xi) = A (xi)gj,j, (Xi), (39) 

can be determined by parallel transport of the scale factor 
chosen arbitrarily at anyone point, and the electromagnetic 
field tensor T5, is given by 

ItITJ, = ~A(Xi)SJ, =1t1~A(Xi)Y5" (40) 

where the charge-to-mass ratio It 1 must be chosen arbitrarily 
for at least one class of charged particles in order to deter­
mine the scale for charge space. 

Remark 1: In all extant work3
•
7

-
10 on the constructive 

axiomatics of the general theory of relativity, it was neces­
sary to specify that the test particles used to determine the 
projective structure of space-time were not only monopole 
but also neutral. In a previous paper, II we constructed a 
method of uniquely decomposing a directing field of the type 
( 13) into its projective and force components. This method 
has the virtue of permitting the determination of the projec­
tive coefficients TI 5k given only one class of monopoles (13) 
regardless of the complexity of the force component; how­
ever, it requires that the gij be measured with sufficient preci­
sion to permit the computation of the conformal connection 
coefficients K 5k from them. 

In contrast, in order to determine the TI5k' the harmonic 
method discussed in this paper requires only the gij and not 
the K 5k' The K 5k are only required for the determination of 
the scale factor A (Xi) and hence the metric g ij' On the other 
hand, as is shown below, many classes of monopoles with a 
suitable variety of charge-to-mass ratios may in principle be 
required to determine the TI5k In practice, however, this is 
not really a problem because only the electromagnetic case is 
physically relevant and in this case only one electromagnetic 
charge-to-mass ratio is needed. In addition, the general tech­
niques of harmonic analysis are widely known, a fact that 
makes the harmonic method more transparent. 

Remark 2: Although the projective structure (geodesic 
directing field) that governs the motions of neutral massive 
monopoles is a special case of the electromagnetic directing 
field discussed above, it is particularly important because of 
the central role it plays in the formulation of the Law of 

R. A. Coleman and H. Korte 129 



                                                                                                                                    

Inertia. 1 In previous work2 (see, also Ref. 12), we provided 
an empirical criterion for determining whether or not a di­
recting field is or is not geodesic (projective); namely, a di­
recting field E~ (Xi,S f> is geodesic iff it is cubic in its 
(n - 1) -velocities sf. The analysis presented above shows 
that an alternative criterion is the following. 

An Empirical Criterion/or Geodesicity: A directing field 
:::~ (sf> is geodesiciffthe corresponding field (21) satisfies 

t 

SJ, = ft\,'TJ, + [3ft3/(n + 2) ]gk,k'Y~,k,j,' 

(41 ) 

and 

(42) 

We conclude with the analysis of a somewhat more 
complicated possibility, namely, the field (21) with k = 4. 
The SJ""j, are given by 

SJ,j, = (IIJ,j, - (l!n)gj,j,gk,k'II~,k) + [6ft4/(n + 4) ](gk,k'Y~,k,j,j, - (l!n)gj,j,gk,k'gk,k'Y~,k,k,d, (43) 
Si - [Yi _ [l!(n + 2)] (g gk,k,Yi + g gk,k,Yi + g gk,k,Yi )] 

ilj2i, - 1t3 i.ili, if.i2 k,k1i, '.i2il k,k1i. 'i_,j, k,k1i2' 

and 

- [l!(n + 2)] (g .. g .. + g .. g .. + g. j g .. )gk,k'gk,k'Y'k' k k k ]}. 
':1112 Ih14 '.lIb 'llJ4 '11 4 'llh I 2 .1 4 (44) 

It is clear that one must know the SJ,j""j, for a sufficient 
variety of ftT' Moreover, one complete set of the ftT must be 
fixed arbitrarily in order to determine the scale for each of 
the charge-to-mass ratios. For one field for which 1"3 #0 and 
1"4#0, define the charge-to-mass scales by setting 1"3 = 1 
and 1"4 = 1. One can then easily determine [t3 and [t4 from 
the ratio of :SJ,j,j, and SJ,j,j, an5! the ratio of :SJ,j,j,j. ar.:,d 
SJ,j,j,j4' respectively. Then from SJ,j, and SL, and from S 
and S the projective and nonprojective terms can be recov­
ered. Thus the projective structure can be reconstructed in 
the same way as in the case of the electromagnetic directing 
field, and the metric tensor and hence the scale factor A(Xi) 

can be determined from the projective and conformal struc­
tures as before. In addition, the nonprojective terms of S i, 
S J,j,j,j. suffice for the reconstruction of YJ,j,i,j4 and hence 
of TJ,j2j,j4' Finally, given 

SJ, =ftIYJ, + [3ft3/(n+2)]gk,k'Y~,k,j,' (45) 
ASi A CTi + [3 A I( +2») k,k,CTi 

j, = ftl J j, 1"3 n g J k,k,j,' (46) 

one can obtain 

/13S J, - ft3S J, = (/13ft I - ft-fl I ) YJ, . ( 47) 

One could determine the scale for the I" I charge-to-mass ra­
tio by setting the coefficient (/13ft I - ft-fl I) equal to 1 and 
hence determine YJ, ; however, I" I and /11 are still not known 
and there does not seem to be any straightforward way to 
determine the field gk,k, Y~,k,j,' However, if the family of 
directing fields contained a pair of fields with 1"; = 0,1"3 #0, 
ftt' = 0, and ft~ #0, then they could be identified by the fact 

130 J. Math. Phys., Vol. 31, No.1, January 1990 

I 
that the combination corresponding to (47) would vanish 
(assuming it is already known that YJ, does not vanish). 
From these fields, gk,k'Y~,k,j, can be determined and hence 
YJ, j,j, and T J, j,j, can be reconstructed. 
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Chandrasekhar has developed a method of analyzing first-order perturbations about some 
known metrics using the N.P. system of equations. In this paper it is shown that some of the 
intriguing aspects that have been noted in his method-the superfluity ofthe N.P. system, and 
the existence of very complicated integral identities-are not peculiar to this particular type of 
perturbation analysis; rather the underlying principles are fundamental properties associated 
with the differential structure of the N.P. system. Specifically the three different subsystems 
used in the three space-times where Chandrasekhar's method has been applied, are confirmed 
directly as sufficient subsystems for extracting all information from the complete N.P. system, 
for the respective situations in which they have been used. 

I. INTRODUCTION 

In his work on gravitational perturbations about a Kerr 
black hole, Chandrasekhar l

-
s draws attention to the need for 

further investigation of a number of related features that 
emerge in his analysis. These include 

(i) the superfluity of the N.P. system of equations,6 
which permits the complete solution of this system to be 
obtained by solving explicitly only a particular subsystem 
(which shall be called subsystem CI) of the whole system; 

(ii) the existence of integral identities (and, in particu­
lar, the depth of their integral nature) which are obtained in 
the process of calculating the solution of subsystem CI; and 

(iii) the question whether a similar type of analysis 
would supply new integrability identities for existing func­
tions of mathematical physics, when they occur in Einstein's 
equations. 

Chandrasekhar considers a Kerr black hole being per­
turbed so that the N.P. quantities associated with the Kerr 
metric change by the first order of smallness and with a par­
ticular t and q; dependence. He then solves the subsystem 
C I-to this level of accuracy and with this restricted t and q; 
dependence-to obtain explicit expressions for all the first­
order changes. 

The various specializations being made, the approxi­
mate nature of the analysis, the very long and complicated 
calculations involved, mean that the features described 
above emerge in a puzzling manner; it is not immediately 
apparent whether they are features of this particular ap­
proach to this particualr problem, or whether they are of a 
more general and fundamental nature. 

The purpose of this paper is to examine the first feature 
noted above-although the results obtained will have impli­
cations in the greater understanding of the related features. 
When the differential structure of the N.P. system is consid­
ered, together with the relationship of this system to Ein­
stein's equations, it becomes clear that the superfluity of the 
N.P. system and the existence of associated integral identi­
ties are fundamental features-peculiar neither to Chandra­
sekhar's approach, nor even to this type of perturbation 
analysis. 

The results of this paper follow from work by Papape­
trou 7,8 on the structure of the system of equations used in 
tetrad formalisms. Since these results do not seem to be well 
known, they are summarized in the following section; and in 
Sec. III some general implications are deduced regarding 
existence of sufficient subsystems ofthe N.P. system. 

In Sec. IV it is shown that in general subsystem CI is not 
sufficient to guarantee exact solutions of the whole N.P. sys­
tem. Of course Chandrasekhar's analysis seeks to find ap­
proximate solutions with a restricted type of t and q; behav­
ior; and it does not automatically follow that if a particular 
subsystem is insufficient (or sufficient) in general to guaran­
tee the exact solution, that it is insufficient (or sufficient) to 
guarantee an approximate solution of a particular restricted 
type. In fact the insistance that solutions must have a partic­
ular type of t and q; dependence is a crucial restriction, which 
ensures that subsystem CI is sufficient in these circum­
stances. So it is proved in Sec. V that subsystem CI is a suffi­
cient subsystem to guarantee restricted approximate solu-

. tions of the type under consideration. 
It should be noted that Chandrasekhar did not show 

directly that subsystem CI was sufficient, and some of the 
N,P. equations were left unsolved in his analysis-although 
the nature of his solution gives evidence that all of the infor­
mation in the N.P. system has indeed been extracted using 
subsystem CI. However, in one of his original papers2 Chan­
drasekhar had prematurely argued that all of the informa­
tion had been extracted-using an even smaller subsystem 
than subsystem CI-only to find later that this was not the 
case, and additional N.P. equations had to be solved explicit­
ly.3,4 

The result obtained in this paper therefore confirms un­
ambiguously that Chandrasekhar's analysis, using subsys­
tem CI has indeed extracted all possible information from 
the N.P. system for the type of restricted and approximate 
solutions under consideration. It is also noted that the sig­
nificance of subsystem CI is limited to this particular ap­
proach to this particular problem. However, in any attempt 
to find exact or approximate solutions to Einstein's equa­
tions there will usually be one or more subsystems that sug­
gest themselves in a natural way; the sufficiency of these 
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subsystems can be tested by Papapetrou's identities.9-11 
Recently Chandrasekhar and Xanthopoulus 12 have car­

ried out the same type of perturbation analysis on region I 
and region II of Bell-Szekeres space-time. 13

-
15 In each re­

gion only a subsystem of the complete N.P. system is solved 
explicitly (subsystems C2 and C3, respectively). Although 
there is no doubt that all of the information has been extract­
ed, it is instructive to use Papapetrou's identities to confirm 
that the subsystems C2 and C3 are indeed sufficient in their 
respective situations. 

This is shown in Sec. VI; and once again it is noted that 
the usefulness of both subsystems seems to be restricted to 
these particular situations. 

Since subsystems CI , C2, and C3 ·are all different, some 
overall insight into the redundancy of the N.P. system and 
the role of integrability conditions has been gained, and this 
is summarized in Sec. VII. 

II. PAPAPETROU'S IDENTITIES 

The basic system of equations for the tetrad formalism 
can be presented as 

X mnp =0, 

Y mnpq = 0, 

v,m[npq] = 0, 

where 

(2.1 ) 

(2.2) 

(2.3) 

Following Papapetrou,8 labels X mnp' Y mnpq' Vsmnpq have 
been introduced for the different equations; the remainder of 
the notation is standard. 

The redundancy is then given explicitly by the following 
three sets of identities: 

X[m'n:p] -X:[mX,,'p] +X[m'n{rl'lsp] -rp ]',} 

+ 2X:[mrn'p] + Y[m'np] = 0, (2.7) 

Vmn[pq,] - Ymn[pq:r] + rmn[p:I'IXq',] + 2r[pqYlmnsl'] 

- r m[p lIsnlq,] + rn[p Ylsmlq,] + rmn sYs[pq,] = 0, (2.8) 

7('Irs{Vmnpqr.. + 3y,.. Vmn[pqt] - 2Y[mlp Vt1n]qrs 

- Rmnt,ytpqs + Rq,t[n Ytm]ps + !Rmnpq:tX/.} = 0. 
(2.9) 

Also used in the tetrad formalism are the commutator 
equations 

{VIm Vn] + r[mPn]Vp } = 0. (2.10) 

The N.P. formalism for general relativity6 is derived 
from the above by 

(i) choosing the four tetrad vectors to be two real and 
two complex null vectors, so that there are 12 complex spin 
coefficients and 12 independent complex components of the 
Riemann tensor; 

(ii) using Einstein's equations to replace the Ricci ten-
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sor components in (2.2) and (2.3) by the appropriate ener­
gy-momentum tensor components; and 

(iii) writing out each individual equation from the four 
sets (2.1)-(2.3) and (2.10) using a different symbol for 
each spin-coefficient, differential operator, and independent 
Weyl tensor and energy-momentum tensor component. 

Perhaps two points over which there seems to be some 
uncertainty in the literature l6

,17 need to be emphasized: 
(a) The four sets of equations (2.1)-(2.3) and (2.10) 

with the substitutions noted above are completely equivalent 
to Einstein's equations7 (although this N.P. system is obvi­
ously larger with considerable redundancy). 

(b) The structure equations defining the spin coeffi­
cients (2.1 ) and the commutator equations (2.10) are exact­
ly equivalent, so only one of these sets needs to be included in 
the formal N.P. system.7 

In the remainder of this paper, "the complete N.P. sys­
tem of equations" will refer to the three sets of equations 
(2.2), (2.3), and (2.10) written out individually subject to 
the substitutions noted above. [These are, respectively, Eqs. 
(310), (321,322), and (303,304) on pages 45-51 of Ref. 5.] 

. The usefulness of Papapetrou's explicit determination 
of the redundancy is that one is able to pick out from the 
complete system of equations a particular subsystem and to 
test directly whether it is sufficient to ensure that the com­
plete system is satisfied. A simple example will illustrate. 
Suppose one solves only the Ricci equations (2.2) and the 
commutator equations (2.10), which in the above notation 
are equivalent to 

X mnp = 0, for all m,n,p, (2.11 ) 

Y mnpq = 0, for all m,n,p,q. (2.12) 

By virtue of identity (2.8), 

Vsm[npq] = 0, for all m,n,p,q,s, (2.13) 

and so the complete N.P. system is satisfied. This is of course 
just the well-known result that Eqs. (2.13) (the Bianchi 
"identities") are identically satisfied, provided that the two 
sets of structure equations (2.11) and (2.12) are satisfied. 
However, it is easy to note that this subsystem is unnecessari­
ly large. An appropriately chosen subset of the Ricci equa­
tions (2.12) together with all of (2.11) would suffice, since 
Eqs. (2.11) substituted in identity (2.7) yield 

Y[msnp] =0. (2.14) 

In practice, in many calculations the Bianchi equations 
(2.3) are the easiest equations to manipulate, and so it is 
often preferable to choose them as part of the basic subsys­
tem, together with the commutators (2.10); then the identi­
ties (2.7)-(2.9) can be used to determine just how few of the 
equations from the remaining set of Ricci equations (2.2) 
are really needed to be added to (2.3) and (2.10) to ensure a 
sufficient subsystem. 

Since Chandrasekhar's method involves a subsystem 
consisting of all Eqs. (2.3) and (2.10), and some of Eqs. 
(2.2), Papapetrou's identities enable an analysis of this sys­
tem to be made comparatively easily. 
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III. SUBSYSTEMS OF H.P. SYSTEM 

In this section some general results for arbitrary spaces 
are deduced from Papapetrou's identities (2.7)-(2.9). 

The first point to note is that the commutator equations 
(2.10) [or equivalently the structure equations (2.1)] imply 
from (2.7) that 

Y[msnp) =0. (3.1) 

These are the six complex and four real "elimination real­
tions" quoted by Chandrasekhar. 18 Therefore, provided that 
Eqs. (2.10) are satisfied, Y mnpq has exactly the same symme­
try properties as the Riemann tensor Rmnpq. So it will be 
convenient to use a similar N.P.-type notation, 

q/) = - Y)213' q/4 = - Y 4242, 
o 0 

q/2 = - Y 1342, 
o 

<1>00 = - !Yw <1>21 = - !Y24, 

<1>11 = -!( Y)2 + Y 34 ), <1>02 = - !Y33, 

<1>0) = - !Y13, <1>22 = - !Y22, 

<1>12= -!Y23, <1>20= -!Y44, 
<1>\0 = - !Y\4t A = Y /24, 

(3.2) 

(3.3) 

where Y mnpq' Y mp relate to Y mnpq in exactly the same way as 
o 

the Weyl tensor Cmnpq and Ricci tensor R mp , respectively, 
relate to the Riemann tensor Rmnpq. 

Next it is noted that when the Bianchi equations (2.3) 
are added to the commutator equations (2.10), then (2.8) 
becomes 

Ymn[pq:r) - 2y[pq Ylmnslr) + r'm[p Ylsnlqr) - r'n[p Yjsmlqr) = o. 
(3.4) 

So Y mnpq also obeys the same differential equations as R smnp' 

This means that each equation of (3.4) can be written out 
explicitly in the N.P.-type notation simply by substituting 
the various q/,<I> quantities defined in (3.2) and (3.3) for 
their corresponding Riemann tensor counterparts in the 
usual N.P. version of the Bianchi equations-Eqs. (321), 
(321'), and (322) on pp. 49-51 of Ref. 5. 

In addition, (2.3) and (2.10) imply from (2.9) 

Rmntrytpqs - Rqrt[n Ytm)ps = 0, 

which written out explicitly gives 

'IIOq/3 - 3'11)q/2 + 3'112q/) - '113q/0 = 0, 

'II)q/4 - 3'112q/3 + 3'113q/2 - '114q/) = 0, 

'IIOq/4 - 2'11)q/3 + 2'113q/) - '114q/0 = O. 

(3.5) 

(3.6) 

So provided (2.3) and (2.10) are satisfied, the eighteen 
complex Ricci equations (2.2) are subject to nine complex 
and four real algebraic identities (3.1) and (3.6) together 
with nine complex and two real integrability conditions 
(3.4). Clearly the two sets of equation (2.3) and (2.10) need 
only a small number of equations from (2.2) to ensure that 
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the complete N.P. system is satisfied. There are many varia­
tions of sufficient subsystems-the type of analysis being 
carried out and/or the tetrad formalism being used will sug­
gest the appropriate subsystem to be tested for sufficien­
cy.9-lI 

Although there are many choices of sufficient subsys­
tems, there is one equation from the complete system that 
must always be included in the subsystem to ensure suffi­
ciency in general cases. Note that if all of the equations in the 
N.P. system (2.1), (2.2), and (2.10) are satisfied, with the 
exception of the one equation 

A = 0, (3.7) 

then the identities (2.7)-(2.9) reduce to the four equations 

A,p = 0, (3.8) 

which in general have a nonzero (although constant) solu­
tion. Hence any subsystem of equations that does not include 
Eq. (3.7) explicitly or implicitly will not be a sufficient sub­
system for arbitrary spaces. 

IV. SUBSYSTEM C1 

In this section Chandrasekhar's subsystem C) is consid­
ered explicitly. This subsystem consists of all the commuta­
tor equations (2.10), all the Bianchi equations (2.3), and six 
Ricci equations from (2.2) [given by Eqs. (310), members a, 
b, g,j, n, p, onpp. 46-47 of Ref. 5]. In the notation of the last 
sections, subsystem C) consists of 

X mnp = 0, (4.1) 

q/o = 0 = q/4' (4.2a) 

<1>00 = <1>22 = 0 = <1>02 = <1>20' (4.2b) 

Vsm[npq) = O. (4.3) 

Since this system does not contain Eq. (3.7), it cannot 
be a sufficient subsystem for arbitrary spaces. 

Of course Chandrasekhar was not seeking arbitrary so­
lutions, but rather solutions to a first level of approximation 
whose perturbations have a t and ({J dependence given by 

(4.4) 

where u+ is a real positive constant and m is an integer 
(positive, negative, or zero). The Xmnp'Ymnpq' V smnpq labels 
for the equations will therefore now only be considered to 
this level of approximation, and so can be written 

X -X(O) XO) 
mnp = mnp + mnp' 

Y _y(O) yO) 
mnpq = mnpq + mnpq' 

v. - V(O) + VO) 
smnpq = smnpq smnpq' 

(4.5a) 

(4.5b) 

(4.5c) 

Since the equations are satisfied to zeroth order, all (0) 
marked terms are identically zero. The perturbation quanti­
ties, marked with (1), will all have the t and ({J dependence 
given by (4.4), and the usual conventions of dropping the 
( 1) superscript and suppressing the factor (4.4) on such 
quantities will now be followed. 

Subsystem C)' for the type of analysis carried out by 
Chandrasekhar, is therefore given by (4.1 )-( 4.3), where the 
various quantities are now considered as perturbed quanti­
ties of first order with an implicit factor (4.4). 
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With this interpretation of ( 4.1 ) -( 4. 3), the argument in 
the last paragraph of the last section is no longer valid. Since 
A must have a factor (4.4), the only solution to (3.8) is 

A = 0. (4.6) 

Hence the argument in that paragraph cannot be used to 
rule out subsystem C1 as a sufficient subsystem for the re­
stricted type of approximate solution sought by Chandrasek­
har. So subsystem C1 will now be considered explicitly for 
such situations. 

v. SUFFICIENCY OF SUBSYSTEM C1 

The equations (4.1 )-( 4.3) comprising subsystem Care 
now substituted into the identities (2.7)-(2.9), and the re­
sulting equations are solved to show that the only soluton is 
that all the remaining ~ quantities be zero, i.e., the complete 
N.P. system is satisfied. 

When (4.1) and (4.3) are substituted into identity 
(2.8) as in the last section, it reduces to (3.6); the additional 
substitution of (4.2), together with the consideration of 
terms up to first order only, reduces (3.6) to 

W1 =0, (S.la) 

W3 = 0. (S.lb) 

When (4.1)-(4.3), together with (S.1), are substituted 
into identity (2.8), the 11 equations can be written out expli­
citlyas 

MOl - 2(E + P*)~01 = 0, 

I5~Ol + 2( 1T* - /J)~Ol = 0, 

a~21 + 2(1'* + r)~21 = 0, 

15*~21 + 2(a - 1"*)~21 = 0, 

DW2 + 2DA -15*~~1 

= 3pW2 - 2(a + 1"*)~Ol + 2p~11 - 2-rC1>10' 

aW2 + 2aA -15~21 

(S.2a) 

(S.2b) 

(S.2c) 

(S.2d) 

(S.3a) 

= - 31'W2 + 2(1T* + /J)~21 - 2p,~11 - 2~12' 
(S.3b) 

~2+UA+a~0l 
= JrW2 - 2(1'* - r)~01 + 2p~12 - 2-rC1>w (S.3c) 

I5*W2 + U*A + M21 

= - 3ri2 + 2(p* - E)~21 - 2p,~10 + 2~w(S.3d) 

D(W2 + W1 - ~11 + A) 
= 3pW2 + 3p*W1 - (21'* + 1T)~Ol - (21' + 1T*)~1O' 

(S.4a) 

a(W2 + W1 - ~11 + A) 

= - 31'W2 - 31'*W1 + (1"* + 21T)~12 

+ (1' + 21T* )~21' (S.4b) 

I5(W2 + W1 + ~11 + A) 

= 31'W2 - 31T*W1 - (2p,* -1')~01 + (2p - P*)~12' 
(S.4c) 

The notation and conventions of Ref. S are being used­
in particular, all spin coefficients and operators are zeroth 
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order (Kerr), since the field quantities are all first order. 
Note that, with respect to the original N.P. notation, (S.4a) 
and (S.4b) are real. 

There are a number of possible integrability conditions 
for this system (five complex and two real), but the only 
nontrivial ones are the two real ones from the set of equations 
(S.4); these conditions are quite complicated in the general 
case. 

When the ~ quantities in (S.2)-(S.4) are restricted to 
having the factor (4.4), then the zeroth-order operators act­
ing on such quantities have the form 

D = a, + iK la, a = - (al2p2)(a, - iK la), 

15 = (1/,ov1) (ae - Q), 15* = (11,O*v1) (ae + Q), (S.5) 

where 

K = (r + a2 )0+ + am, Q = ao+ sin (J + m esc (J, 

,0 = r + ia cos (J, ,0* = r - ia cos (J, (S.6) 

p2 = r + a2 cos2(J, a = r - 2Mr + a2. 

When these operators are substituted into Eqs. (S.2 )-( S.4), 
they become a system of differential equations in the two 
coordinates rand (J. The two nontrivial integrability condi­
tons have a simpler form; in addition, two real and two com­
plex algebraic compatibility conditions arise when 

(i) a, terms are eliminated by combining (S.4a) and 
(S.4b); 

(ii) ae terms are eliminated by combining (S.4c) and 
(S.4c*); 

(iii) a, and ae terms are eliminated by combining 
(S.2b) and (S.2d) with (S.3c) and (S.3d); and 

(iv) a, and ae terms are eliminated by combining 
(S.2a) and (S.2c) with (S.3c) and (S.3d). 

So there is an algebraic system of six equations (four real 
and two complex) in five unknowns (A'~l1 real and 
W2'~Ol'~21 complex). This is equivalent to a homogeneous 
system of eight real algebraic equations in eight real unk­
nowns, which will have only the trivial solution if all the 
equations are linearly independent. To show that this system 
is indeed linearly independent in the Kerr background it is 
clearly sufficient (and much easier) to show that it is linearly 
independent in a special case of the Kerr background, i.e., 
the SchwarzschiId background. 

When the algebraic and integrability conditions for the 
system (S.2 )-( S.4) are specialized to a Schwarzschild back­
ground they simplify as follows. 

The two real integrability conditions found from (S.4a) 
and (S.4b), and (S.4c) and (S.4c*), respectively, are 

K(W2 + W1) = 0, 

K(W2 - Wt) = 0. 

(5.7a) 

(S.Th) 

The compatibility conditions for (S.4a) and (S.4b),and 
(S.4c) and (S.4c*), respectively, are 

K(W2 + W1 - ~11 + A) = 0, (S.7c) 

v1Q(W2 + W1 + ~11 + A) + «al2p2)~01 + ~21) 
- «al2p2)~10 + ~d = O. (S.7d) 

The compatibility conditions from (S.2b), (S.2d), 
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(5.3a), (5.3b), and (5.2a), (5.2c), (5.3c), and (5.3d), re­
spectively, are 

V2Q('P2 + 2A) - 2a(~2 ~Ol + ~21) 

+ 2rM(~2~10 + ~12) - 2riK(~2~01 - ~21) = o. 
(5.7e) 

iK (- -) ( a - -) pV'l '1'2 + 2A - cot () 2p2 <1>01 + <1>21 

( a - -) - Q 2p2 <1>10 - <1>12 = o. (5.7f) 

It is easy to see that the only solution to the system (5.7) 
is the trivial solution, and this must, therefore, also be the 
only solution in the Kerr background. So it has been shown 
that sybsystem C l ensures that all other N.P. equations are 
satisfied, 

~ll = ~21 = ~01 = 0 = 'P2 = A, (5.8) 

for the restricted approximate analysis under consideration. 

VI. SUFFICIENCY OF SUBSYSTEMS C2 AND C3 

In this section the subsystems considered in the pertur­
bation analysis 12 ofBell-Szekeres space-time13 are examined 
and shown to be sufficient. 

The Bell-Szekeres space-time is conformally fiat, 

'1'0 = '1'1 = '1'2 = '1'3 = '1'4 = o. (6.1) 

In the coordinate and tetrad systems used in region I the only 
nonzero spin coefficients are 

E= -r=cotq;/2V2 and a= -{3=cot ()/2V2, 
(6.2) 

and the only nonzero Maxwell scalar is 

tPl = 1IV2. (6.3) 

In the usual way first-order changes are considered for all 
the tetrad vectors, spin coefficients, and Weyl and Maxwell 
tensor components; the same conventions and notation are 
used as in the case for perturbations about Kerr. 

The subsystem C2 consists of all the nontrivial Maxwell 
equations together with the following N.P. equations: 

X mnp = 0, for all m,n,p,q,s, (6.4) 

Y1314 = Y 1313 = Y 1312 = 0 = Y 2441 = Y 2431 = Y 24210 (6.5a) 

Y 2442 = Y 3143 = Y 2443 = 0 = Y 2423 = Y 1332 = Y 1324, (6.5b) 

Vsm[npq) = 0, for all m,n,p,q,s, (6.6) 

This means that the only equations of the N.P. system not 
considered explicitly are the six equations 

Y3414 - Y 1213 = Y 1213 - Y 3413 = Y 1232 - Y 3432 

= Y1242 - Y 3442 = 0, (6. 7a) 

Y1212 - Y3412 = Y1234 - Y3434 = o. (6.7b) 

But when Eqs. (6.4 )-( 6.6) are substituted into the first 
ofPapapetrou's identities (2.7), it is clear that the first four 
of these remaining equations (6.7 a) are also satisfied by vir­
tue of the elimination relations. So in the N.P.-type notation 
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used in Sec. III the only equations still outstanding are 

'P2 + ~ll - A = 0, (6.8a) 

- 'P2 + ~ll + A = 0, (6.8b) 

where it is known from (6.5) that 

'P2 + 2A = o. (6.9) 

Since the background metric is conformally fiat, there is no 
contribution from identity (2.8); the only constraints com­
ing from identity (2.9) [using (6.9)] are 

D(~ll + 3A) = 0, 

a(~ll + 3A) = 0, 

15(~1l - 3A) = o. 
(6.10) 

It is obvious that in general these four equations are not 
sufficient to ensure ~w A identically zero. However, since 
these have an Xl and x 2 dependence given by 

(6.11) 

and on such quantities the operators have the forms 

D= + (l/V2)(aq:>-ik2 cscq;), (6.12a) 

a = + (lIV2)(a'l' + ik2 cscq;), (6.12b) 

15 = - (l/V2)(a8 - k1 csc (), (6.12c) 

15* = - (1IV2)(a8 + k1 csc (), (6.12d) 

it is easily seen that the only solution to (6.10) in these cir­
cumstances is 

(6.13) 

So it has been shown that C2 is a sufficient subsystem of the 
N.P. system for region I of Bell-Szekeres space-time in the 
chosen coordinate and tetrad system. 

In region II of Bell-Szekeres space-time the subsystem 
C3 used consists of all the nontrivial Maxwell equations and 
all of the N.P. equations except the three Ricci equations, 

Y 2431 = 0, (6.14a) 

Y 2443 = 0, (6.14b) 

Y 2423 = o. (6.14c) 

But the first two of these equations are identically satisfied 
because of identity (2.7), leaving only the outstanding equa­
tion (6.13c) subject to two constraints from identity (2.9): 

·M22 = 0, (6.15a) 

15*~22 = o. (6.15b) 

Once again these equations, in general, are not sufficient to 
ensure ~22 identically zero, but for the type of coordinate 
dependence being considered it is obvious that the only pos­
sible solution is 

(6.16) 

So it has been shown that C3 is a sufficient subsystem of the 
N.P. system for region II of Bell-Szekeres space-time in the 
chosen coordinate and tetrad system. 

VII. SUMMARY AND DISCUSSION 

It has been pointed out that because of the inherent re­
dundancy within the complete N.P. system of equations 
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many possible choices of sufficient subsystems can be found; 
the particular choice will depend on the type of analysis be­
ing undertaken. Papapetrou's indentities8 provide a means 
of confirming directly the sufficiency of any subsystem. 

In particular, it has been shown that subsystems 
CI,C2,C3 are sufficient subsystems for the restricted approxi­
mate analysis in which they have been used. One cannot in 
general expect a subsystem that is sufficient for one particu­
lar analysis to be sufficient in an (even slightly) different 
analysis. For each particular analysis the potential sufficient 
subsystem can be confirmed directly from Papapetrou's 
identities. 

Papapetrou's identities enable one to see exactly where 
and why the redundancy arises. These identities in general 
are quite complicated in the relations they show between the 
three different sets of equations from the N.P. system; but 
their structure is considerably simpler when all of the com­
mutator equations 

X mnp = 0, for all m,n,p, (7.1) 

are included within the sufficient subsystem. In this case the 
first identity (2.7) reduces to 

Ym[npq] = 0, (7.2) 

the elimination relations which link together some of the 
Ricci equations. If all of the Bianchi equations 

Vsm[npq] = 0, for all m,n,p,q,s, (7.3) 

are also included within the sufficient subsystem, then three 
more simple algebraic relations (3.6) linking the Ricci equa­
tions are given by identity (2.9). 

However, identity (2.8) provides a more complicated 
differential link between the Ricci equations. As has been 
seen in Sec. V, not only does this identity give rise there to 
algebraic compatibility conditions, but more generally, since 
it is a set of differential equations, it itself has its own nontri­
vial integrability conditions, which give rise to yet another 
set of identities between the Ricci equations. In Sec. V these 
compatibility conditions and higher integrability conditions 
are written out for the simple Schwarzschild background 
metric; however, if these conditions had been written in the 
Kerr background metric, they would have given a much 
more complicated set of realtions linking the Ricci equa­
tions. When the Ricci equations themselves are written out 
explicitly in terms of the Teukolsky functions, from Chan­
drasekhar's analysis, and these complicated expressions are 
substituted into the already complicated identity (2.8) and 
its associated compatibility and higher integrability condi­
tions, then it is clear that very complicated identities for the 
Teukolsky functions will result. The identity (2.8) therefore 
provides a source for at least some of the deep integral rela-
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tions found by Chandrasekhar in his perturbation analysis of 
the Kerr metric. 

So the occurrence of deep integral relations is also some­
thing fundamental to the N.P. formalism, linked to its inher­
ent redundancy; such relations can be expected, even pre­
dicted, in any analysis that relies on solving a sufficient 
subsystem of the N.P. system. Of course additional identities 
will occur in particular cases, especially when specific 
choices of tetrad and coordinate system are made. A fuller 
discussion of the integral relations associated with the per­
turbations of the Kerr metric will be presented elsewhere. 

It is obvious that subsystems C2 and C3 have more equa­
tions than subsystem CI • The Bell-Szekeres space-time is 
conformally fiat, and in both regions the choice of tetrad and 
coordinate system reduce almost all zeroth-order spin coeffi­
cients to zero; this means that a greater number of Papape­
trou's identities are trivially satisfied for these subsystems 
compared to the situation for subsystem CI , which is asso­
ciated with the less specialized Kerr space-time. It is clear 
that the more specialized and symmetric the space-time, the 
"weaker" will be Papapetrou's identities, and so more equa­
tions will be needed to constitute a sufficient subsystem. 

Finally it is noted that for subsystems C2 and C3 only the 
"already linearized equations" were needed to ensure a suffi­
cient subsystem; but subsystem CI required additional 
(more complicated) equations alongside its already linear­
ized ones. The most efficient way to supplement the already 
linearized equations will be considered in a separate paper. 
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Ricci collineations and contracted Ricci collineations of the Robertson-Walker metric, 
associated with a vector field of the form S = (S°(t,r),s I (t,r) ,0,0) are presented. 

I. INTRODUCTION 

In addition to isometries, space-times may admit other 
symmetries that do not leave the metric tensor invariant. I 
These collineations have been classified by Katzin et al. I ,2 

and their relation to constants of motion has been indicat­
ed.2-4 

Robertson-Walker space-times, which are described by 
the metric5 

dr- = dt 2 - R 2(t) ( 1 ~r + r dlP + r sin2 8 d;2). 

(1.1 ) 

with k = 0, ± 1, provide physically relevant examples to 
study these geometrical properties. 

It has been recently shown that these space-times admit 
affine collineations, i.e., symmetries that leave invariant the 
equation of the geodesic. In particular, Bedran and Lesche6 

have given an example of homo the tic motion corresponding 
to R (t) = at + h. Another homothetic collineation has been 
found by Maartens,7 who has also pointed out the existence 
of a proper affine collineation associated with the static case 
R = 0. Collinson8 has proved the uniqueness of this proper 
affine collineation. 

A less restrictive class of symmetries corresponds to 
Ricci collineationsl

,2 (RC) 

.YsRpJ. =svVvRpJ. +Rllv VAsv+R vA VI'S v = 0, 
0.2) 

and to the family of contracted Ricci collineations (FCRC) 9 

gaP .Y sRa{3 = 0. (1.3) 

Green et al.1O have provided an example of both types of 
symmetries for Robertson-Walker space-times. These au­
thors have confined their study to symmetries generated by a 
vector field of the form 

S = (S ° (t,r,8,;) ,0,0,0). 

In this paper we further investigate the symmetry prop­
erties of the Robertson-Walker space-times by considering 
Ricci collineations and the family of contracted Ricci collin­
eations associated to a vector field S of the form 

S = (S°(t,r), 51 (t,r) ,0,0). (1.4) 

0) Postal address: Apartado 4282. Caracas 101OA. Venezuela. 

The paper is organized as follows: in Sec, II we study 
Ricci collineations while the contracted Ricci collineations 
are dealt with in Sec. III. 

II. RICCI COLLINEATIONS 

The nonvanishing components ofthe Ricci tensor, cor­
responding to the metric (1.1), read 

Roo= -fRIR, (2.1) 

(2.2) 

where a dot indicates derivative with respect to time. Also, in 
(2.2), where i = 1,2,3, there is no sum over repeated indices 
and we have defined 

a = 2k+ 2R 2 + RR. (2.3) 

In the next section, in order to single out some of the 
proper FCRC, it is convenient to study RC first. Substitut­
ing (1.4) in Eq. (1.2) we obtain the following equations: 

sOR l1 ,o + s l R l1,t + 2Rl1SI,t = 0, (2.4) 

sORoo,o + 2Rooso,o = 0, (2.5) 

RooSo,1 + RllSl,O = 0, 

SOR 22,O + S IR22,1 = 0, 

SOR 33,O + sIR 33,I = 0. 

(2.6) 

(2.7) 

(2.8) 

Equation (2.7) is equivalent to (2.8), therefore we are 
left with four independent equations. Integrating, we have 

5° = c( 1 - kr) 1/2IRool-I12, (2.9) 

s I = g(t) r[ 1 - kr] 112, (2.10) 

where 

g(t) = - (cIIRooII/2) (A/2a), (2,11) 

where c is a constant. 
Equations (2,4 )-( 2,7) also provide an independent 

expression for get): 
get) = c k( IRooll/2 I a), (2.12) 

From (2.11) and (2.12) an integrability condition for (1.2) 
emerges: 

!RooaA - Roo(a;& - A2) = 2kaR f>o. (2.13) 

Equations (2.9)-(2.13) have been obtained assuming 
that Roo and a do not vanish. Nevertheless there may exist 
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solutions that correspond to the vanishing of any of the 
above quantities. 

It is therefore advantageous to explore the above possi­
bilities. 

(i)A = 0, Rooi=O. The vanishing of A implies R;; = 0 
which represents a general relativistic fluid with the stiff 
matter equation of state, that is, p = p. 11-13 

The equation A = 0 can be integrated leading to 

f R2dr 
t- 3 

- (c- 9kR 4 )1/2' 
(2.14 ) 

where c is a positive constant. Three cases emerge as a conse­
quence of this integral. 

(ia) k = O. This gives 

(ib) k = 1. In this case 

t = (cI36) 114 [2E(a,1Iv'2) - F(a,1Iv'2)]' 

a = sin-I [v'2 sin (z/2)], 

(2.15) 

(2.16) 

where F( a, 11 v'2) and E( a, 11 v'2) are ellipticintegrals of the 
first and second kind, respectively. The above result is valid 
for 

0<z<17"12, R 2 = (cI/2/3)cosz, 

which implies 

(2.17) 

o <R 2 <cI/2/3. (2.18 ) 

This solution represents a closed oscillating universe. 
(ic) k = - 1. This case leads to 

t = ("i4 )1/4[ F(a,r) - 2E(a,r) 

2 ~sinh z(l + sinhz z) ] 
+ . h ' 1 +sm z 

where 

_I 1 - sinhz 
a=cos , 

1 + sinhz 

1 
r=-, 

v'2 
with 

z>O, R 2 = (c '/2/3)sinhz. 

(2.19) 

In order to obtain the collineations associated to these space­
times, we go back to Eqs. (2.4)-(2.7) obtaining 

Root°., = 0, (2.20) 

(2.21 ) 

In these equations S 1 emerges as an arbitrary function of 
t and r. The component S 0, on the other hand, is determined 
by (2.20) and (2.21) which indicates thatR (t) is not further 
restricted and SO is forced to depend on the time only, as 
follows: 

SO = cIIRool'12, (2.22) 

where c is a constant. 
(ii) A = consti=O, Roo = O. This represents a matter 

satisfying the equation of state p + 3p = O. Also, it implies 
that the curvature tensor has no components normal to the 
homogeneous hypersurfaces. 11,12.19 

R(t) = at + b, a,b = const. (2.23) 
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As a result of(2.4)-(2.7) we obtain thats 1 vanishes and SO 
remains an underdetermined function of t and r. 

When ARooi=O we can obtain the RC and the corre­
sponding space-times for the case k = O. In these cases the 
integrability condition (2.13) can be integrated once yield­
ing 

g(t) = - cR 00 112 (~/2A) = const. (2.24) 

Then the collineation vector takes the form 

SO = c/IRooll12, (2.25) 

(2.26) Sl =g(t)r. 

A one-parameter family of space-times, consistent with 
(2.24), corresponds to 

R(t) =/3 eat. (2.27) 

This represents an empty de Sitter space-time. Since this is 
an Einstein space, all the collineations are motions. 1 

The solution of Eq. (2.24) given above is obviously not 
unique. Another solution is 

R(t)=/3f', ai=1. (2.28) 

This choice of R ( t) produces a different Ricci collinea­
tion. However the RC associated to (2.28) is not a proper 
Ricci collineation; it corresponds to the homothetic motion 
found by Maartens.7 

Another particular solution to (2.24) is ~ = O. In this 
case S 1 vanishes while SO is still given by (2.25). This corre­
sponds to the RC found by Green et 01.10 

III. FAMILY OF CONTRACTED RICCI COLLINEATIONS 

Contracted Ricci collineations are defined by 

gaP!fsRa{J=O, (3.1) 

which for the Robertson-Walker metric (1.1) takes the 
form 

S o( Roo,o - !~) + 2Root ~ 
-Sl( 2kr ~+ 4A )_ 2A Sl =0. (3.2) 

1 - kr R 2 rR 2 R 2 ,I 

A first example of proper FCRC is obtained by setting 
A = 0 in the above equation. Following Sec. II, we have inte­
grated the equation A = 0, finding R (t). In the present case 
S 1 is undetermined and Eq. (3.2) becomes 

2Root°,o + Roo,oso = O. (3.3) 

This equation is the same as (2.5) and can be integrated 
demanding that Roo be different from zero. Thus 

s°(t,r) = h(r)/IRoo l l 12, (3.4) 

where h(r) is arbitrary. 
Now, for the case Ai=O we introduce solutions of the 

form 

sl=u(t)v(r) (3.5) 

and 

SO =/(t) h(r) (3.6) 

into Eq. (3.2). Then, it is possible to separate variables, ob­
taining 
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v'(r) + (krl(l - ki2) + 2!r)v(r) + ch(r), 

2Rooi(t) + (Roo.o - 3i!..IR 2)/(t) 

= c(2!l.IR 2) u(t), 

where c is a constant. 

(3.7) 

(3.8) 

These equations enable us to find two of the four func­
tions needed to determine SO and S I. Now, in order to leave 
u(t) and g(r) arbitrary, we set c = O. Integration of these 
equations leads to the proper family of contracted Ricci col­
lineations described by 

sl(t,r)=u(t)ll-kr211/2Ir2 (3.9) 

and 

s°(t,r) = h(r)IR R 2, (3.10) 

where it is assumed that Roo =1=0. As an example we consider 
the collineations associated to 

(3.11) 

This particular form of R(t) has already been considered in 
Sec. II. Nevertheless, since now k can be different from zero, 
(3.11) does not represent an empty de Sitter space. It turns 
out that S 1 is given by (3.9) while SO takes the form 

s°(t,r) = h(r)e - 3at. (3.12) 

Let us consider now Roo = O. Then 

R(t) = at + 8, a,8 = const. (3.13) 

In this case, (3.9) and (3.10) are not valid, going back to 

139 J. Math. Phys .• Vol. 31. No.1. January 1990 

Eqs. (3.7) and (3.8), with c = 0, we find that SO is undeter­
mined, while S 1 keeps the form (3.9). 

ACKNOWLEDGMENTS 

We wish to express our gratitude to the referee for many 
important suggestions. 

This work was partially supported by the Consejo de 
Desarrollo Cientifico y Technol6gico de la Universidad de 
Los Andes (CDCHT-ULA) under project 379-89-05. One 
of the authors (VMV) acknowledges CONICIT for finan­
cial support. 

IG. H. Katzin, J. Levine, and W. R. Davis, J. Math. Phys.l0, 617 (1960). 
2G. H. Katzin and J. Levine, Colloq. Math. (Poland) XXVI, 21 (1972). 
3G. H. Katzin and J. Levine, J. Math. Phys. 22, 1878 (1981). 
4S. Hojman, L. Niinez, A. Patino, and H. Rago, J. Math. Phys. 27, 281 
(1985). 

's. Weinberg, Gravitation and Cosmology (Wiley, New York, 1975). 
6M. L. Bedran and B. Lesche, J. Math. Phys. 27, 2360 (1986). 
7R. Maartens, J. Math. Phys. 28, 2051 (1987). 
8C. D. Collinson, J. Math. Phys.,29, 1972 (1988). 
~. R. Davis, L. H. Green, and L. K. Norris; Nuovo Cimento B 34, 256 

(1976). 
IOL. H. Green, L. K. Norris. D. R. Oliver Jr., and W. R. Davis, Gen. ReI. 

Grav. 8, 731 (1977). 
IIH. Stephani, General Relativity (Cambridge U. P., London, 1982). 
12D. R. Oliver Jr. and W. R. Davis, Ann. Inst. Henri Poincare 30,339 

( 1979). 
13D. R. Oliver Jr. and W. R. Davis, Gen. ReI. Grav. 8, 905 (1977). 

Nunez, Percoco, and Villalba 139 



                                                                                                                                    

General exact solution for homogeneous time-dependent self-gravitating 
perfect fluids 

Patricio Gaete 
Centro Brasileiro de Pesquisas FlSicas, CNPqICBPF, rua Xavier Sigaud 150, 22290 Rio de Janeiro, Brazil 

Roberto Hojman 
Departamento de FlSica, Facultad de Ciencias, Universidad de Chile, casilla 653, Santiago, Chile and 
Centro de FlSica EI Trauco, Fanor Velasco 41 D, Santiago, Chile 

(Received 25 August 1988; accepted for publication 23 August 1989) 

A procedure to obtain the general exact solution of Einstein equations for a self-gravitating 
spherically symmetric static perfect fluid obeying an arbitrary equation of state is applied to 
time-dependent Kantowski-Sachs line elements (with spherical, planar, and hyperbolic 
symmetry). As in the static case, the solution is generated by an arbitrary function of the 
independent variable and its first derivative. To illustrate the results, the whole family of 
(plane-symmetric) solutions with a "gamma-law" equation of state is explicitly obtained in 
terms of simple known functions. It is also shown that, while in the static plane-symmetric line 
element, every metric is in one to one correspondence with a "partner metric" (both originated 
from the same generatrix function); in this case every generatrix function uniquely determines 
one metric. 

I. INTRODUCTION 

In this paper we extend a procedure originally con­
ceived to find the general static solution of self-gravitating 
perfect fluids 1

•
2 to the case of time-dependent distributions 

of matter. 
The approach consists of looking at the differential 

equations for the metric coefficients without appealing a 
priori to any equation of state for the self-gravitating perfect 
fluid. This allows the introduction of an arbitrary function G 
in terms of which it is possible to determine all the relevant 
unknown functions. Thus the explicit form of the equation of 
state becomes fixed only after the integration has been car­
ried out. 

It is not claimed that the method necessarily provides a 
useful tool to find new solutions. Rather, it should be under­
stood as a device to gain extra insight about the structure of 
the solutions of Einstein equations or as a possible alterna­
tive way to classify their solutions. 

Nonetheless, because of its physical importance and to 
gain some acquaintance with the method, an example is ex­
hibited. 

Apart from the general form of the solution, two items 
regarding the features of the used mechanism deserve special 
mention. 

First, it should be remembered that if two solutions have 
the same equation of state, they may correspond to the same 
solution written in different coordinates. However, as will be 
seen, solutions labeled by a different function G truly corre­
spond to different solutions as they do induce different equa­
tions of state. 

Second, in the static case with planar symmetry the so­
lutions appeared in couples: every solution induced a partner 
that in turn generated back its own seed. However, in this 
case an important deviation from such a situation occurs. 
The particular combination of factors in the quadrature is 
such that the integrals, although similar, are simpler than in 

the static case and the problem is reduced to a single integral 
depending only on t and G (and not on its first derivative). 

In Sec. II, we write the Einstein field equations for 
spherical, plane, and hyperbolic symmetry when the metric 
coefficients and the matter parameters exhibit time depend­
ence only. Then, in Sec. III, we mimic the method already 
used in the static case to get the general solution of the equa­
tions. In Sec. IV, the plane-symmetric case is studied in more 
detail and the most general plane-symmetric metric obeying 
a gamma-law equation of state is obtained using the pro­
posed scheme. In Sec. V, we present our conclusions. 

II. FIELD EQUATIONS 

Consider the Kantowski-Sachs-type line element 

d~ = dt 2 -A(t)dr - B(t)[d(J2 + ~«(J,K)dq;2], (2.1) 

where the metric coefficients A and B depend only on t and 

{

Sin2(J, K = 1, 

~«(J,K) = (J, K = 0, (2.2) 

sinh2(J, K = - 1. 

The parameter K says whether the matter distribution has 
spherical (K = 1), plane (K = 0), or hyperbolic 
(K= -1) symmetry. 

A slightly different form of the metric is obtained if B (t) 
(instead of t itself) is used as an independent variable: 

ds2 = g2(t)dt 2 - h 2(t)dr - t 2[d(J + ~(u,K)dtp2] 
(2.3) 

(the new time variable has been renamed t). Even if the 
following analysis is valid-strictly speaking-just in the co­
ordinates defined by Eq. (2.3), only slight modifications 
have to be introduced to take into account other coordinates. 

If the gravitational field is generated by a perfect fluid, 
the associated energy-momentum tensor reads 

(2.4) 
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where p is the matter pressure, p is the energy density, and 

uP = (1/g)~ (2.5) 

is the matter four-velocity. 
The Einstein field equations 

are 

K +~(!+..!..) =p, 
t 2 tg2 h 2t 

_ K +~(~_..!..) =p, 
t 2 tg2 \g 2t 

-~ [~ -!! + + (! -!)] = p, 

whereas the hydrodynamic equation 

TPv,p = 0 

is 

p = - (p + p)(h Ih + 2/t), 

(2.6) 

(2.7a) 

(2.7b) 

(2.7c) 

(2.8) 

(2.9) 

and, as usual, it can be also deduced from the Bianchi identi­
ties for the curvature tensor constructed from the line ele­
ment (2.1). 

The system of equations (2.7) serves-in principle-to 
determine both the metric coefficients (g2 and h 2) and the 
thermodynamic variables (p and p). 

However, unless an equation of state 

p=p(p) (2.10) 

linking p and p is introduced, the problem remains undeter­
mined (only three equations for four unknowns). 

Solving (2.7) together with (2.9) can become extremely 
difficult. Usually, when handling this kind of system, a fWic­
tional dependence of one of the unknown functions (say p) 
on the independent variable (t,in the present case) is given 
by hand. 

In such away, the three remaining. differential field 
equations can be solved for g2, h 2, andp and an equation of 
state is determined a posteriori.3 For instance, take p as giv­
en. Then, 

12mm - 2t(pt 2 - 4K)m + 2t 2(3p - 2pt)m + t 3 

+ t 3(4Kp _p2t 2 - 2Ktp) = 0, (2.11 ) 

where m =pt 2/2. 
Nonetheless, there are few choices of p leading to an 

exactly solvable differential equation for m. 

III. THE METHOD 

Surprisingly, there exists another prescription by means 
of which it is possible to get the general exact solution of the 
problem in terms of quadratures. 

In fact, Eq. (2.7b) can be rewritten as 

..!..!£ [t(K +1.)] = -p 
t 2 dt g2 

(3.1) 

and then integrated, giving 

1/g2 = - [K + 2m(t)lt], (3.2) 
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where 

dm(t) = ..!..pt 2• (3.3) 
dt 2 

IfEq. (3.2) andh Ih fromEq. (2.9) are introduced into 
Eq. (2.7a), one gets 

(2m+Kt) -+-~ =p--. (
3 2 .) K 

t 3 t 2 p+p t 2 (3.4) 

Now define 

G(t)=[2m(t) + Kt]l[p(t) _Klt 2]. (3.5) 

Then, Eq. (3.4) becomes 

. (t3 - 3G)(t 2 + G) 
p - G(t 3 + 3G) p 

+ K(t3 - 3G)(t
3 + tG - 2G) = o. (3.6) 

t 3G(t 3 + 3G) 

The last equation is first order and linear in p and can be 
integrated at once if G is a given function of t. In such a case 

p(t) = t/(t) [po + K f dt 

3 3 • 
X (3G-t )(t +tG-2G) e-I(t)], (3.7) 

t 3G(t 3 + G) 

where Po is an integration constant and 

I(t)=fdt(t3~3G)(t2+G). (3.8) 
G(t3 + 3G) 

Moreover, from Eq. (3.3) and the definition (3.5) of G, 

p(t) = (1/t 2) [pG + Gp - (K It 3)(t 3 + tG - 2G)]. 
(3.9) 

Also, 

g2 = [(1/t)(Klt 2 _p)G]-1 

and 

h 2 = (h ~/t)e - J(t) 

where 

and ho is an integration constant. 

(3.10) 

(3.11 ) 

(3.12) 

Considering G as a given function of t is in a sense equiv­
alent to postulating an equation of state. In fact, once a 
choice for G in terms of t is made, Eq. (3.5) links p and m. 
Such a relationship cannot be directly understood as an 
equation of state because it lacks the invariance property 
under arbitrary coordinate transformation it should have. 
(In any case, it would be more satisfactory to have a relation­
ship involvingp andp rather thanp and m.) 

IV. AN EXAMPLE: PLANE SYMMETRY 

Consider now the K = 0 case, which describes plane­
symmetric Bianchi type I models . 

Then, from Eq. (3.7), 

P =pot!(t), (4.1 ) 

where lis given by Eq. (3.8). 
A little algebra shows that 
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I(t) = In[GI(t3 + 3G)2] +J(t). 

Then, from Eq. (4.1), 

(4.2) 

p = Pol G l{t 3 + 3G)2]e'(t). (4.3) 

Also, from Eqs. (3.6) and (3.9) (for K = 0), 

p = [(t3 + 2tG - 3G)/(t3 + 3G)]p (4.4) 

and, from Eq. (3.10), 

g2= -tlpG. (4.5) 

To illustrate the above formulas let us find-following 
Ref. 4-the plane-symmetric line element generated when 
the space is filled with a perfect fluid obeying a "gamma­
law" equation of state: 

p= (r-I)p, 

ri=2, 

r=2; 

(4.6) 
I 

V. CONCLUSIONS 

As has been stated elsewhere,l.2 expressions (3.7)­
(3.11 ) constitute the whole set of solutions ofEqs. (2.7) . No 
spurious solutions have been introduced anywhere, as can be 
proved by direct substitution of the solutions into the field 
equations. On the other hand, any solution can be accommo­
dated in the present scheme; for example, consider a metric 
obtained using another technique. Then, by inverting rela­
tion (3.9) the generatrix function can be determined in 
terms of the metric coefficient h and its first derivative: 

G = - ht 3lho(h +2;'t). (5.1) 

Moreover, the solutions obtained are not merely coordinate 
transformations, because every solution does produce a dif­
ferent equation of state. 

The case whenp = Kit 2 should be considered separate­
ly, as the definition ofG loses its meaning [see Eq. (3.5)]. 
From Eq. (2.7a), h can be readily integrated giving 

h = halJt. (5.2) 

Equation (2.9) can be algebraically solved for p(t): 

p=!Klt2=!p. (5.3) 

Finally, from Eqs. (3.2) and (3.3) it is found that 

g2 = - (~K + 2malt)-I, (5.4) 

mo being an integration constant. 
Thus Eq. (3.4) still holds identically: the right-hand 

side and the second factor of the left-hand side vanish. 
As we have pointed out in the Introduction, one draw­

back of the present method is that the realistic matter con­
tent cannot be predicted-in general-from an a priori 
choice of the function G (e.g., a choice of G does not guaran-
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for any r such that 1 < r<2. 
Substituting Eq. (4.6) into Eq. (4.4), 

2tG - 3yG + (2 - r)t 3 = 0, 

which is solved by 

G = { - V
3 + Got

3y/2
, 

Got 3, 

ri=2, 

r=2, 
where Go is an integration constant. 

Inserting (4.8) into Eq. (3.12), 

{
t 3yl(2 - y)G lI(y - 2) 

expJ(t)= G ' t 0 , 
ri=2, 

r=2. 

(4.7) 

(4.8) 

(4.9) 

Then, from Eqs. (3.11), (4.3), (4.6), and (4.5) one 
gets, respectively, 

(4.10) 

(4.11 ) 

(4.12) 

I 
tee the positiveness of p, and 'the equation of state remains 
unknown until the integrals are carried out). 

It is interesting that in the present context, some restric­
tions have to be imposed on the relevant parameters of the 
solutions if we want them to possess physical meaning. In 
fact, if t is the time (and that happens to be when the metrics 
are asymptotically flat) then it ranges from - 00 to + 00. 

Then, by looking at expression ( 4. 8) for the generatrix func­
tion, it is seen that there are certain forbidden values of r in 
order to maintain G (and the physical quantities derived 
from it) real. 

In order to establish a comparison, let us summarize the 
main results obtained in the static case with plane symmetry. 

The line element to be determined there is 

dr = g2(x)dt 2 - h 2(x)dx - x2(dy + dr). (5.5) 

If G is defined as 

G=mlp, 

then 

p(x) =p exp[f (x
2 + G ' )(X3 + G) dX] 

o G(r - G) 

= Po[G I(X3 - G)2]e'(x)e8H(x), 

p(x) = (1/x2) (pG' + p'G) 

= [x3 + 2xG I + G l(x3 
- G) ]p(x), 

g2(x) =gi(e-J(X)/x), 

h 2(X) = - xlp(x)G, 

where 

J(x) = f dx~ 
P. Gaete and R. Hojman 

(5.6) 

(5.7) 

(5.8) 

(5.9) 

(5.10) 

(5.11 ) 
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and 

f X2 
H(x) = dx -3-- . 

X -G 
(5.12) 

Now, suppose that the integrals J and H can be com­
pletely carried out in terms of known functions. A compan­
ion metric can be determined at once. In fact, consider 

G* = x3 
- G. (5.13) 

Then, J * = Hand H * = J. [Notice that (G *) * = G.] 
Consequently, a star solution can be written as 

p*(x) =Po[(x3 - G)IG 2
]e

H
(X)e

8J
(X), (5.14) 

p*(x) = [(7x3 
- 2xG' - G)/G ]p*(x), (5.15) 

(g*(xW = gi (e- H(x) Ix), 

(h *(X»2 = - xlp*(x) (x3 
- G). 

(5.16) 

(5.17) 

However, in the present case no other solution can be 
found with the above prescription: every solution is uniquely 
determined by G and does not induce any other solution. 

The physical meaning of the generatrix function G re­
mains unknown to our knowledge. Some attempts to extract 
additional information about it are presently underway,s 
especially regarding the stability of the solution (3.7)­
(3.10) under perturbations by a scalar field. In particular, 
the exact analytical solution of the Klein-Gordon equation 
in a class of background metrics presented in Ref. 5 has been 
found. 
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In any case, we claim that the method applied in the 
present paper possesses a very attractive feature when ex­
tracting analytical information from the field equations: it 
allows us to handle the whole family of solutions on the same 
footing. 
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Alternative pairs of impulsive pp waves (accompanied by shocks) that interact to produce a 
Kerr geometry are compared. In one case, discovered by Chandrasekhar and Xanthopoulos 
[Proc. R. Soc. London Ser. A 408, 175 (1986)], analytic extension across the horizon revealed 
a timelike singularity analogous to the ring singularity of the Kerr metric. In another, 
presented here for the first time, analytic extension across the horizon reveals instead an 
asymptotically flat exterior Kerr geometry. The pp wave pulse shapes that result in the 
formation of these two different Kerr interaction regions are displayed graphically. 

I. INTRODUCTION 

Many examples of colliding plane-fronted impulsive 
gravitational waves have been constructed. However, we be­
lieve the solution we shall present in this paper is the first 
that is completely free of curvature singularities. It does 
have, of course, a pair of unavoidable singularities of a topo­
logical nature. Unlike a solution l of Chandrasekhar and 
Xanthopoulos (CX), to which it is closely related, the new 
solution admits a C I extension to Minkowski space after the 
passage of either incident plane wave. Like the CX solution, 
it has in the interaction region a null surface that acts as a 
horizon. Analytic extension across this null surface reveals, 
however, an asymptotically flat metric indistinguishable 
from the exterior Kerr metric. 

In Boyer-Lindquist coordinates the Kerr metric may be 
expressed in the form 

ds2 = ~(drla + d{}2) 

where 

+ ~-I{sin2 {} [(r + a2)drp - a dt]2 

- a[a sin2 {}drp - dt ]2}, 

~ = r + a2 cos2 {}, a = r + a2 
- 2 m r. 

Usually one considers the case in which 
r> m + (m2 

- a2
) 1/2. However, we shall be using the above 

metric for values of r such that 

m + (m2 _ a2) 1/21cos {} I <r< m + (m2 _ a2) 1/2. 

In this selection we differ from Chandrasekhar and Xantho­
poulos, who employed values of r such that 

m- (m2_a2)1/2<r<m+ (m2_a2)1/2Icos{}l. 

To facilitate the conversion to null coordinate we intro­
duce x=p-I(rlm -1), y=cos{}, XI =f/J, and X2 =pt, 
and set a = m q and m = 1. Then the metric assumes the 
form 

d.r = ~(- dx2/(1 - x2) + drl(1 - rn 
+~-l{(1-r)[[(px+ 1)2+i]dxI-P-lqdx2]2 

+ (1 - x2) [pq(1-r)dx 1 - dX2]2}, (1) 

where e = (px + 1)2 + q2y2. The CX metric may be ob-

.) Present address: Department of Mathematics, Clarkson University, Pots­
dam, New York 13676. 

tained from (1) simply by replacingp by - p. 
In terms of the x-y coordinates, the horizon is located at 

X = 1, where y runs from - 1 to + 1. For O.;;;x < 1, y is 
allowed to assume values that run from - x to x. At 
y = ± x occur null surfaces at which we shall match the 
Kerr metric to plane-fronted gravitational wave metrics. 
This is accomplished in the usual way. Null coordinates u 
and v are defined by 

x = u(1- V2)1/2 + v(1-u2) 1/2, 

Y = u(1 - v2) 1/2 _ v(1 _ u2) 1/2. 
(2) 

The joinings then take place at u = 0,1 > v;;;oO, and at v = 0, 
1> u;;;oO, where Heaviside step functions accomplish the CO 
extensions to Petrov type N solutions of the vacuum field 
equations. 

II. THE INCIDENT PLANE WAVES 

In one of the plane wave regions the metric depends only 
upon the null coordinate u. Here the metric may be ex­
pressed in the form 

ds2 = - 4~(1 - u2) -1/2 du dv 

+ ~ - I (1 - u2) {[[ (pu + 1) 2 + i] dx I 

- p-Iq dx2f + [pq(1 - u2) dX I - dx2f}, 
(3) 

where ~ = (pu + 1)2 + q2U2
• 

The joining of this metric to Minkowski space at u = 0, 
v < 0, is accomplished in the usual way, simply by substitut­
ing u = ° in the above metric. The resulting joining provides 
a CO extension, associated with which there is a l) function 
discontinuity as well as a step discontinuity in the Weyl ten­
sor. 

In order to discuss the limit u -+ 1 we shall substitute 
u = cos a and treat a as small. We find that 

ds2 = 4~ da dv + ~-la2{(~ dXI - p-Iq dX2)2 + dxD, 
(4) 

plus terms of order a 2
, where ~ = 2( 1 + p). This is clearly 

flat space, with the x's adapted to null rotations. Hence we 
have a C I extension across the hypersurface u = 1 to flat 
space, associated with which there is a step discontinuity but 
no l) function in the Weyl tensor. However, it should be not­
ed that the only geodesics that can reach this null surface are 
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those for which the first integrals associated with the two 
Killing vectors vanish, for the a 2 terms in the metric appear 
like an angular momentum barrier in the geodesic equation. 
It is therefore a moot point as to whether the extension to flat 
space is particularly significant. 

The traditional Kerr-Schild form for pp waves is 

d$1= -2dUdV+dyTdY+2y TFYdU 2, (5) 

where F( U) is an arbitrary symmetric trace-free matrix and 
yr = (YI'Y2)' To transform such a metric to u,V,XI,x2 co­
ordinates, we substitute 

U = U(u), V = v + !yT(A TA)-Y, (6) 
Y=A(u)X, 

where A (u) is nonsingular and a dot denotes the derivative 
with respect to U. The metric will assume the form 

d$1= -2dUdv+dXT hdX, h=ATA, (7) 

if A satisfies 

ATA-ATA=O 

A -2FA =0. 

, (8) 

(9) 

The first of the conditions follows from the symmetry of F, 
while its being trace-free yields 

ATEA +ATEA =0. (10) 

Let us now consider the transformation from the point 
of view of one who wishes to transform a pp wave expressed 
in the form (7) to the Kerr-Schild form (5). First of all, it 
should be remarked that a metric ofform (7) automatically 
satisfies all the vacuum field equations save one, and that one 
turnsoutto be precisely Eq. (10). Equation (9) becomes the 
definition of the matrix F, which by (10) is trace-free. What, 
however, is the status ofEq. (8)1 

It will be noted that for given h = AT A, the matrix A is 
determined only up to A -+ RA, where R T R = I. In order to 
arrive at the Kerr-Schild form (5) one must impose Eq. (8), 
which can always be satisfied by choosing R appropriately. 

Turning our attention now to the specific pp wave (3), 
we may express A in the form 

A=JP(U+ P q) 
l: -q u+p (

PU + 1)2 + i 
- pq( 1 - u2

) 

+-u 

FIG. 1. The F" pulse profile for various values of p for our solution. 
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FIG. 2. The F'2 pulse profile for various values of p for our solutions. 

wherep = 1 - u2. Moreover, the transformation U(u) is de­
termined by 

U = 2J u
2 + 2pu + 1 du 

~ 
= 3t? - !sin(2t?) + 4p(1 - cos(t?», u = sin(t?). (12) 

Using Eqs. (11) and (12) a tedious, although straightfor­
ward, calculation yields 

Fl1 = - (3p2/8l:5 ){PU5 + 5u4 + 10pu3 + 10u2 + 5pu + 1 

- 2q2(2pu5 + 5u4 + I)}, 
F12 = - (3p2q/8l:s ){(3 - 4q2)u5 

+ lOpu4 + lOu3 
- 5u - 2p}. 

(13) 

These expressions are valid for 0 < u < 1; at u = 0 there is not 
only a step function but also a {j function discontinuity. 

In the accompanying figures (see Figs. 1-4), we have 
attempted to display the nature of the functions FII and FI2 
both for our solution (P;;;.O) and for the ex solution (p<O). 
The variable u in each case runs from 0 to 1, while U runs 

FIG. 3. The F" pulse profile for various values of p for the ex solution. 
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FIG. 4. The F'2 pulse profile for various values of p for the CX solution. 

from 0 to 31T/2 ± 4p, respectively. The figures are rotated in 
such a way as best to display the interesting features. More­
over, the u-independent coefficients, including the minus 
signs, have been suppressed. The horizontal axes of the fig­
ures are the p axis and U axis, or more precisely, 
U /(31T/2 ± 4p). 

In the collinear case, i.e., q = 0, p = ± 1, we get F12 = 0 
and FII - (1 ± u) -5, which clearly shows the divergence 
that occurs in the CX shock wave as u-+ 1, and which is 
absent from our shock wave. Of course, both pulses have a ~ 
function at u = 0, which we have not shown in the sketches. 

III. THE INTERACTION REGION AND THE CRITICAL 
POINTS 

The metric (1) describes the interaction of the two inci­
dent pp waves. When p = 1 - u2 

- v2 
-+ 0, one reaches the 
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boundary of our chart. However, a method of Carter2 may 
be used to construct the unique analytic extension of this 
metric across the null surface p = O. The final result is that 
the geometry on the other side of the horizon is described by 
a metric of the same form as (1) except with x> 1. It is just 
the Kerr metric outside the horizon at f-. At the corre­
sponding horizon at f+, one may extend the metric analyti­
cally again, and, if one wishes, one may join part of the region 
within that horizon to a pair of outgoingpp waves. 

Nowhere in the extended space-time we have been dis­
cussing does the curvature become infinite. Nevertheless, 
there do exist in this solution as well as in the CX solution 
unavoidable topological singularities at u = 0, v = 1 and 
u = 1, v = O. This may be seen by approaching either of 
these points from the appropriate pp wave region and the 
interaction region. In the former case, one has Minkowski 
space in the form (4), where the ignorable coordinates Xl 

and X 2 are adapted to null rotations, while in the latter case, 
one approaches Minkowski space in a form in which the 
ignorable coordinates x 1 and X 2 are adapted to a boost and a 
rotation. In both cases, the singular point is at the origin 
(a = 0), where it is not possible to define the manifold of 
tangent vectors. 
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Starting with a Weyl solution representing an axially symmetric gravitational field as the seed 
metric, a generalized Kerr solution is generated by the Belinskii-Zakharov technique [Sov. 
Phys. JETP 48, 985 (1978); SO, 1 (1980)]. This solution may be interpreted as a Kerr metric 
embedded in a gravitational field. 

I. INTRODUCTION II. A GENERALIZED KERR SOLUTION 

Using a procedure developed by Ernst,1 Kerns and 
Wild2 constructed an axially symmetric solution of the vacu­
um Einstein field equations for a Schwarzschild source em­
bedded in a gravitational field. Such a gravitational field may 
be produced by surrounding matter.3 Kerns and Wild point­
ed out at the end of their paper that astrophysically it would 
be more interesting to derive a solution embedding a Kerr 
source in a gravitational field. With this idea in view, we 
started an investigation and succeeded in deriving a solution 
for a2 > m 2 (a is the angular momentum parameter, m is the 
mass).4 In this paper, we present a solution of a more general 
type using the Belinskii-Zakharov technique . .5·6 If the gravi­
tational field parameter vanishes, we obtain the Kerr solu­
tion. If, however, the Kerr (angular momentum) parameter 
vanishes, we obtain a generalized Schwarzschild solution.2 

It is hoped that astrophysically this generalized Kerr solu­
tion will be more interesting than our earlier solution.4 

Let us consider the Weylline element for an axially sym­
metric gravitational field l

: 

(2) 

where 

(3) 

a and b take the values 0 and 1 corresponding to t and <1>, 
respectively, and k is the gravitational field parameter. 

Taking (1) as the seed metric and applying the Belins­
kii-Zakharov techniques.6 we obtain the following physical 
(ph) solution: 

(g) = _ p2x2+q2_r_.L(1_r){e2ku(x-ll+e-2ku(x-ll}2 ~~ [~ ] 
00 ph (px + r)2 + fj02 4 ' 

(gol) h = - O'q [(p + r) (x + 1 ){( 1 - y) (x + y)e- 2ku(x-l) + (1 + y) (x _ y)e2ku(x- I)} 
p 2[ (px + r)2 + q202] 

_ (r-p)(x-l){(1 +y)(x+y)e2ku(x-l) + (1_y)(x_y)e- 2ka(X-Il}], 

a2e-2kUXY [ 
(gl1 )Ph = 2 2 2 2(x - 1)2(1 - r) (px + r)2 + 2x(x + 1 )2(1 - r)(p + r)2 

2[ (px + r) + q 0 ] 

- fj(x2 - 1)( 1 - r)(2x - 1 - r) - ~ (x2 - 1){(1 + r)4e4kU(X-1l + (1 - r)4e~4kU(X-I)}], 

/Ph = e - k 'cr(x' - 1)( 1 - y') - 2kUXY[ (px + r)2 + fj02] , 

(4) 

(5) 

(6) 

(7) 

where 

p = e2kuy cos2 7] - e - 2kuy sin2 7], r = e2kuy cos2 7] + e - 2kuy sin2 7], q = 2 sin 7] cos 7], 

7] = const, 20 = (1 + y)e2ku(X- l) - (1- y)e- 2ku(X- l), 

and x,y are related to p, Z as 

Z=qxy, 

p2 = a2(x2 - 1)(1 - r), 
0' being a constant. 

Using the transformation 

(8) 

(9) 

(10) 

q=t+(2q/p)<I>, (11) 

one can write the new metric in the form 

dsl = e- k'cr(x'-I)(I-y') -2kuxy[ (px + r)2 + fj02] [x:: 1 + 1 ~r ] + G l1 d<l>2 + G01 d<l> dr + Goo dr, (12) 
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where 

G. = - tll«TXY [p2X2 + rf _ r _ rf (1 _ y) {tlkU(X - I) + e - 21«T(x - I) p], (13) 
00 (px + r)2 + rfa2 4 

G
01

= - 1 (uq[(p+r)(x+ 1){(1_y)(x+y)e- 2kU(X-I)+ (1+y)(x_y)tlku(X-I)} 
(px + r)2 + rfa2 2 

- (r-p)(x-l){(1 +y)(x+y)tlku(x-I) + (1_y)(x_y)e- 2ku(X-I)}] -;rkUXY{p2x2+rf-r 

_ ~ (1- y)(tlku(x-I) + e- 21«T(X-I)2}), 

Gil = 1 ( _ 4rf tll«TXY[p2r + rf _ r _ rf (1- y){e2ku(X-I) + e- 21«T(X-l)p] 
(px + r)2 + ria2 p2 4 

+ 2urf [(p+r)(x+ 1){(1_y)(x+y)e- 2ku(X-1) + (1 +y)(x_y)tlku(X-I)} 
p 

- (r-p)(x-1){(1 +y)(x+y)e21«T(X-I) + (1_y)(x_y)e- 2ku(X-I)}] 

+ ~ - 2I«TXY[ 2(x _ 1)2(1 - y) (px + r)2 + 2x(x + 1 )2(1 - y)(p + r)2 

III. DISCUSSION 

(14) 

Putting k = 0, one gets p = cos 21], q = sin 21], and, substituting mp = u and q/p = a, the new metric (12) reduces to 

dr = [(px + 1)2 + rfy] [~+ -.!iL] + 1 - Y [(PX + 1)2 + rf + 2rj(px + 1)( 1 - y) ]del>2 
. x2 _ 1 1 - Y p2 (px + 1)2 + rfy 

_ 2q (px + 1) (1 - y) del> d-r _ p2X2 + rfy - 1 dr (16) 
p (px + 1)2 + rfy (px + 1)2 + rfy , 

which is the Kerr metric. 
On the other hand, if q vanishes, then the new metric (12) reduces to the following form: 

dr = (x + 1)2e -2I«Txy-k 2u'(r-I)(I-r) +4kUY[~ + -.!iL] + (x + 1)2(1- y)e-2kUXY del>2 _ ~kUXY dr. 
x2-1 l-y x+l 

This is a generalized Schwarzschild solution derived by 
Kerns and Wild.2 It represents a Schwarzschild source em­
bedded in a gravitational field. This leads to the interpreta­
tion of (12) as a solution for Kerr source embedded in a 
gravitational field. Kerns and Wild apparently wanted to 
have a solution of this type. Herein lies the importance of our 
work. 
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A vacuum solution in higher dimensions that corresponds to the exterior Marder solution in 
four-dimensional general relativity is presented. 

I. INTRODUCTION 

Higher-dimensional physics is of great importance to­
day as a result of recent developments in superstring theo­
ry.I-3 Yoshimura and Koikawa have recently presented 
some spherically symmetric solutions in higher dimen­
sions.4-6 Myers and Perry7 and Krori et a/.8 have derived 
Schwarzschild-like exterior and illterior solutions, respec­
tively. Here a vacuum solution in higher dimensions has 
been worked out and can be considered as an extension of the 
Marder solution9 to higher dimensions: It reduces to the 
Marder solution when the number of dimensions becomes 
four. 

II. SOLUTION 
We consider the line element in the form 

ds'l = e2a dt 2 - e2{:J(dr + dr) - re2y do2, (1) 

where a, {3, r are functions of r only and d02 is the line 
element on a unit (N - 3) sphere. 

Using exterior calculus, we find the following Ricci ten­
sors: 

Roo = e- 2{:J [a" + a '2 + (N - 3)(a'lr + a'1")], (2) 

RII = e- 2{:J[ - a" _{3" - a,2 + a'{3' + (N - 3) 

X(-21"lr+{3'lr-1"2+{3'1"-r")], (3) 

R22 = e- 2{:J[ - a '{3' - {3" - (N - 3)({3'lr+ {3'1")]' 
(4) 

R - R - ... - R - e - 2{:J [ a'ir a'1" 33- 44- - (N-I)(N-I) - - -

(5) 

We obtain the following field equations by making 
RflV = 0: 

a" + a '2 + (N - 3 )(a'lr + a'1") = 0, (6) 

- a" - {3" - a '2 + a'{3' + (N - 3) ( - 21" Ir + {3' Ir 

- 1"2 +{3'1" - r") = 0, (7) 

a'{3' + {3" + (N - 3)({3'lr + {3'1") = 0, (8) 

a'ir + a'1" + 21" Ir + r" + 1"2 

+ (N-4)(1/r+1")2=0. 

From Eq. (6) we obtain 

1" = ( - a" - a'2)/(N - 3)a' - 1/r. 

Hence 

(9) 

( 10) 

r" = ( - a'a'" - 2a'2a" + a" + a,2a ")/(N - 3)a' 

+1/r. (11 ) 

0) This paper is dedicated in honor of Professor S. D. Chatterjee for his con­
tributions to nuclear physics. 

Using (10) and (11) we obtain, from Eq. (9), 

a" -Ca,2=0, (2) 

where C is an integration constant. Solving Eq. (12) we ob­
tain 

(13) 

where A, B, and C I are integration constants. From Eq. (10) 
by using (13) we obtain 

r = [(1 + B)/(N - 3) ]log(r + C I ) -log r + C2, (14) 

where C2 is a constant. From Eq. (8) by using (13) and (14) 
we obtain 

{3= -HO-B2) - (l +B)2/(N-3)] 

Xlog(r+ C I ) + C3, 

where C3 is a constant. 

(15) 

It can be shown that solutions ( 13)-( 15) correspond to 
the N-dimensional extension of a Marderlike solution. Exact 
N-dimensional Marderlike solutions can be obtained by ad­
justing the constants in the following manner: 

A=O, B= -C, CI =C2 =0, C3 =logK, (16) 

where C and K are constants. 
Thus we obtain 

a = Clog r, (17) 

r = [(1 - C)/(N - 3)] log r -log r, (18) 

{3 = - H 1 - C 2 - (1 - C) 21 (N - 3) ] log r + log K. 
(19) 

The line element (1) becomes 

ds'l = r C dt 2 _ K2r- [1- C'- (1- C)'/(N- 3)] (dr + dr) 

+ r(l - C)/(N - 3) d02• (20) 

When N = 4 (i.e., the number of dimensions is four) we 
obtain the Marder metric9 

ds'l = r C dt 2 _K 2r- 2C(I-CJ(dr + dr) + r(I-C) dqi. 
(21) 

III. LIMITING CONDITIONS 

We now consider properties of the general solution rep­
resented by (13 )-(17) and of the Marderlike solution (20) 
in the limits r-O and r- 00. The metric coefficients for the 
general solution are 

e2a = e2A (r + CI ) - 2B, 

e2{:J = e2C'(r + C l ) - P, 

where 

P= I-B2- (1 +B)2/(N-3), 

re2y = e2c,[ (r + C
l

) ]2(1 + B)/(N- 3). 

(22) 

(23) 

(24) 

(25) 
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A.r .... O 

In the limit , ..... 0, the metric coefficients of the general 
solution have the values 

t?a ..... e2AC )- 2B, 

t?f3 ..... e2C,C )- P, (26) 
re2y ..... e2C,C~(1 + B)/(N- 3). 

Thus the general solution is free from any singularity in 
the limit ' ..... 0. However, the situation is different for the , 

8.r .... 00 

particular Marderlike solution with values of the integration 
constants given by (16). In this case, 

t?a ..... o, 
e2f3 ..... 0, if P<O, i.e., C> 1, 
t?f3 ..... 00, if P>O, i.e., C<l, 
t?f3 = K2, if P=O, i.e., C= 1, (27) 

rt?y ..... 00, if C> 1, 

re2y ..... O, if C<l, 
rt?y= 1, if C= 1. 

In the limit , ..... 00 the metric coefficients of the general solution have the values 

t?a ..... 00, if B < 0, 

e2a ..... o, if B>O, 
t?f3 ..... 00, if P<O, i.e., B< -lor B>(N-4)/(N-2), 

t?f3 ..... 0, if P>O, i.e., -1 <B< (N - 4)/(N - 2), (28) 
t?f3 = t?c .• , if P=O, i.e., B= -lor B= (N-4)/(N-2), 

rt?y ..... 00, if B> -1, 
re2y ..... 0, if B< -1, 

re2y = e2C" if B= -1. 

Thus the general solution has singularities in the limit , ..... 00. For the Marderlike solution we have, in this limit, 

~a~oo, 

e2f3 ..... 00, if C>l, 
t?f3 ..... 0, if C<l, 
e2f3 = k 2, if C= 1, 
rt?y ..... 00, if C<l, 
re2y ..... 0, if C> 1, 

re2y = 1, if C= 1. 
Singularities occur in this case as well. 
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Solutions of the Einstein-Maxwell equations for static spheres of charged imperfect fluids are 
investigated, where the space-time geometry is assumed to admit a conformal symmetry. 
Previous work is generalized by considering a nonstatic conformal symmetry. This allows the 
possibility of solutions that are nonsingular at the center, unlike the previous solutions based 
on a static conformal symmetry. Two such regular solutions are presented for charged spheres. 
The further generalization necessary to find stable exact stellar models with a conformal 
symmetry is indicated. 

I. INTRODUCTION 

Despite the power of computer solutions, exact solu­
tions are still of importance in general relativity, because 
they allow a "global" understanding not tied to a specific 
choice of parameters and initial conditons. In relativistic as­
trophysics, exact static fluid solutions are important for de­
veloping stellar models. The most general mathematical case 
in this class of solutions is the charged, imperfect fluid 
sphere. 

Exact solutions of the field equations for static spheres 
may be found in an ad hoc fashion by specifying one or more 
of the geometric and matter variables, and using the field 
equations to determine the remaining variables. However, 
such ad hoc solutions are extremely unlikely to produce phy­
sically acceptable models. What is needed is a systematic 
method of searching for exact solutions. One such method 
has been initiated by Herrera and co-workers (see Refs. 1-3 
and references cited therein). In this approach, the, fluid 
space-time is assumed to have, in addition to its static and 
spherical symmetry, a conformal symmetry. If the vector 
field ~ is the generator of this conformal symmetry, then the 
space-time metric g is mapped conformally onto itself along 
the trajectories of ~: 

2'~g=t/Jg, (1) 

where 2' is the Lie derivative operator,4 and J/! is the confor­
mal factor. 

The condition (1) is essentially geometric. But it does 
have two physical points of support. First, it is a generaliza­
tion (when J/! is not constant) of self-similarity in hydrodyn­
amics. Second, it is a generalization of the property of the 
incompressible Schwarzschild interior solution, which has 
11 independent conformal symmetries in addition to the 
four Killing symmetries, since it is conformally flat. 4 The 
Schwarzschild interior solution is perhaps the most realistic 
known exact static stellar solution.4 Condition (1) therefore 
offers the possibility of finding exact solutions that genera­
lize the Schwarzschild interior solution, and are more physi­
cally interesting models. 

However, as we shall show, the possibility of finding 
acceptable solutions via condition (1) depends crucially on 
the form of the conformal Killing vector field ~. In fact the 
form of ~ assumed by Herrera and co-workers l

•
2 is too re­

strictive to allow this possibility. A wide range of solutions is 

presented in Refs. 1 and 2, but all of these solutions are singu­
lar at the stellar center. Although one can argue, as in Refs. 1 
and 2, for a regular core matched to the solution that satisfies 
condition (1), this seems a little artificial and perhaps 
against the intention underlying assumption (1). In any 
case, our aim in this paper is to investigate the possibility of 
generalizing the Schwarzschild interior solution in a nonsin­
gular way, using condition (1). 

In Sec. II we give the field equations for the general case 
of charged imperfect fluid spheres. We show in Sec. III why 
the solutions of Herrera and co-workersl

•
2 are necessarily 

singular at the center. Essentially, this occurs because Her­
rera and co-workers assume that ~ is not only spherically 
symmetric, but also static. It follows that the first step in 
aiming for regular solutions is to relax the assumption that ~ 
be static. [Note that in the limiting case of flat space-time 
(regular vacuum solution), none of the nonisometric con­
formal Killing vectors is static.] Two cases then arise: either 
J/! is static or nonstatic. The first case is pursued in this paper. 
The second case, the most general possibility for spherically 
symmetric ~, is under investigation.5 

In Sec. III we show that the case of nonstatic ~ with 
static J/! admits the possibility of solutions regular at the stel­
lar center. We find a necessary condition on J/! for regularity. 
Then we show that the new class of solutions contains flat 
space-time, but not the Schwarzschild interior solution (for 
which J/! is nonstatic5

). 

In Sec. IV we consider some new solutions for the gener­
alized nonstatic ~. We show that the upper limit on the 
mass-radius ratio may exceed that established in Refs. 1 and 
2 on the basis of a static ~. We briefly describe the direct 
generalization of the solutions of Herrera and Ponce de 
Leon2 (which contain the solutions of Ref. 1 as the un­
charged special case). In particular, we find a reg1Jlar perfect 
fluid solution with uniform charge. We also find a regular 
charged imperfect fluid solution by giving J/! its simplest pol­
ynomial form satisfying the regularity condition. Unfortu­
nately, both ofthese solutions have unstable features. 

In fact, we show in Sec. IV that instability arising from 
negative pressures is a problem with all the generalized regu­
lar solutions. Furthermore, we show that there are no regu­
lar uncharged perfect fluid spheres. Either electric repulsion 
or pressure anisotropy is necessary to maintain a sphere 
(even if unstable) within this class of solutions. We also 
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show that there are no regular charged perfect fluid solu­
tions that are self-similar or that satisfy the equation of state 
P= (r-1)}t, l<r<2. 

These results show that while we are able to remove the 
central singularity by generalizing the conformal symmetry 
of Herrera and co-workers,I.2 our models have other draw­
backs. In particular, we cannot find regular uncharged per­
fect fluid solutions. This motivates a further generalization 
of the conformal symmetry. S 

II. FIELD EQUATIONS 

(We use the notation and conventions of Ref. 4, with 
Einstein's gravitational constant equal to 1.) Consider a 
charged nonconducting imperfect fluid without heat flow. 
(For a discussion of the physical relevance of such fluids in 
astrophyics, see Refs. 2 and 3 and references cited therein.) 
The total energy-momentum tensor is 

Tab =Mab + Eab , (2) 

where the matter contribution is 

Mab = }tUaUb + phab + trab (3) 

(with hab = gab + Ua Ub ) and the electromagnetic contribu­
tion is 

Eab = FacFb c - 19abFcdFcd. (4) 

The Einstein-Maxwell field equations are 

Rab - !Rgab = Tab' (5) 

F[ab;c] = 0, Fab;b = EUa. (6) 

For a static spherically symmetric fluid, we can choose 
coordinates x j = (x°,xa ) = (t,r,O,t/J) such that the metric is 

gij = diag( - eV(r)~tI(r),r2,r2 sin2 0). (7) 

By symmetry, the fluid four-velocity u, energy density}t, 
isotropic pressure p, and stress tensor 1f take the form,3,6 

uj=e-v/2{j~, }t=}t(r), p=HpR(r) + 2PT(r)] , 

( )( Ih) j -A/2{jj (8) trij = PR - PT njnj - 3 ij' n = e I, 

where n is a unit radial vector,PR is the radial pressure, and 
PT is the tangential pressure. Symmetry also implies that we 
can give the Maxwell field the form6 

F=!(r)dtl\dr, (9) 

so that d F = 0 and the first set of Maxwell's equations (6) is 
satisfied. The second set determines the charge density E(r) 
in terms of! and gij' The form (9) shows that the magnetic 
field vanishes in the fluid rest frame, and the electric field 
Ea = Fab ub has the form 

E j =E(r)nj. ( 10) 

Putting together (2)-( 10), we get the field equations2,6 

}t + !E2 = r-2 + r-2e- A(rA.' -1), (11) 

PR - !E2 = - r-2 + r-2e- A(rv' + 1), (12) 

PT + !E2 = Ie-A [2v" + r-1(v' - A. ')(rv' + 2)]. (13) 

By (4)-(10), 

Eab;b = - FabFb c;c = - EEna, 

E = - uaFab'b = e- A/2r-2(r2E)'. 
(14) 

152 J. Math. Phys .• Vol. 31. No.1. January 1990 

Thus the contracted Bianchi identity reduces to EE" 
= M"b ;b' which gives, by (3), (7), (8), and (14), 

2r-2E(r2E), = (}t + PR )v' + 2p~ + 4r- 1(PR - PT)' 
(15) 

The field equations (11 )-(13) imply (15); alternatively, 
Eq. (15) may replace one of the field equations. 

Finally, we consider the boundary conditions at the ra­
dius r = R of the fluid sphere. The metric and energy-mo­
mentum tensor must match the Reissner-Nordstrom exteri­
or space-time. This gives2 

ev(R) = e-A(R) = 1 _ 2M /R + Q 2/2R 2, 

PR(R) =0, E(R) = QIR 2, 
(16) 

where M and Q represent the total mass and charge of the 
sphere. 

III. THE CONFORMAL SYMMETRY 
The field equations (11 )-(13) are underdetermined. 

One or more (depending on whether E:I=O and 
PR - PT :1=0) functional relations must be specified in order 
to solve the equations. One method, which avoids ad hoc 
specification, is to assume that the fluid space-time is 
mapped conformally onto itself along the direction S, so 
that, by (1) i 

gij,dk+gkjSk,j+gjkSkj=t/Jgij' (17) 

Herrera and co-workers l ,2 assume that 

S = a(r)at + /3(r)ar • (18) 

(In fact, it is erroneously asserted in Ref. 1 that this form 
follows from the static spherical symmetry of g: Minkowski 
space-time provides an immediate counterexample.) Using 
(7) and (18) in (17), we get l ,2 

a =A, /3= ~re-A12, t/J = Be- A12, eV = c 2r2, 
(19) 

where A, B, and C are constants: A may be set to zero since 
A at is a Killing vector; B may be set to 1 by a rescaling 
S-+B -IS, t/J-+B -It/J, which leaves (17) invariant. Thus the 
assumptions (17) and (18) for the geometry (7) determine 
the metric component eV explicitly, and fix a, /3, and t/J. 

The form ( 18) is the most general S invariant under the 
Killing symmetries of g, i.e., 

[aI'S] = 0 = [Xa,s], 
where {Xa } generates SO(3). Thus a nonisometric confor­
mal Killing vector that is static and spherically symmetric is 
necessarily orthogonal to at. There are no such vectors in 
Minkowski space-time: thus assumption (18) rules out the 
limiting case of a regular vacuum solution. This suggests 
that (18) may lead to solutions that are singular. The world 
line {r = O} is a timelike geodesic, by spherical symmetry. 
The regularity of space-time along a geodesic imposes strin­
gent conditions on the limiting behavior of gij' obtained by 
expanding about the central geodesic. If t measures proper 
time along {r = O}, this gives 7 

eV = 1 + 0(12), r = 1 + O(p), 

near 1 = 0, where 1 is proper radial distance orthogonal to 
{r = O} (dl = tl12 dr). By a rescaling: t-+e - a/2t, V-+V + a, 
which leaves the metric invariant, we get the more general 
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necessary condition for a nonsingular stellar center: 

eV = eQ + OCr), fI = 1 + Ocr) near r = O. (20) 

Then ( 19) shows that all the solutions obtained via ( 18) are 
necessarily singular. 

Thus a search for regular solutions leads us to weaken 
the static symmetry of ( 18), i.e., we take 

~ = a(t,r)at + {3(t,r)a, (21) 

(which generalizes the isotropic conformal vector 
tat + r a, of Minkowski space-time). Furthermore we as­
sume that the conformal factor is static: 

"'= "'(r). (22) 

[ Note that (22) follows from ( 18), but not necessarily from 
(21).] The general case'" = ",(t,r) is under investigation.s 

Note also that (22) in ( 17) implies that the deformation of g 
under ~ is static and spherically symmetric, like g itself. 

Using (21) and (22), (17) gives {3, '" as in (18), and 

a =A + ~ kt, eV = C 2r exp( - 2kB -I J r- 1fl12 dr)' 

where k is constant. As before, we can set A = 0 and B = 1 
without loss of generality. Thus we have 

~ = !ktat + !",(r)ra" 

e" = ",-2, eV = C 2r exp( - 2k J ~). 
(23) 

The solutions of Refs. 1 and 2 belong to the class k = O. 
The vacuum solution is k = 1 = ",. The self-similar Tolman 
solutions8 

dSZ = - r4(y- I)ly dt 2 + b 2 dr + r(d(j2 + sin2 () dc/i) 

are given by (23) with 

k= (2-y)/by, ",=b-I, C= 1. 

However, the Schwarzschild interior solution4 

e- A = 1-Ar, 2ev/2 = 3(1-AR 2)1/2 - (1-Ar)1/2 
(24) 

is not contained by (23): if we take "'= ± (1 _Ar)ll2, 
then 

e- A = 1 - Ar, ev/2 = Cr[2r- I(l + (1 - Ar)I/2)] ± \ 

(25) 

which cannot regain (24) for any C,k. It can be showns that 
(24) requires", = ",(t,r). 

With (23), the field equations (11 )-( 13) become 

ft = ~r-2(1 - k 2) - 3r- I
",,,,' + 11, (26) 

PR = !r-2(k 2 - 1 + 4~ - 4k",) + r- I#, -11, (27) 

E2 = r- 2(k 2 + 1 - 2~) + 2r- I
",,,,' - 211, (28) 

where, following Herrera and Ponce de Leon,2 we define 

11 = !(PT -PR) (29) 

as the measure of pressure anisotropy. Exact solution of the 
Einstein-Maxwell equations in the general case (EI1¢O) 
thus requires a choice of ",(r) and of an equation of state 
f(ft,p R ,11) = 0 (or equivalent choice). 

Comparing (20) and (23), we get a necessary condition 
for regularity at the stellar center: 
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(30) 

If (30) is satisfied, then the field equations (26)-(28) show 
that the dynamical variables ft, P R , 11, and E are all bounded 
at r = 0, provided anyone of them is bounded (which hap­
pens automatically in the special case EI1 = 0 of an un­
charged or perfect fluid). 

Finally, we note that each dynamical tensor is mapped 
conformal1y onto itself by (21):by (8)-(10) and (23), we 
have 

[~,u] = - !f/!u, [~,n] = - !f/!n, 
2"s1r = (1 + rl1'/211)'I/m, 

2" sF = !(rf/lf'/ f + nf/. + '" + k)F, 

[~,E] = !"'(rE'/E - 1)E. 

(Note that none ofthe above holds in general for conformal 
motions.3

) The conformal Killing vector ~ forms a five di­
mensional Lie algebra with the Killing vectors 
{Xo = a"xa }: 

[Xo,~] = !kXo, [Xa'~] = 0, 

[Xo,Xa ] = 0, [Xa'Xp] = EYapXy ' 

IV. NEW SOLUTIONS 

We begin by deriving the mass-charge-radius relations 
for solutions satisfying (23). By (16), (23), (27), and (28) 
we have 

Q2/2R 2 = 1 - 3",(R)2 + 2k",(R), 

M /R = 1 - 2",(R)2 + k",(R). 

Then, since Q 2>0, M>O, (31) implies 

max{a_,b_}<",(R) <min{a+,b+}, 

(31) 

(32) 

where 3a± =k± (k 2+3)1/2, 4b± =k± (k 2 +8)1/2. 
Eliminating ",(R)2 in (31), 

3M = R + Q2/R - kR",(R). (33) 

For k = 0, we regain the results of Herrera and Ponce de 
Leon.2 In particular, we see that for k #0 it is no longer 
necessarily true that charge increases the mass. Further­
more, for uncharged spheres with conformal symmetry, 
M / R = ! is not an upper limit, as stated in Refs. 1 and 9. 
[This assertion is based on the assumption that (18) is the 
most general form of conformal symmetry.] In fact, by (31) 
and (33), for uncharged spheres the upper limit is 

M /R =! - ~k2 + ~Ik l(k 2 + 3)1/2. 

Thus the limit on M / R is independent of the pressure anisot­
ropy, and depends only on the conformal symmetry param­
eter k. In particular, M / R can exceed!, and approach! arbi­
trarily closely for large enough Ik I. For regular uncharged 
spheres (k = 1), the maximum is M / R = 3, equal to the per­
fect fluid limit.9 

The condition for the existence of a horizon, Q 2/2 <M 2, 
is, by (31), 

",(R)<!(k - 1) or ",(R»!(k + 1), (34) 

and then the horizon radius is 

(35) 
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By (31), it follows that R • <R, for all k and all t/J(R) satisfy­
ing (32) and (34) (which ensure the existence of R • ). 

We now briefly describe the generalization of some of 
the singular solutions of Ref. 2. The generalized self-similar 
perfect fluid solutions are all singular, except for the vacuum 
limit. They are given by ll. = 0 = t/J' in (26)-(29) and in 
(23 ): 

p =!(1 - k 2)r- 2, P = !(k 2 - 1 + 4~ - 4kt/J)r- 2, 

E2 = (k 2 + 1 _ 2~)r-2, ,; = t/J-2, eV = C 2r(l- kN). 

This is a charged generalization of the Tolman solution.s 

The generalization of the charged dust solution 
(ll. = 0 = p) is also singular for all k: 

p = ~(1 - k 2 - 6rt/Jt/J')r-2, E2 = (1 - 3~ + 2kt/J)r-2, 

where t/J satisfies 

2rt/Jt/J' + 4~ - 4kt/J + k 2 - 1 = 0, 

which is an Abel-type equation unless k = 0, when2 

~ = ! + Ar-4, or k = 1, when 

t/J = 1 + Ar-2 = e-A.12, eV = C 2r(A + r) -I, 

by (23). 
The generalized solution for perfect fluids with uniform 

charge density is obtained by solving (28) for t/J with ll. = 0, 
E = Br, and then substituting into (26) and (27): 

~ = ~(1 + k 2) - Ar + !B2,A = e-A., 

p = !(1- k 2)r-2 + 3A - 3B 2r, 

p =!(1 + 3k 2)r-2 - 3A + 2B2r - 2kt/Jr- 2, 

witheY givenby (23). Whenk = 1, this shows thatthe regu­
larity condition (30) is satisfied if t/J>O, and further that p, p, 
and E are bounded at r = 0: 

t/J= (1_Ar+!B 2,A)1/2=e-A.12, 

e
V = C 2r exp( - 2 f ~), 

p=3A-3B 2r, E=Br, 

p = 2[1- (1-Ar + !B2,A)1/2]r-2 - 3A + 2B2r. 
(36) 

Thus p(O) = - 2A, and the radius of the sphere is given by 

4B4R 6 _ 12AB2R 4 + (9A 2 + 6B 2)R 2 - 8A = 0, 

whereA > Oby (36), sincep > O. Thus thecubicinR 2 always 
has a positive root. It is possible to choose A and B such that 
p remains positive throughout the sphere. The limiting case, 
when p and p vanish simultaneously at r = R, is given by 

B=A/{j. and R = (2/A)1/2. Then t/J(R) =0, so that by 
(31) and (35), the stellar surface is at the horizon 

(R = R.), with M = Rand Q = {j.R. This limiting case is 
clearly unstable. Unfortunately, all solutions (36) have un­
stable features: bothp and dp/dp are negative, at least near 
the center. Electric repulsion is holding the matter apart, but 
this is not stable. We do not claim that the model is realistic, 
but it is a regular generalization of the singular solution in 
Ref. 2. 

In fact, the solution (36) indicates a general property of 
the class of solutions that obey the regularity condition (30): 
all regular fluid spheres have non positive pressure at the cen-
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ter. To see this, we begin with the necessary conditions for 
regularity: p,p R ,ll.,E bounded at r = 0; and, by (30), 
t/J = 1 - Ar + 0(,-3) near r = 0 and k = 1. Then, by (26)­
(28), 

p(O) = 6A + ll.(0), PR (0) = - 4A -ll.(0), 

E(0)2 = - 2ll.(0). 
(37) 

Since p,E 2>0 we have A >0 and ll. (0) <0. Furthermore, the 
isotropic pressurep, given by (8), satisfies 

p(O) = !(ll.(O) - 12A) 

by (29) and (37). Thus, except for the special case 
A = 0 = ll.(0), the pressurep is negative near the center. In 
the special case,p(O) = O. Neither of these cases is ruled out: 
negative pressures could occur in nonequilibrium metasta­
ble states,3 and zero central pressure is not impossible. How­
ever, we do not claim that p(O)<O is realistic for a static 
stellar moqel. 

Apart from the central-pressure feature of the regular 
solutions with the generalized conformal symmetry (21) 
and (22), there are further general results that follow from 
(26)-(30). 

( a) There are no regular uncharged perfect fluid 
spheres. Putting ll. = 0 = E into (26)-(28), we find that 
t/J = + (1 - Ar) 1/2, giving the solution (25) with 
+ k = + 1. Furthermore, we get p = 3A > 0 and 

p= -A-2r-2[(1-Ar)1/2-(1-Ar)], 

which is negative for all r. Thus there is no zero-pressure 
surface. 

(b) There are no regular incompressible perfect fluid 
spheres. This follows since ll. = 0 = p' implies E = 0 by 
(26) and (28). Then result (a) applies. 

(c) There are no regular perfect fluid spheres with equa­
tion of state p = (r - 1 )p, 1 < r<2. If we put ll. = 0, 
p = (r - 1)p into (26)-(28) with k = 1, we get 

t/J = 1 - Ar/(2 - 3y ), 

which is singular at r = O. 
Finally, we present a solution for a charged and imper­

fect fluid sphere. We start by taking the simplest regular 
polynomial form for the conformal factor: t/J = 1 - Ar. 
Then we choose a linear pressure anisotropy ll. (r). By (37), 
- 6A<ll.(0) < - 4A ensures thatp(O),PR (0»0. By (27), 

ll.(R) = 4A(AR 2 - 1) ensuresPR (R) = O. Then (26) gives 
AR 2 < 1 as the condition for p (R) >0. We choose 

A = foR -2, 50R 2ll. = 7x - 25, 

where x = r/R. Then (26)-(29) give 

50R 2p = 5 + 7x - 3x2, 

50R 2PR = 5 - 7x + 2x2
, 

50R 2PT = - 45 + 7x + 2x2
, 

25R 2E2 = 25 - 35x + 5x2. 

By (31), the charge and mass are given by 

Q = !o{26R, M = ~R. 

(38) 

Th6s the sphere is charge dominated, and has no horizon, by 
(34). The radial pressure is positive in the interior, decreas­
ing monotonically to zero. However, the tangential pressure 
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is negative throughout the interior. By (23), the metric com­
ponents inside the sphere are [using (16)] 

e" = (1 - rox2
) -2, eV = ib{1 - rox2

), 

and the conformal Killing vector is 

s=Htat + (1-rox2 )xax ]' 

The generalization of the solutions of Herrera and 
Ponce de Leon2 and the new regular solutions (36) and (38) 
show the importance of the choice of conformal symmetry 
vector S. The solutions of Ref. 2 are all forced to blow up at 
the center. While we are able to overcome this singularity via 
the generalization (21) of S, our solutions still suffer some 
serious drawbacks, particularly the problem of negative 
pressures. An indication of these drawbacks is the fact that 
the Schwarzschild interior solution is not contained in our 
class of solutions. The static nature of the conformal factor 
in (22) is the root of these limitations. When 1/J is allowed to 
be nonstatic, a new range of possibilities is opened Up.5 
[Note that Ponce de Leonlo obtains regular stable static so­
lutions with anisotropic pressure via a different approach: he 
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assumes that the sphere is conformally flat. Thus there are 
11 independent vector fields satisfying (1), some of which 
may obey (21) with 1/J = 1/J(t,r).] 
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The application of the method of stochastic quantization originally attributed to Parisi and Wu 
has been extended to spinor fields obeying para-Fermi statistics. The connection between 
Euclidean and stochastic field theories is established in the conventional manner by proving 
the equivalence between a Langevin equation satisfied by para-Grassmann fields and a 
Fokker-Planck equation, the Hamiltonian of which has been constructed using para­
Grassmann variables analogous to its construction from Grassmann variables in the Fermi 
case. As an example, a two-point Green function is calculated for any arbitrary value of order p 
of para-Fermi statistics, barring the pathological case p = 2 which has been mentioned briefly. 

I. INTRODUCTION 

The stochastic quantization of Parisi and Wu' provides 
a viable alternative to path-integral quantization. It is par­
ticularly useful in quantizing gauge field theories, as no 
gauge fixing and associated Faddeev-Popov ghosts are 
required. In essence, the vacuum expectation value 
of the time-ordered product of field operators 
(011lt,b(x,)t,b(x2)" ·t,b(xn »10) as given by a Euclidean path 
integral is identical with the steady state equal time ( = t) 

stochastic average (t,bTJ (x"t)t,bTJ (x2,t)·· ·t,bTJ (xn,t) 71 of the 
product of stochastic fields. In the approach, t denotes the 
fictitious time coordinate which is introduced in addition to 
the usual space-time variable x and for the dynamical evolu­
tion of the stochastic field t,bTJ (x,t) with respect to the new 
time variable t, one postulates the following Langevin equa­
tion LE: 

(1.1 ) 

where TJ is a Gaussian white noise with standard properties, 

(TJ(x,t»TJ = 0, 

(TJ(x,t)TJ(x',t '»71 = 28(x - x')8(t - t '), 
( 1.2) 

and TJ average is performed with respect to a Gaussian distri­
bution 

(F [TJ)}TJ = f.D7J F [TJ ]exp( - !fdx dt TJ2) (1.3) 
f.D7J exp ( - !fdx dt TJ2) 

for any arbitrary function F[ TJ] of TJ. 
This equivalence between D-dimensional Euclidean 

field theories and the steady-state of the (D + 1 )-dimen­
sional stochastic process is known as the stochastic quanti­
zation of Parisi and Wu. The equivalence between Euclidean 
field theories and stochastic processes can be seen through 
the well-known relation between a Langevin equation and a 
Fokker-Planck equation (FPE). Extension of this stochas­
tic quantization method to spinor fields has been considered 
by Fukai et al.2 and Sakita.3 Here the path integral expres­
sion for an n-point function is given by 

fD~ Dt/J(tP(x,)" '~(xn »exp( - S [tP,~]) 

fDtP DtP exp( - S [tP,~]) 

where tP and ~ are independent Grassmann variables and the 
action is taken to be a bilinear expression S = f d 4X ~K t/J; K 
may contain not only derivative operators, but also external 
fields, and K need not be Hermitian in general. An appropri­
ate Fokker-Planck Hamiltonian can be chosen as 

H FP = J dx [:tP (:~ + ~~) - :~ (:tP + ~~)] (1.4) 

and the corresponding Langevin equations are 

a 8S -a tP(x,t) = - KtP(x,t) + TJ(x,t) = - ---=- + TJ(x,t) 
t 8tP 

( 1.5) 

and 

aa~ (x,t) = - K ~(x,t) + 7j(x,t) = + 8S + 7j(x,t). 
t 8tP 

( 1.6) 

Note that TJ and 7j are Gaussian noise functions obeying 

(TJa(x,t)7jp(xl ,t ' »TJ = - (7jp(x l ,t ' )TJa(x,t»TJ 

The TJ average here means 

(F(TJ»TJ 

= 28aP~(x - x')8(t - t '). 

= fD7j .D7JF(TJ)exp{ - !fdx dt 7j(x,t)TJ(x,t» 
fD7j.D7J exp( -!f dx dt 7j(x,t)TJ(x,t) 

If the H FP defined above does not have positive semidefinite 
eigenvalues, then one can modify the Hamiltonian in an ap­
propriate manner. Application of this extension has already 
been considered in different processes. We in the present 
paper would like to consider a straightforward extension of 
Parisi and Wu stochastic quantization for spinor fields obey­
ing generalized statistics, known in the literature as para­
Fermi statistics, originally attributed to Green.4 

The method of canonical quantization for para-Fermi 
fields is well-known.s It is based on the use oftrilinear com­
!!lutation relations satisfied by the field operators tP(x) and 
tP(x), 

[tP(x),[tPt(Y),tPt(z)] _] _ = 2~(x - y)tPt(z) 

- W(x - z)tPt(y), (1.7a) 
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[t/J(x), [t/Jt(y),t/J(z)] _] _ = 2~(x - y)t/J(z), 

[t/J(x),[t/J(y),t/J(z)LL =0. 

(1.7b) 

( 1.7c) 

The point is that the Heisenberg equations of motion for the 
field operators lead to the desired field equations not only if 
t/J, t/Jt satisfy the standard Fermi bilinear quantization rules 
but also if they satisfy the trilinear commutation rules ( 1.7) . 
If one expands t/J, t/Jt in terms of annihilation and creation 
operators by,b~, the relevant equations (1.7a)-( 1.7c) as­
sume the following equivalent form: 

[ba,[b1,b~]_]_ =2c5apb~ -2c5ayb1, 

[ba, [b 1,by ] _] _ = 2c5apby, 

[ba, [bp,by ] _] _ = 0 

( 1.8a) 

(1.8b) 

( 1.8c) 

In order to define the theory completely one postulates a 
vacuum state which satisfies the following properties: 

b1 = 10) =0; bpb110) =pc5ap IO). (1.9) 

The positive integer p normally known as the order of para­
Fermi statistics is the maximum number of parafermions 
that a totally symmetric state can accommodate. What is 
most important for what follows is that a la Green,4 a para­
Fermi operator of order p can be uniquely represented by the 
sum 

( 1.10) 

where the so-called Green components b ~,b ~ satisfy (anti)­
commutation rules of the anomalous type 

[b~,b~]+ = [b~,b']+ -c5aP =0, 

[b~,b~] _ = [b~,b{J] _ =0; fori=/=j. 

( l.l1a) 

(1.11b) 

The path-integral quantization of para-Fermi fields6 is 
not as well known as their canonical quantization just men­
tioned. The former involves integration over para-Grass­
mann fields. They are defined in Sec. II where we show the 
equivalence of the n-point function of Euclidean field theo­
ries with the steady state limit of the equal time correlation 
functions computed from the following LE's [see (2.23) and 
(2.24)], 

a c5S 
-t/J(x,t) = - + 7J(x,t) , 
at c5t/J(x,t) 

(1.12) 

a - as 
- t/J(x,t) = + + 1j(x,t). 
at at/J(x,t) 

(1.13) 

Heret/J(x,t) and '¢I(x,t) are independent stochastic para­
Grassmann fields. The statistical properties of the para­
Grassmann noise functions 7J and 1j are given by 

(7Ja (x,t)1jp (x',t'»T/.Ti = - (1jp (x',t')7Ja (x,t»T/.Ti 

= 2pc5aP~(x - x')c5(t - t') 
(1.14 ) 

[see (2.2Sa)-(2.2Se)]. 
Construction of action S, with a bilinear form like that 

of ordinary Fermi fields, has been discussed at length by 
Kamefuchi and Ohnuki.6 They have shown that consistent 
with weak locality, an action of the bilinear form 
S =!f dx['¢I,Kt/J] _, where Kis a linear operator, can always 
be written down for order of statistics p>3. For p = 2 the 
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action contains additional terms such as S dx K['¢I,t/J] +, 

whereKis a nonvanishing real parameter. Thecasep = 2 has 
been shown by Kamefuchi and Ohnuki to be equivalent to 
two ordinary Fermi fields with different masses through 
Klein transformation. We shall restrict ourselves to p t= 2. 

In Sec. II we set out with the aforementioned form of the 
action. We assert a Langevin equation and derive the 
Fokker-Planck equation which corresponds to it, and exam­
ine the spectrum of the Fokker-Planck Hamiltonian thus 
derived to prove the equivalence between Euclidean field 
theories and stochastic processes. The construction of this 
Fokker-Planck Hamiltonian in terms of para-Grassmann 
variables proceeds parallel to its construction in the Ferini 
case using Grassmann variables. In Sec. III the formalism is 
applied to calculate the two-point Green's function for two 
para-Fermi fields and show the distinction of the Green's 
function for para-Fermi fields from that for ordinary Fermi 
fields. Our results agree with those obtained earlier through 
canonical quantization. In Sec. IV we discuss another appli­
cation of the formalism and obtain the normal and the anom­
alous Ward identities for a para-Fermi field, directly from 
the Langevin equation of motion. The Appendix is devoted 
to a discussion of the averages defined over para-Grassmann 
variables and a derivation of the analog of Novikov's 
theorem for such variables. 

II. QUANTIZATION OF PARA-FERMI FIELDS 

In this section we are mainly concerned with developing 
a stochastic quantization scheme for para-Fermi fields. This 
is done by an extension of these methods which were applied 
earlier to Fermi fields by Fukai et al. 2 For the derivation 
given below, we try to generalize the work of Chaturvedi, 
Kapoor, and Srinivasan.7 

As before, our starting point is the functional formula­
tion of quantum field theory. In this approach, the averages 
of products of the para-Fermi fields with respect to a weight 
factor exp( - S[ t/J,'¢I] ) yield the Green's functions 
(t/J(x.)t/J(x2 )" ''¢I(xn » of the field theory. Here S[t/J,'¢I] is 
the action, which we take to be bilinear in the fields 

S [t/J,'¢I] = f dx H'¢I,Kt/J] - . (2.1 ) 

Unlike the fermion case, an parafermion action cannot be 
cast in this form with the help of auxiliary scalar fields. But 
for the application we discuss in Sec. III, the bilinear terms 
suffice. Unless the order p of parastatistics equals two, Ka­
mafuchi and Ohnuki6 argue that the most general bilinear in 
parafields consistent with the requirement of weak locality 
has the form (2.1). Kin (2.1) may in general contain scalar 
fields, derivative operators, and r matrices. The peculiar 
case of order two will be discussed thoroughly elsewhere. 
The fields, t/J(x) and '¢I(x), neither commute nor anticom­
mute. Rather they constitute p Green components, 

p - p -

t/J(x) = L t/f'(x), t/J(x) = L t/f'(x), (2.2) 
0=1 0=1 

which satisfy the following anomalous (anti-) commutation 
relations 
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[¢/'(x), ¢/'(x')] + = [¢/'(x),i/I'(x')] + 

= [i/I'(x),i/I'(x')] + = 0, 

[¢/'(x),tfI'(x') L = [¢/,(X),ij;b(X') L 
(2.3a) 

= [i/I'(X),ij;b(X') L = 0, a=/=b. (2.3b) 

Such fields as rp, ij;, known as para-Grassmann fields, are 
formally defined in terms of an infinite number of para­
Grassmann numbers in the following manner: 

00 00 

rp(x) = L tP;(x)ao ij;(x) = L tPr(x)ao (2.4 ) 
;=1 ;=1 

where tP;(x) is a complete set of orthonormal functions. 
Note that a; and a; are independent para-Grassmann 
numbers. Such numbers are in turn decomposable into p 
Green components 

p p 

a; = L a~, a; = L a~ 
a=1 a=1 

which satisfy 

(2.5a) 

a =/=b. (2.5b) 

It is evident from (2.5a) that for a given value of the Green 
index the numbers af,af are ordinary Grassmann numbers. 
The functional integration measure in the prescription for 
obtaining Green's functions, 

(rp(xl),,·ij;(xn » 

fDrpDij; rp(x l )" ·ij;(xn )exp( - S [rp,ij;l) 

fDrp Drp exp( - S [rp,rp]) 
must be understood as integrations over a~ and af, 

(2.6) 

f Drp Dij; = f Jl
1 
aUI dajdaj. (2.7) 

In terms of af and af the action can also be written as 

(2.8) 

where 

Kij = f dx tPrKtPj' (2.9) 

Note that in the double sum over Green indices implied in S, 
the off-diagonal terms have dropped out, leaving only a di­
rect sum in Green space, because of (2.1). 

Computation of Green's functions for the para-Fermi 
fields thus essentially amounts to computation of averages of 
products of para-Grassmann numbers a; and a; with re­
spect to the weight factor 

(2.10) 

For the stochastic quantization of para-Fermi fields, our 
aim as mentioned in the Introduction is to introduce a ficti-
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tious time t and a probability distribution P(a,a,!) whose 
evolution in the fictitious time is such that in the steady state 
limit, i.e., in the limit t-+ 00, P(a,a,t) relaxes to the weight 
factor (2.10). The evolution equation, called a Fokker­
Planck equation [even though in classical stochastic pro­
cesses there exists no analog of P(a,a,!) defined over para­
Grassmann variables 1, is written as 

~ P(a,a,t) = - HppP(a,a,t). 
at 

(2.11 ) 

A possible choice for the operator Hpp is the following: 

Hpp = ~ ~ - -- + ~ K.·aa P OO[a(a 00 ) 

~ ~ a -a L IJ J 
a~ I;~ I aa; aa; j~ I 

- a ( a LOO 
-aK )] x-- -- - a··· . 

~-a ~ a J JI 
ua; ua; j~ I 

(2.12) 

In view of the algebra (2.5), it can be easily checked that 
(2.10) is a stationary solution of (2.11 ), i.e., it is an eigen­
function of Hpp with zero eigenvalue. In terms of the eigen­
functions X n and the corresponding eigenvalues A.,. of the 
operator H pp , the general solution of (2.11) can be given by 
the expansion 

P(a,a,t) = LX,. exp( - A.,.!). (2.13 ) 
,. 

To examine the spectrum of H FP' we regard P( a,a,t) as 
a representative of an abstract vector IP(t» in the coherent 
state representation.6 This amounts to casting (2.11) into 
the following form: 

a 
at IP(t» = -HppIP(t», (2.14) 

where the operator Hpp in (2.14) is obtained from the opera­
tor H pp in (2.12) by making the following replacements: 

(2.15) 
a;,a;,a~,a~-+A;,B;,A ~,B~, 

and is consequently given by 

H FP = ;tl atl[A ~t(B~t + jtl KijAj) 

- B ft (A ~t - jtl B jKji) ]. (2.16) 

Here in (2.15) A j,B j are independent parafermion creation 
operators and A; ,B; are the corresponding annihilation oper­
ators. They satisfy the well-known trilinear relations and the 
superscript a on them labels their p Green components 
which satisfy the following well-known anomalous algebra: 

[A f,Aj] + = [A~,Bj]+ = [A~,Br]+ 

= [A~,Ar]+-{jij=O, 

[A f,A J] _ = [A f,BJ] = [A f,Bt]­

= [A f,A t] _ = 0, a=/=b, etc. 

(2.17) 

Now we consider the following similarity transformation: 
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HFP = exp( ~ A rtK ii IB j) 
'J,a 

XHFP exp( - ~ A ftKijBj). 
'J,a 

Under this transformation, 

A ft-+Art, Bft-+Bft, 

Bf-+Bf+IKiiIAj, 
j 

so that H FP is given by 

HFP = I(AftKijAj+B;QKj;Bj). 
ij,a 

A 

(2.18 ) 

(2.19) 

(2.20) 

From the structure of H FP in (2.20), i!..follows that if K is a 
positive definite operator, then so is H FP and hence H FP ' 

This means that every solution like (2.13) of (2.1!J in the 
limit t -+ 00 approaches the eigenfunction (2.10) of H FP cor­
responding to the zero eigenvalue, provided that this eigen­
value is nondegenerate and that there is a gap in the spec­
trum of H above the zero eigenvalue. Actually, to guarantee 
the relaxation of P(a,ii,t) to (2.10) regardless of the nature 
of K, it is possible to modify (2.12) without altering the 
stationary solution of (2.11) in such a way that the resulting 
A 

H FP is positive definite. Instead of (2.12) we may consider 
the following form for H FP : 

H FP = I [~G!I ( ~Q + I Kmpj) 
l.m.Q aal aam j 

- ~ G·I (~- ~ K ii'?)] (2.21) 
aiii maa':., f}m}' 

where Gis arbitrary. This equation still has ~.1O) as its zero 
eigenmode. However, the corresponding H FP is modified 
and becomes 

A P 00 

HFP = I I (Bft(GKt)tBj 
Q= I ;J= I 

(2.22) 
A 

If we now set G = K, then Hpp becomes manifestly positive 
definite regardless of the nature of K. In fact, to guarantee 
the desired relaxation, it is enough to require that eigenval­
ues of GK t have positive real parts. This observation proves 
to be quite convenient for perturbative calculations with sto­
chastically quantized parafermion fields. 

Instead of working with theFPE (2.11), for actual com­
putations, it proves much more convenient to work with an 
equivalent formulation based on the Langevin equation 
( LE). This is a stochastic differential equation governing the 
time evolution of t/J and fi, in place of an evolution equation 
for P[t/J,fi"t]. It can be shown that the single time averages 
< t/J(x I,t) ... fi,(xn ,t» p computed using the FPE are identical 
to the equal time averages obtained using the LE. We begin 
with an assertion that the LE's, 

a -~s Q 

- ~(x,t) = + 1} (X,t), 
at ~~(x,t) 

(2.23) 
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a - ~S 
- ~(x,t) = + + ;;t(x,t) , 
at ~~(x,t) 

(2.24) 

are equivalent to the FPE (2.11) with H FP given by (2.12). 
Note that on summing over Green indices in (2.23) and 
(2.24) we get (1.12) and (1.13). Here ~(x,t) and ~(x,t) 
are treated as independent stochastic fields, and the noise 
sources 1}Q(x,t) and ;;t(x,t) satisfy the following stochastic 
properties: 

(1}Q(x,t» = (;;;Q(x,t» = 0, 

(1}Q(x,t)W(y,t ' » = - (W(y,t ' )1}Q(x,t» 

= 2~(x - y)~(t - t'), 

(2.2Sa) 

(2.2Sb) 

(1}Q(X,t);;;b(y,t'» = + (;;;b(y,t')1}Q(X,t» =0, a#b, 
(2.2Sc) 

(1}Q(x,t)1}Q(y,t ') ) 

= - <1}Q(y,t ' )1}Q(x,t) =0, 

<1}Q(X,t)1}b(y,t') ) 

= + (1}b(y,t')1}Q(x,t) =0, 

a#b, etc. 

(2.2Sd) 

(2.2Se) 

These properties are summarized by the following distribu­
tion for the noise sources: 

exp( - ~ ± f dx dt ;;;Q(X,t)1}Q(X,t»). 
2 Q= I 

(2.26) 

We are now ready to prove the assertion made above regard­
ing the equivalence between the LE and the FPE. Consider 
an arbitrary functional F of t/J and fi,. Then in the Langevin 
approach, 

( 
aF) = ± f dx (( a~(x,t) aF ) 
at ..,.ij Q = I at a~(x,t) ..,.ij 

( 
a~(x,t) ~F ) ) 

+ at ~~(x,t) ..,.ij . 
(2.27) 

On using (2.23) and (2.24) we get 

( aF) = ± fdX (( _ _ ~s 
at ..,.ij Q= I ~~(x,t) 

~F ) 
~~(x,t) ..,.ij 

+ (~S ~F) 
~~(x,t) ~~(x,t) ..,.ij 

+ (1}Q(X,t) ~F ) 
~~(x,t) ..,.ij 

(
_Q( ) ~F ) ) + 1} x,t . 

~~(x,t) ..,.ij 
(2.28) 

With the help of the distribution of 1} and ;;; as given by 
(2.26) one can prove an analog of Novikov's theorem for 
these para-Grassmann noise sources (see Appendix A), 

( 1}Q(X,t) ~F ) 
~~(x,t) ..,.ij 

= 2 f dx' ± (~~(X"t) b, ~2F ) 
b = I ~1} (x,t) {jt/J (x ,t){j~(x,t) ..,.ij 

(2.29) 
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I,t(x,t) DF ) 
\ Dr/f1(X,t) 11'ii 

= - 2 J dx' ± 18t/1(x',t) D2F ). 
b= I \ Drt(X,t) Dt/I(X',t)Dr/f1(X,t) 11'ii 

(2.30) 

One can show from LE's (2.23) and (2.24) that 

D¢/,(X',t) = Dt/I(X',t) = D bD(X - x')0(O) 
D1ja(x,t) Drt(x,t) a 

= (!)DabD(X - X'). (2.31 ) 

The step function in (2.30) arises from the integration over t 
of LE's after being differentiated w.r.t. the noise sources. 
Substituting from (2.31) into (2.29) and (2.30) and using 
the expressions thus obtained in (2.28), we get 

1 aF) = ± J dx (I _ DS 8F) 
.\ at 11'ii a = I \ Dr/f1(X,t) Dr/f1(X,t) 11'ii 

+ 1 DS DF) 
\ Dlpa(X,t) Dr/f1(x,t) 11'ii 

1 D2F ) 
+ \ Dr/f1 (x,t) Dr/f1(x,t) 11'ii 

- (Dr/f1(X,~2:r/f1(X,t) ) l1J . (2.32) 

The connection with the Fokker-P1anck approach is 
made by identifying the averages in the two approaches, 

(F[tP'~])l1'ii = J DtPD~F[tP,~]P[tP,~,t] 
== (F[tP,~]) p, 

so that (2.32) also holds for P averages, 

J DtP D~ F [tP,~] i. P( tP,~,t) 
at 

= atl J dx ( - (D~~X) D;~X) p 

+/~~) 
\DtPa(X) D~(X) p 

(2.33 ) 

+ (Dr/f1(~2:tPa(x») p - (DtPO(~2:r/f1(X») J. 
(2.34) 

Next our aim is to transfer the functional derivative(s) 
on F onto Pin each of the four terms on the right-hand side of 
(2.34). This is done by integration by parts, keeping in mind 
the anticommuting nature of r/f1(x) and ~(x). The result is 

J DtPD~F[tP,~] ap 
at 

(2.35) 

Since Fis arbitrary, we obtain the following equation for P: 
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a -
-P(tP,tP,t) 
at 

= - ± JdX [_D_(_D_+~) 
0=1 Dr/f1(X) D~(X) D~(X) 

D (D DS )] 
- D~(X) 8r/f1(x) + Dr/f1(X) P. 

This reduces to 

a -
- P( tP,tP,t) 
at 

= - ± J dx [_D_ (~+ Kr/f1(X») 
0= I Dr/f1(x) Dr/f1(X) 

(2.36) 

- ~(X)(_D_ - K 1i'(X»)] P (2.37) 
Dr/f1 Dr/f1(X) 

on using the first equation in (2.8). Noting that the defini­
tions (2.4) for ~(x) and r/f1(x) imply the following defini­
tions for the functional derivatives with respect to r/f1(x) and 
~(x), 

D 00 a D 00 a 
--= L <pr(x) -0; ---= L <p;(x)-, 
Dr/f1(X) ;=1 aa; Dr/f1(X) ;=1 alif 

(2.38 ) 

we can translate (2.11) and (2.12) into the following func­
tional equation for P, 
a - -
at P [tP,tP,t] = - HFPP [tP,tP,t ] 

= - f J dx .[_D_ (_D_ + Kr/f1(X») 
0= I Dr/f1(X) Dr/f1(X) 

- D~~X) (DtP~X) - K 1i'(X»)] P 
(2.39) 

which is identical with (2.37). 
For completeness it is added that proceeding in exactly 

the same manner as above one can show that the LE's, 
a 
atr/f1(x,t) = - GtKr/f1(x,t) + Gtrt(x,t), (2.40) 

a - -
at r/f1(x,t) = - (KG t) T r/f1(x,t) + W(x,t), (2.41) 

with TJ and 1j having the properties (2.25) and (2.26), are 
equivalent to the FPE (2.11) with H FP (2.21). As explained 
before, one may set G = K. Finally, in the event G is a con­
stant, i.e., it does not contain any fields which are also sto­
chastically quantized, then we may alternatively write 
(2.40) and (2.41) in the following form, 

with 

a 
at r/f1(x,t) = GtKr/f1(x,t) + o O(X,t) , (2.42) 

a- ~-at r/f1(x,t) = - (KGt) r/f1(x,t) + OO(x,t), (2.43) 

(OO(x,t)f)O(x',t ' » = - (OO(x',t')O°(x,t) 

= 2GtD(x - X')D(t - t '), 
(2.44) 

(OO(X,t)Ob(X',t '» = + (Ob(X',t')OO(x,t) 

= 0, a =1= b, etc. 
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Let us now briefly recapitulate the discussion in this 
section. Here we have considered two FPE's, and subse­
quently derived the corresponding LE's. They both have 
exp ( - f dx H ~,K tP] _) as their statiQnary solution. For 
this to be the unique steady state solution, the corresponding 
H FP must have the following attributes: 

(i) Its lowest eigenvalue must be zero and the other 
eigenvalues must have a positive real part. 

(ii) The nonzero eigenvalue must be nondegenerate. 
We have been concerned mainly with how (i) could 

always be ensured. The second condition is in general diffi­
cult to establish. 

III. FREE PARAFERMIONS 

As an application of the extension of the Parisi-Wu for­
malism for parafermions developed in the last section, we 
consider free parafermions. 

The Euclidean action for free parafermions is given by 

s= f d4X~ [~(x)'(YIA, +m)tP(x)] 

= atl f d 4
x 'if/'(x)(Ypap + m)t/I'(x), (3.1) 

where y p are Hermitian matrices obeying the following anti­
commutation relations: 

(3.2) 

We first consider the LE's (2.23) and (2.24), which in this 
case with K = (Ypap + m) become 

!....tfI'a(x,t) = - (Ypap +m)aErf:(X,t) +l1~(x,t), 
at 

a - - -a - t/I'p (x,t) = - t/J6 ( - Ypap + m)8P + l1p (x,t), 
at 

(3.3 ) 

(3.4) 

with 

(l1~(X,t)r;p(x',t'» = - (r;p(X',t')l1~(X,t» 

=2~ap~(x-x')~(t-t'), (3.5a) 

(11~ (x,t)r;~ (x',t '» = (r;~ (x',t ')11~ (x,t) 

= 0, for a=l=b. (3.5b) 

Fourier transforming (3.3) and (3.4) w.r.t. x, 

!.... tfI'a (k,t) = - (it + m)aErf: (k,t) + 11~ (k,t), (3.6) 
at 

!....'if/'p(k,t) = - (-it+m)8P~(k,t) +r;p(k,t), 
at 

(3.7) 
and solving them with the initial conditions 

tPa (k,O) = ¢a (k,O) = 0, (3.8) 

we get 

tfI'a (k,t) 

= i'dt l [eXp -ut+m)(t-/I )]aEl1:(k,tl ), (3.9) 
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¢Jp (k ',I ') 

= f' dl2 r;~ (k',/2 )[exp - (it' + m)(/' - t2 ) ]c5{3' 

(3.10) 

Using (3.5) we can easily compute the equal time correla­
tion function (tfI'a (k,t) ¢Jp (k ',t» TJTJ' 

(tfI'a (k,t) ¢Jp (k ',t) 

= ~(.k+ k') ~ab(1- exp( - 2Ut + m)t). (3.11) 
(It + m) 

We now want to take the limit t -+ 00. If m is nonzero, this 
limit exists because the eigenvalues of the matrix (it + m), 

which are m ± i,.fI(I, have positive real parts. Hence so long 
as m =1= 0, the limit t -+ 00 of the two-point correlation func­
tion (tPa (k,t)¢p (k ',t» TJTJ exists and is given by 

lim <tPa (k,t)~p (k ',t» TJTJ 
1- 00 

p p -

= L L lim <tfI'a(k,t)tP~(k',t) 
a=lb=l/-oo 

= p~(k + k')(it + m)-I. (3.12) 

To deal with the massless case we consider the other set of 
LE's based on (2.42) and (2.43) with G = K. When these 
LE's are Fourier transformed w.r.t. x and solved with the 
same initial conditions as (3.8), we obtain the following 
expression for the equal-time correlation function, 

< tfI'a (k,t) ¢Jp (k ',1» TJTJ 

=~(k+k') (_ '&'+ ) 
2 2 I,. m ap 

k +m 
x{1- exp[ - 2(k 2 + m2 )t n. (3.13) 

Clearly the limit t- 00 exists whether m is zero or not, and 
we obtain 

<tPa(k,t)~p(k',t» = p~(k+k'!( -i~+m)ap . 
(k +m) 

(3.14) 

This result agrees with that obtained from canonical quanti­
zation of parafermions.5 

We note that we would have obtained the same results 
for the propagator if we had used the regularized Langevin 
equations (discussed in the next section). 

IV. THE AXIAL-VECTOR CURRENT ANOMALY AND THE 
VECTOR-CURRENT CONSERVATION FROM THE 
LANGEVIN EQUATIONS 

As another interesting application of the formalism giv­
en above, we discuss in this section how one can obtain the 
normal and the anomalous ward identities for a para-Fermi 
field, directly from the Langevin equations of motion with­
out even having to explicitly find their solutions. Following 
this equation of motion approach for anomalies, we recover 
the standard result for ordinary fermions when the order of 
the statistics equals unity. Following Bern et al., 8 we use the 
covariant derivative regularization scheme in which the 
noise structure of the Langevin equations is generalized in a 
covariant way to 
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+ I d 4y R(x,y)1t(y,1"), (4.1) 

a¢/' (x,1") = ¢/,(x,1") [ir", ( - a", - igA",) - m] 
a1" 

+ I d 4y ;;'t(y,1")R(x,y). (4.2) 

Here we have set G = 1 for the sake of simplicity. The fer­
mionic regulator R (x,y) is a function of the covanant fer­
mionic Laplacian D 2, 

D 2(X,y) = D ;c5(x - y). 

The operator 

R(x,y) = (exp[ - (D / A)2] )(x,y). (4.3) 

Note that R approaches unity as the cutoff A approaches 
infinity. 

Multiplying Eq. (4.1) fromt he left-hand side by ¢/'rs 
and Eq. (4.2) from the right by rst/f, adding the two, and 
taking the noise averages on both sides, we get 

= ia", r (¢/'rsr", t/f) - 2m r (¢/'rst/f) 
a a 

(4.4) 
a a 

Again, multiplying Eq. (4.1) from the left by ~ and Eq. 
( 4.2) from the right by ,p, subtracting the two, and noise 
averaging both sides, we obtain 

a a 

= ;a", r (¢/'r",t/f) + r (¢/'Rrt) 
a a 

- r (ftRt/f). (4.5) 
a 

In the steady-state limit 1" -> 00 we expect to arrive at the 
regulated Ward identities, because then the stochastic aver­
ages 1:a (¢/'rsr", t/f) and 1:a (¢/'r", t/f) reduce to the axial-vec­
tor current and vector current, respectively, in quantum 
field theory. 

To evaluate the left-hand side of Eq. (4.4), consider a 
function F(,p, ~) which is any arbitrary bilinear in ,p and ~, 

lim ~ (F) 
T-co a1" 

= lim d,p d,p F- P [,p,,p,1"] I -a -
T-co a1" 

= - !~~ I d,pd~FHFPP[,p,~,1"] 
=0, (4.6) 

where the last equality follows because the probability distri­
bution function relaxes to the ground state with zero eigen-
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value in the limit 1"-> 00. The time derivative of 1:a (¢/'rst/f) 
therefore vanishes. 

The left-hand side ofEq. (4.5) is, from first principles, 

r (¢/,aTt/f) - r «aT¢/')t/f) 
a a 

= lim c51"-1 r [(¢/'(x,1")t/f(x,1" + c51"» 
IlT-O a 

- (¢/,(x,1")t/f(x,1"» - (¢/,(x,1" + c51")t/f(x,1"» 

+ + (¢/,(x,1")t/f(x,1"»], (4.7) 

which vanishes because (,p(x,1")~(x,1"'» is symmetric un­
der the interchange of the arguments 1" and 1"'. To evaluate 
the last two terms on the right-hand sides ofEqs. (4.4) and 
(4.5), we make use of Novikov's theorem and obtain 

~(I d 4y ¢/,(x,1") rsR (x,y) "t(X,1") ) 

= ~ (I d 4y ft(X,1")R(X,Y)rst/f(x,1"») 

= - atl (xiI d
4
yTr rsR 2(X,y) Ix). (4.8) 

Finally, following Fujikawa 9 and taking the limit A -> 00 , Eq. 
(4.8) reduces to 

- P Tr (*F",vF ). 
16n2 ",v 

In addition, we have 

~ (I d 4y ¢/'(x,1")R(X,y)rt (x,1"») 

= ~(I d 4y ;;'t(X,1")R(x,y)t/f(X,1"») 

= - p(xlI d
4
yTr R(x,y) Ix). (4.9) 

Thus we are led to the Ward identities in the quantum field 
theory 

- ip = 2m; r (t/frst/f) - ~ Tr( * F",VF",v) 
a 811 

(4.10) 

and 

(4.11 ) 
a 

The procedure we have adopted is quite similar in spirit to 
the derivation of the chiral anomaly given by Namiki et al. 10 

APPENDIX 

We wish to prove the analog of Novikov's theorem for 
para-Grassmann variables. The proof depends on a proba­
bility distribution, 

P(a,a) cx:exp( - ~ ± afAijaj), (A1) 
'J Q= 1 

over the Green components af and af of independent para­
Grassman variables ai and a i • For a given value of the Green 
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index, these Green components anticommute, but for differ­
ent Green indices they commute. The average of a function F 
of a; and ii; is defined as 

(F) = III II diif daf FP(a,ii) 
a I 

= I II dii da FP(a,ii). (A2) 

We want to prove the relations 

(afF) = L (afii%) ( a: ), 
k aak 

(A3) 

( -aF) _ ,,( aF)( a-a) a; - - ~ -- aka;. 
k aa% 

(A4) 

Noting that (afii%) = A ii: 1, we may rewrite (A3) and 
(A4) as 

+A;k(a%F) = (:;), (A5) 

+ (ii%F)Ak; = - (:;), (A6) 

Consider the lhs of (A5), 

+ A;k (a%F) = I II dii da A;ka%FP(a,ii) 

= I II dii da P(F)A;ka%P(a,ii) 

= - III dii da P(F) ~P(a,ii), (A7) 
aiif 
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where P(F) is obtained from F on changing the signs of af's 
and iif's in F. Carrying out an integration by parts in the next 
step, we get 

+A;k(a%F) = + III diida :;p(a,ii), (AS) 

which is (A5) or (A3). Likewise one can prove (A6) or 
(A4). Equations (A3) and (A4) are the desired analogs of 
Novikov's theorem for the noise sources used in Sec. II. 
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Rules are derived for the computation of the spectrum and state function of a system of N 
fermions in one dimension interacting with a delta function potential. The system is composed 
of fermions of two types of internal symmetry. The rules are valid for an arbitrary number of 
either symmetry type and any value of the delta function interaction strength. The state 
functions satisfy periodic boundary conditions, and therefore describe the interacting system at 
nonzero density. 

I. INTRODUCTION 

I address the problem of N fermions of two distinguish­
able types of internal symmetry (here called u and d), in one 
dimension, interacting with a delta function potential. There 
are to be K spin-up u particles and M spin-down d particles, 
M <,K and K + M = N. This problem is of the exactly solv­
able type, for it is algebraically factorized by an ansatz of no 
diffraction, often identified with the Bethe ansatz. Gaudin 1 

is a major resource in tracing the history of this problem, and 
in explaining the algebraic relation of this to other problems, 
e.g., the Hubbard model. 

Some time ago substantial effort was directed toward 
computation of the spectrum in the bulk limit for various 
values of M and all values of the interaction strength. Flicker 
and Lieb,2 Gaudin,3 Yang,4 and Sutherlands conclude, with 
reluctance, that the excitation spectrum is not an analytic 
function of the delta function coupling constant at zero in­
teraction strength. This conclusion is drawn with reluctance 
because zero interaction strength separates the attractive 
from the repulsive interaction, and the attractive case prom­
ises the most interesting interpretation due to the presence of 
bound states. The integral equation methods developed by 
these investigators gave all of the information about the 
spectrum for a repulsive interaction, but only very limited 
information about the system for an attractive interaction. 

Interest has reawakened recently as a result ofthe com­
plete characterization of the dynamics ofthe M = 1 case.6

•
7 

The excitation spectrum is indeed nonanalytic at zero inter­
action strength, but, through the state function, the nonana­
lyticity is understood as arising from the presence or absence 
of a pair. There is a pairing phase transition if the interaction 
is attractive. 8 The phase transition arises because the state 
function influences equilibrium, and thus the equilibrium 
properties are not a function of the spectrum alone. These 
results have fortified the opinion that a solution to the attrac­
tive M-down problem would contain important information 
about the superconducting or pair superfluid state of more 
realistic models. From the M = 1 case it is clear that under­
standing the attractive M-down equilibrium problem re­
quires computation of the state function as well as the spec­
trum. 

This work will follow closely the model of M = 1, which 
differs from the work of other investigators in its emphasis 

on the state function. The fundamental assumption will be 
the assumption of no diffraction, which is an assumption of 
properties of the state function. The internal consistency of 
this assumption requires that the free parameters of the sta­
tionary state wavefunctions satisfy a certain dynamical alge­
bra. The invariants of this algebra are integrals of the mo­
tion, completely determined by the algebra and boundary 
conditions. These integrals of motion determine the con­
stants of motion. The constants of the motion include the 
energy, the total momentum and, as will be shown in subse­
quent work, a paticular marginal probability distribution. 

II. DERIVATION OF THE SPECTRAL LAW 

Here I derive the spectral law and the state function for 
the M-down problem. Since an algebraic condition of no dif­
fraction is satisfied (a stronger condition than the Bethe an­
satz), I assume-without loss of generality-a state function 
of a very particular form. 

( 1 s) The state functions of a complete set of stationary 
states may be expressed as linear combinations of N! plane 
waves (with differing coefficients) in an N-dimensional state 
space, partitioned into N! regions that corespond to order­
ings of the particles along the one spatial dimension. 

(2s) The N! different plane waves are permutations of N 
distinct integrals of motion k; among N particle coordinates. 

The delta function dynamics imply an algebraic rule for 
computing the coefficients of the plane waves in any region, 
given the coefficients in an adjacent region. I will call this 
rule D, to be defined explicitly later. The consistency of the 
assumption of no diffraction is expressed as a condition on 
the algebra of rule D. 

(A) Given the value of the coefficients in anyone region 
it does not matter what sequence of particle permutations 
are used to carry the state function to any other region-the 
answer for the state function is the same. 

The condition of no diffraction, then, is a condition on 
the algebra of the delta function dynamics. Any faithful rep­
resentation of the algebra of that dynamics will satisfy condi­
tion (A). Here I choose a particular representation of the 
state function that satisfies (1 s) and (2s) and a particular 
representation of the dynamical algebra which manifestly 
satisfies (A). Subsequently I will assure that the dynamical 
algebra is consistent with rule D. 
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By virtue of the Pauli principle and conditions (Is) and 
(2s) above, I may write a state function valid inM IK! contig­
uous regions of the state space. It is of a Slater determinant 
form. Let XI"",XM be the coordinates ofthe spin-down fer­
mions, and Yt""'YK be the coordinates of the spin-up fer­
mions. In all regions of the state space such that 
Xt""'XM <Yt, ... ,yK, the function 

altlk,X, a 2t1k,x, aNe 
Ik~, 

ik.xM ik,xM ik~M 

'I1 t = Det 
ate a 2e aNe 

(1) 
Pteik,y, P2eik,y, P ikNY, 

, 
Ne 

f3 ik.YK 
te P ik,yK 

2e P ikNYK Ne 

satisfies the Pauli principle and the state function constraints 
(Is) and (2s); '11 1 = o if any pair of k 's are the same, thus all 
k 's must be distinct. Here, '11 1 is of the symmetry class appro­
priate to region 1; '11 1 = 0 if any two x's or Y's are equal. The 
a's andp's are independent of the Xi 'Yi' Their dependence of 
the ki must be chosen to satisfy rule D of the delta function 
dynamics, which intervenes at every boundary of this region. 

I 

Again, consistent with condition (A) and the Pauli 
principle, the form of the solution in an adjacent region is 

ik,xM I'-2a 2e1k,xM 
'11 1 = Det 

I'-tale 

Vt!3leikoY, V-j32e1k,y, 

P ik'YK 
te f3 ik,yK 

2e 

(2) 

where I have taken the adjacent region to bexl, .. ·,XM _ t <Yt 
<XM <Y2'''''YK. Condition CA) ofthe algebra of no diffrac­
tion is satisfied if the algebra of this two-body problem self­
consistently determines all other regions. In particular the 
constraint (A) on the algebra is satisfied if, in the region M, 
YI <Xt'''''XM <Y2""'YK, the state function is 

I'-ta teik,x, I'-2a 2eik,X, ·k 
I'-NaNe' ~, 

ik'''M I'-~2ik,XM I'-NaNik~M 
'11M = Det 

I'-tale 
(3 ) 

( Vt)MPte1k,y, ( V2)MP2eik,y, ( )MP ikNY, VN Ne 

P ik'YK Ie P Ik,yK 
2e P ikNYK Ne 

The idea here is that each time a particular u passes from 
right to left through a particular d, the d-particle amplitudes 
gain one power of 1'-; and the u-particle amplitudes gain one 
power of V;. The effect of a u-d passage on the state function 
is independent of history , and automatically produces a state 
function of the correct symmetry class. Therefore, this dy­
namics of u-d passage satisfies condition (A). 

At the common boundary of regions 1 and 2, where 
XM = Yt, delta function potential two-sided boundary condi­
tions that constitute rule D are to be satisfied. I impose these 
conditions by factoring out the X M,Yt dependence from (2). 
This is achieved by expanding the respective determinants 
by 2 X 2 subdeterminant minors along the rows M and 
M+l. 

Continuity ofthe wavefunction gives, for all i,j 

a; P j - a j P; = I'-;vja; P j - I'- ja j Pi' 

The derivative discontinuity condition: 

the discontinuity of the normal derivative 

(4) 

= - g( value of the wavefunction on the boundary), 

gives, for all i and j 

2i(k; - kj )(a; P j + a j P; - I'-;vja; P j - I'- jv;a j Pi) 

165 

= -g(a;Pj -ajP; +I'-;Vp;Pj -I'-jv;ajP;), 
(5) 
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I 
where g is the strength constant of the delta function poten­
tial (as chosen here g > 0 is an attractive interaction). Some 
manipulation gives the homogeneous equations 

{
I + lis - I'-;v j - lis } {a; Pj} _ 0 

lis 1 - lis - I'- jV; a j P; - , 

(6) 
wheres=2i(k; - k j )Ig. Putting the determinant of the sys­
tem zero gives 

s=2i(k; -kj)lg= lI(1-I'-;vj ) -lI(1-I'-j v;), 

or, for all i,j 

2ik. 2ik. 1 __ ' + =--} + (7) 
g (1-I'-j V;) g (l-I'-;v j ) 

Equation (7) is the algebraic condition for the consistency of 
rule D and the algebra of the condition of no diffraction. 

Consistency with periodic boundary conditions may 
only be achieved if the regional state function '11M (y I) falls in 
the same symmetry class as '11 1 (Yt + L), because the conse­
quence of the dynamics is the translation of a u particle from 
a region where all of the u's are together to a region where all 
of the u's are together.9 Thus, from (3), 

( )M ;k!-
V; =e 

;k!-IM 2;m",IM 
Vi =e e . (8) 
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Periodic boundary conditions dictate, for all regions J 

'I' J (xl, .. ·,XM,Ylt···'YK) 

= 'l'J(x1 + L"",xM + L'YI + L""'YK + L). 

From the determinental form of 'I' J it is easy to show 

'l'J(x1, +L"",XM +L'YI +L""'YK +L) 
l"l:k,L'TI ( ) = e 'r J X1,.··,xM'YI'···'YK , 

and thus the condition of periodicity is 

I.kiL = 2m1T, (9) 

for m any integer. Consistency is achieved if I can find JI,'S 

and which allow a self-consistent solution of (7)-(9). 
The form of the P's that admit this consistency is not 

unique. I will not attempt to provide a deductive path to a 
suitable form. The following choice is reasonable, given the 
result for M = 1, and the investigations in Refs. 2-5. It will 
be demonstrated to admit the desired consistency. Let 

2imr1T'IM Ps = e . ( 10) 

where ms = any integer. There are M distinct values for Pi' 
corresponding to ms modulo M. These values may be 
thought of as naming distinct families of the Pi' where the 
values of Pi are the same for all values of i, which I call the 
generic recurrence index. Each of the Vi also falls into one of 
the M familities. A substitution in (8) 

ik,LIM 2im,triM ik,LIM 
Vi = e e = Pie (11) 

establishes Vi as a function of ki , as well as a particular one of 
M values of p, so the V's differ from the P's in that their 
values are different for different values of the generic recur­
rence index. 

I substitute (10) and (11) into (7) and, after some alge­
bra, obtain for all i and j, 

2ki ( kiL mi1T mj1T) 
-+ctn --+--+--
g 2M M M 

2kj ( kjL m j1T mi1T) 
=-+ctn --+--+--

g 2M M M' 
(12) 

the set of transcendental equations to be solved for the k i • 

These transcendental equations are a generalization of the 
single transcendental equation of Refs. 6 and 7, where 
M = 1. Every distinct set of N k i which satisfy these equa­
tions, and for which the constraint of periodicity (9) is satis­
fied, are the integrals of motion of a stationary state of the 
system. 

If 41T(mi + m j )/gL is added to both sides of (12) the 
transcendental equation becomes 

2(ki + 2mi1TIL + 2m j1TIL) (kiL mi1T m j1T) 
---------"-- + ctn -- + -- + --

g 2M M M 

2(kj + 2mi1TIL + 2m j1TIL) 

g 

(
kJL mJ1T mi1T) +ctn --+--+-- . 
2M M M 

Let mij = mi + m j modulo M, and 

Zi = (LI2M)(k';'" + 2mis 1TIL), 
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(13) 

(14) 

where the distinct k ';'" depend upon s and the generic Zi do 
not. This change of variable substituted in (13) gives 

ctn Zi = 4A(c - Zi)' (15) 

where A = M I gL and the constant c is independent of i. This 
is the generic form of the transcendental equation, as op­
posed to the distinct form (12). The z's are the generic inte­
grals of the motion. There are N generic integrals of the mo­
tion and N D distinct generic integrals of the motion where 
1 <N D <N. Note that the generic and distinct transcendental 
equations are identical for M = 1, as in Refs. 6 and 7. 

The connection between the generiz z's and the distinct 
k 's is, from (14) 

k';"'= (2IL)(Mzi - mis 1T), (16) 

where mis = any integer modulo M, except, to keep k's dis­
tinct, mis#mi/ ifs#t. 

III. STATEMENT OF THE SPECTRAL LAW 

The spectral law for the determination of the distinct 
integrals of motion, comprised of (9), (15), and (16), is 
now internally consistent and complete. Let the index i label 
a branch of the cotangent in the generic transcendental equa­
tion. Let the positive integer ni, O<ni<M, be the occupancy 
number of the generic branch i. It follows that 

Lni =N. (17) 
i 

The graphical methods of Refs. 6 and 7 are adequate for 
explicit visualization of the solutions to the generic transcen­
dental equation (15) for a fixed value of c. The solutions to 
( 15), Zi (c), are continuous monotonic functions of c. Substi­
tuting (16) into (9) 

2 L L (Mzi(c) - mis1T) = 2m1T, 
i s 

which gives the generic constraint 

n1T 
~niZi(C) =M' (18) 

for n an integer. Each value of c for which this relation is 
satisfied is an allowed value of c, for which the generic inte­
grals of motion are Zi (c). 

IV. THE CONSTANTS OF THE MOTION, STATE 
FUNCTION, AND NORMALIZATION 

The distinct integrals of motion are determined from 
( 16). They depend upon the generic integrals of motion as 
well as the N quantum numbers m is ' The constants of the 
motion depend upon the distinct integrals of the motion. The 
total momentum and energy are given by 

2 n,-I 

k(c) =-L L (Mzi(c) -mis 1T), 
L i s=O 

2 n,-I 

E(c) =-2 L L (Mzi(c) -mis1T)2. 
L i s=O 

(19) 

As in the M = 1 case, the spectral constant c is to be elimin­
ated in favor of k in the expression for the energy. This gives 
rise to an energy band whose energy is Eb (k), where the 

J. B. McGuire 166 



                                                                                                                                    

band quantum number is determined by the quantum 
numbers nj and mis • 

The state function is given by the spatial union of the 
state functions in the various regions. To make this state 
function explicit I specify the a;'s and f3;'s in region 1. The 
equation of continuity (4) gives 

aJf3j (1 - /-ljVj ) = const, independent of i,j. 

For simplicity, let the constant = 1, and substitute the val­
ues for the /-l and v 

- f3 (1 jk;LIM Utrm;/M) a j - j -e e . 

To be completely explicit I make another arbitrary choice, 
that f3j = 1 for all i. This corresponds to assigning a particu­
lar amplitude and phase to the state function in region 1. 
With this choice the complete state function in region 1 is 
given by specifying the a's in region 1 

( I 2jZi) 2' jZi • a j = - e = - Ie smzj • (20) 

Note that these amplitudes are functions only of the generic 
integrals of motion. 

The state function in region 1 is the determinant of an 
N X N matrix whose form is 

'1'1 = Det (21) 

where it is understood that the a j are generic and the k j are 
distinct. Now consider the state function in an adjacent re­
gion, where the d particle labeled by XI and the u particle 
labeled by YI interchange position. Expand the determinant 
(21) by 2 X 2 subdeterminant minors along the two rows 
shown, to factor the X I'YI dependence. According to the self­
consistent version of rule 0, each 2 X 2 subminor is trans­
formed by 

{ 

jkpc, 
a·e 

Det "k 
e' ,y, 

{ ~ ~} /-l.a .e' pc, /-l·a .e' 1" 
-+Det " J J 

jk,(y, + LIM) jkj(y, + LIM) • 
/-lje /-lje 

(22) 

Since this is all of the XI,y1 dependence, and the/-l's are uni­
modular, the effect on '1'*'1' is 

that is '1'*'1' in any region is generated by a discrete transla­
tion of '1'*'1' in any other region. 

The complete stationary state wavefunction is the spa­
tial union of the regional state functions, which I write 

'I' = {U'I'J}. 

This notation means that the various regions of state space 
are labeled with an index J, and the total state function is the 
nonanalytic function '1'1 in region 1, '1'2 in region 2, etc. In 
the same notation 

'1'*'1' = {U'I' J*'I' J}. 
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From (23), 'I' J*'I' J may be written as a set of finite transla­
tions of '1'1 *'1' I: 

'I' J*'I' J (X,yI,y2'''''YK) 

= 'l'1*'I'{X,y1 +nl(J) t, 
Y2 + n2(J) - , .. ·,yK + nK(J) - , L L) 

M M 
(24) 

where the nj (J) are integers which have the meaning that 
they are the number of u steps into the d sea required to 
connect region 1 to region J. Since '1'*'1' is composed of the 
union of all 'I' J *'1' J' integrals of '1'*'1' may be computed as 
integrals of a single regional state function over volume L. 
For example, the unnormalized bivariate u-d probability 
density in a stationary state is 

p(z,t,x,y) 

= i L 

dX .. ·iL 

dY'I'1 (x,y,x, y)'I'T(x,y,x, y), (25) 

where X is a particular d coordinate, Y is a particular u coor­
dinate, and X, Yare, respectively, the set of complementary d 
and u coordinates. The procedure for evaluating these inte­
grals as functions of the integrals of motion closely follows 
Refs. 6 and 7 and is outlined in the Appendix. 

The normalized u-d relative coordinate marginal prob­
ability distribution in a stationary state is 

w(z,r) = I + [~ - Q~Q] ~, 
where 

I Najar 
n(z) =-~---­

N I (1 - Aaja;) 

I N a.e- jICi
' 

Q(r) =-~--'----:­
N I (1 - Aaja;) 

D= 1-l/N+An. 

V. CONCLUDING REMARKS 

(26) 

The computation of the integrals of motion is remark­
ably similar to M = 1. The generic transcendental equation 
and constraint of periodicity are identical in form to the cor­
responding equations for M = 1. The computation of the 
distinct integrals from the generic is very simple. It is only 
necessary to identify with each generic integral a set of equal­
ly spaced momentum states. The effect of this seemingly tri­
vial generalization of the spectral law is profound (particu­
larly in the attractive case), and will be dealt with elsewhere. 

I do not continue here with the important application of 
the bulk limit N = 2M, which motivated this work, because 
that is only a single application of the ideas expressed here. 
Further applications include the possibility of removing 
some of the artificial barriers in other solvable model prob­
lems (e.g., negative coupling in the one dimensional Hub­
bard and Heisenberg models), and extension of this algebra­
ic approach to other quantum fields. 
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APPENDIX: INTEGRALS OVER REGIONAL STATE 
FUNCTIONS 

Consider integrals of the form 

I(z,t,x,y) 

= i
L 

dX···i
L 

dYa(x,y,x, Y) at (x,y,x, y), (AI) 

where a is the determinental form of the state function in 
region 1: 

a(a,x,y) = Det 

'k a(zj)e' ~, 

=Det 

Let zr = tj' and correspondingly k r = KiJ so that the ad­
joint determinant is written 

at(z,x,y) = Det 

Note the integral identity: 

fL/2 dX ei(L, -Kj)X 

-L/2 

= L [8ij (1 - Aaiar) 

=Det 

4 sin Zj sin ti sin(kj - Kj)L 12] + . 
gL sin(ki - Kj)L 12M 

(A2) 

where I have chosen k j = Kj~i = j. This identity is estab­
lished by doing the integral 

LI2 {2Sin(LI2)(kj -Kj ) 

f k,-=/= K," dxi(k,-Kj)x=L L(kj -Kj ) , 
-LI2 

1, k j = Kj 

and noting that 
t 2. .,. ajaj - j(z, - ;j) 

-SIDZ· SID!:>. =--e g , , 2g 

sin(L 12M)(kj - Kj ) 

(kj-Kj ) 

is an alternative form of the transcendental equation (12). 
The second term of (A2) does not contribute in the bulk 
limit; if kiL and KjL are distinct and separated by an inte­
gral multiple of 21T it vanishes identically otherwise I shall 
always be concerned with the bulk limit gL -+ 00 where it is 
negligible; if kjL =KjL, the corresponding 2 X 2 determinant 
vanishes identically. 

The integration over YI removes all dependence on YI. 
Thus 

I(z,t,x,Y') = I (1 - Aaiar)ata(z',X,Y'), 
j 
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where a(z' ,x,Y') is the determinant of an N - 1 by N - 1 
matrix. Here, z' means leave out all of the z's in the sums, Y' 
means leave out all of the y's in the integrals. Continue the 
process until all but one of the y's are integrated out: 

I(z,t,x,y) 

= I···III (1- Aata])ata(z',x,Y'), 
j j t 

where a is the determinant of an M + 1 by M + 1 matrix: 

{ 

'k } 
a(zj )e' ~, 

a(z,x,y) = Det .... . 

e'kiY 

Now, integrate the x dependences by the same method­
expand by minors to factor Xi dependence of the integrals 
using the integral identity. The only difference is that the 
typical term is multiplied by ajar. Integrate over x's until 
only one x remains: 

I(z,t,x,y) = II I Fij II (1- Aata;)ata, 
j j N-2 N-2 

where 

meaning sum over all possible ways to choose a product of 
M - 1 factors ataI, no index repeated, index =/=i or j. In 
Refs. 6 and 7 it is observed that a,ai, is the weight, or relative 
probability, that any given d particle is identified with the 
integral ofthe motion Zt. Here, Fij is the weight, or relative 
probability, that M - 1 balls (d particles) put in N distin­
guishable urns (indices) such that no more than one ball is in 
any urn and no ball is in urn i or j. The events "no ball in i" 
and "no ball in j " are independent, and the weight of their 
conjunction is the product of their individual weights: 

Fij = FjFj, 

and 

[ IN ]M-I 
F j = 1 - ajar j~1 ajar . 

Thus the i dependence ofF; is of order (lIN) M, and there­
fore negligible. 

Completing the product over the N - 2 other factors 
the result is 

I( " ) _ ~~ a(x,y)at(x,y) 
Z,!:>,x,y -,£".,£". t t ' 

j j (1 - Aajaj ) (1 - Aajaj ) 

where 

a = Det{aj:k~ aji
kr

} 
e' iY eikjY · 

Expanding the determinants 

DDt = ajar + apJ 
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where r = x - y, the u-d relative coordinate. Substituting 
and rearranging terms 

1= n(1 + An) - QtQ(r), 

where the functions nand Q are 

1 N a.at 
n(z) =-L I I , 

N 1 (1- Aa;a;) 
N -iKjr 

1 a;e 
Q(r) =-L---­

N 1 (1 - Aa;a;) 

The normalization integral may be computed using the 
integral identity (A2): 

fL QtQdr- nL . 
Jo N 

In the bulk limit, therefore, the normalized u-d marginal 
probability distribution is 
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w(z,r) = 1 + [~ - Q~Q] ~ , 
where D = 1 - 1/ N + An. 
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On the zeta-function regularization of a two-dimensional series 
of Epstein-Hurwitz type 
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As a further step in the general program of zeta-function regularization of multiseries 
expressions, some original formulas are provided for the analytic continuation, to any value of 
s, of two-dimensional series of Epstein-Hurwitz type, namely, 
l::'.n, =0 [a l (n l + CI )2 + a2 (n2 + C2 )2] - s, where the aj are positive reals and the cj are not 
simultaneously non positive integers. They come out from a generalization to Hurwitz 
functions of the zeta-function regularization theorem of the author and Romeo [Phys. Rev. D 
40,436 (1989)] for ordinary zeta functions. For s = - k,0,2, with k = 1,2,3, ... , the final 
results are, in fact, expressed in terms of Hurwitz zeta functions only. For general s they also 
involve Bessel functions. A partial numerical investigation of the different terms of the exact, 
algebraic equations is also carried out. As a by-product, the series l::=oexp[ - a(n + C)2], 
a,c> 0, is conveniently calculated in terms of them. 

I. INTRODUCTION 

For a few years now, the study of quantum field theories 
in partially compactified space-time manifolds has acquired 
increasing importance in several domains of quantum phys­
ics. Let me just mention the issues of dimensional reduction 
and spontaneous compactification, and the multiple ques­
tions associated with the study of quantum field theories in 
the presence of boundaries (like the Casimir effect) and on 
curved space-time (manifolds with curvature and nontrivial 
topology), a step towards quantum gravity. 

There are many interesting calculations in these theories 
that can be carried out exactly-and in a very elegant way 
from the mathematical point of view-by the zeta-function 
regularization method. In particular, if all the eigenvalues of 
the Hamiltonian are known, then, very commonly, one is led 
in this method to the computation of expressions ofthe gen­
eral form 

(1) 

As such a muitiseries, this expression only makes sense for 
Re(s) big enough, and an analytic (usually meromorphic) 
continuation to other values of s is in order. In the zeta­
function method, this is provided by the Riemann and Hur­
witz (also called Riemann generalized) zeta functions. 

However, for an expression as general as (1) this pro­
gram has proved to be extremely difficult (not to say impos­
sible until now) to carry out. The simplest case is obtained 
when (1) corresponds to the Hamiltonian zeta function 

(2) 

(Ej are the eigenvalues of H) of a system of N noninteracting 
harmonic oscillators. In this case, aj = 1, j = 1,2, ... ,N, and 
the aj are the eigenfrequencies {j)j' 1 Another important case 
shows up in the partial toroidal compactification (space­
time TPXRH I). Then aj = 2 and, usually, cj = 0, ±! 

(Ref. 2).This leads typically to Epstein zeta functions 

"" L 
""I 

L (3) 
nl •...• nN= - 00 

( the prime prescribes omission of the term with 
n l = n2 = ... = nN = 0). Other powers aj appear when one 
deals with the spherical compactification(space-time 
sP X Rq + 1 ). Moreover, as string theory seems to indicate, 
nothing precludes the possibility of having to consider other 
compactification manifolds, leading to very general values 
for the a j • In this work, however, we shall only deal with the 
particular case a j = 2, j = 1,2, ... ,N, leaving more general 
situations for subsequent study. 

The aim of the paper is to derive some new and useful 
expressions for the analytic continuation of two-dimensional 
sums of the types just mentioned. My results will come from 
a rigorous generalization of the zeta-function regularization 
theorem, 1.3,4 which is carried out in Sec. II, Eq. (7), byob­
taining the appropriate counterterm (9). From it, basic ex­
pressions for zeta-functions regularization-Eqs. (22), 
(30), and (32) of Secs. III, IV, and V, respectively-will 
follow. They will give rise to the general equation (34) of 
Sec. V, which provides the analytical extension to any com­
plex value of s of two-dimensional sums of the type men­
tioned in the Abstract, and also to the interesting particular 
formulas (35)-(38). Finally, in Sec. VI a recurrent proce­
dure to extend these expressions to arbitrary-N multiseries 
as (1) will be sketched [Eq. (39)]. 

II. THE CASE «1=2: STATEMENT OF THE 
MATHEMATICAL PROBLEM 

The apparently simple case a j = 2 carries enough com­
plication that it deserves a complete study on its own. On the 
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other hand, at least formally, the general case is actually very 
similar to this one (the main difference being the transition 
from the cases a j < 2 to the cases aj >2, as will be explained 
later. Thus I shall restrict myself to the expressions 

EN(s;a., ... ,aN;c" ... ,cN) 

- nl •... ~= 0 [jt. aj (nj + Cj)2] - s, (4) 

where it is understood that all aj > 0 and that not all of the cj 

are nonpositive integers. Actually, only the particular situa­
tion with N = 2 will be worked out in detail. Let me empha­
size the fact of the presence in (4) of general nonzero aj's and 
cj's. The only precedents in the literature (to my knowledge) 
of this kind of evaluations are restricted to very few 
special cases other than a, = a2 = ... = aN and 
c, = c2 = ... = CN = 1.2,5 Maybe the most famous expres­
sion in this context is the celebrated result of Hardy,6 which 
can be obtained as a particular case of our final formulas in 
Ref. 4. 

In Ref. 4, together with Romeo we began an investiga­
tion of the general expression (4), limiting ourselves to the 
simplest case cj = l,j = 1,2, ... ,N. It is not that immediate to 
extend the results there to the present situation, as we shall 
see, 

A basic point in the zeta-function regularization proce-

where ~(z,c) is Hurwitz's (or Riemann's generalized) zeta 
function 

00 

~(z,c) = L (n + c)-S (8) 
n=O 

and .:1~a) (s) is the following integral over the curved part K 
of the contour C: 

.:1~a)(s) == -. ~(s + 1 + aa,c)r(a). i da 

K21Tl 
(9) 

The preceding expressions, Eqs. (7) and (9), constitute 
the more basic result in this paper. They can be viewed as a 
generalization of the zeta-function regularization theorem 
obtained in Ref. 4. There the case of the ordinary Riemann 
zeta function (i.e., c = 1) was studied and a detailed discus-, 
sion on the nature of the term (9) for c = 1 (including nu-
merical computations for different values of s) was pro­
vided. It turns out that, for arbitrary positive c, the present 
term (9) can be related to the one in Ref. 4; in fact, it is 
numerically comprised between two expressions both ob­
tained from the case c = 1 by suppressing a finite number of 
contributions, namely, the first [c - 1] and [c], respectively 
(here square brackets mean integer part). As the notation 
(i.e., the delta) already suggests, this term (9) always turns 
out to be a correction to the first, leading terms. It is also 
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dure is the interchange of the order of the summations of 
infinite series in expressions like 

s~a)(s)== m~o (m+c)-s-. a~o (~!l)a (m+c)aa. 

(5) 

In the case c = 1 and a < 2, the correct additional contribu­
tion coming from this commutation of sums was obtained by 
Weldon.3 Actually, he claimed that his result was valid for 
any aeN. This has turned out to be not right, as rigorously 
shown in Ref. 4 where the correct supplementary contribu­
tions for a>2 (always with c = 1) have been obtained. 

III. THE FUNDAMENTAL FORMULA FOR ZETA· 
FUNCTION REGULARIZATION WHEN Q,=2 

I shall now proceed with the calculation of ( 5 ) . It can be 
written as 

s~a)(s)= i (m+c)-s-d~ da.(m+c)-aar(a), 
m=O jc 21T1 

(6) 

where C is the contour (C = L + K) consisting of the 
straight line (L), Re(a) = ao, O<ao< 1, and of a curved 
part (K), which is the semicircumference at infinity on the 
left ofthis line. For Re(s) big enough, we obtain 

s 
-EN, 
a 
s 

--eN, 
a 

(7) 

clear from the above discussion that the most interesting new 
case with respect to the one dealt with in Ref. 4 appears now 
when 0 < C < 1, and this is precisely the specific situation that 
I will consider below. 

In order to be able to provide an expression for the inte­
gral (9) in terms of more elementary functions, I shall re­
strict myselfto the case a = 2. Use will be made ofthe well­
known Hurwitz formula,7 valid (in particular) for Re z < 0 
and O<co;;;;l, 

00 • ( 1TZ) ~(z,c)=2(21T)Z-·r(z-l) L nZ-·sm 21Tnc+-. 
n=. 2 

(10) 
The behavior ofthe lhs for Izl- 00 with Re z < 0 is 

~(z,c)-.;2(21Ty-·r(z-I)sin (21TC+1TZ/2), (11) 

while, for C = 1, we obtain 

~(z) =~(z,1)-2(21T)Z-·r(z-l)sin(1TZ/2). (12) 

From the last two expressions, we get, for 0 < cO;;;; 1, 

lim ~(z,c) = sin(21Tc)cot (~) + COS(21TC). (13) 
Izl-oo ~(z) 2 

Re(z) <0 
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Now, making use of the identity, valid also for Re(z) <0 
(Ref. 7), 

rC ~z)t(1-Z) = LX) dtt -(z+l)12S(t), (14) 

with 
00 

S(t)= L e-n't, (15) 
n=1 

we obtain for the analytic continuation of (9) (with a = 2) 
tos= -1: 

a~2)( _ 1) = ( da. t(2a,c)r(a) 
JK2m 

= ( da [sin(21Tc)cot(1Ta) 
JK 21Ti 

+ COS(21TC) 1t(2a)r(a). (16) 

After making use ofEq. (14), the second termon the rhs can 
be integrated immediately. Writing it now at the beginning 
of the second member, we get 

a~2)( -1) = -,fiTS(r)cos(21TC) 

+ sin(21Tc) { da. roo dt 
JK 2m Jo 

Xt -a-1/2 cot(1Ta)S(rt). 

The last integral in (17) turns out to be zero. In fact, 

dait -a ___ _ i eitra + e - irra 

K ei1TQ _ e - i1ra 

= (rr dO Rei9t - R(cos 9 + isin 9) 

Jrr/2 
(3rr/2 

_ Jrr dO Rei9t - R(cos 9 + ioin 9) 

. tiR + t -iR . cos(R Ln t) 
=-1 =-21 , 

Ln t Ln t 

from which it follows that 

lim roo dt S( rt) cos(R Ln t) 
R-oo Jo Ln t 

= Re [LOOoo du S(reUIR ) e~U] = O. 

Weare left with just 

a~2)( - 1) = - ,fiTcOS(21Tc)S(r). 

Summing up, I have proved that 

Sc=S~2)(-I)= i: e-(m+c)' 
m=O 

(17) 

(18) 

(19) 

(20) 

(21) 

can be expressed in terms of Hurwitz zeta functions, as 

Sc = i: (- 1 )m t( - 2m,c) 
m=O m! 

+ ,fiT + ,fiT COS(21Tc)S(r) , 
2 

(22) 

with (the standard, related to Jacobi's theta function) S(t) 
being given by Eq. (15). Equation (22) is another meaning­
ful result of this paper. It is exact and holds for any value of c. 
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IV. BEHAVIOR OF THE ZETA-REGULARIZED 
FUNDAMENTAL SERIES 

Let me now investigate the behavior of the different se­
ries in (22). Depending on the value of c, the series of Hur­
witz functions can be convergent (even finite) or asympto­
tic. The other two series, i.e., those implicit in the definition 
ofthe S functions, are quickly convergent (the one on the rhs 
much more quickly than the one on the lhs). In fact, to be 
clearer, let us check some specific cases. 

(i) In the particular case c = 1 we recover the known 
equality4,7 

S(1) = (,fiT - 1)/2 + ,fiTS(r). (23) 

(ii) For c =! we have t( - 2m,!) = 0, k = 0,1,2, ... , 
and 

m~o exp[ -(m+ ~r] 
= ,fiT -,fiT i: exp( - m 2r). 

2 m=1 

(24) 

The rhs of (24) permits us to obtain the value of the series on 
the lhs with 10- 10 accuracy, with just two terms 

(25) 

(iii) For c = ° we get an equality equivalent to (23), 

i: e - m' = ~ + ,fiT + ,fiTS( r). (26) 
m=O 2 2 

Actually, it is an immediate consequence of the properties of 
the series in (22) that the equalities one obtains for c + 1 and 
for c - 1 are each equivalent to the corresponding one for c . 
Therefore, only the equalities (22) corresponding to c, 
0< c';;; 1, provide interesting (independent) relations. 

(iv) For c = 1, we get 

(27) 

The series of Hurwitz functions on the rhs is now asympto­
tic. It stabilizes between the eighth and the twelfth sum­
mands and it provides a best value (with"", 10-7 accuracy) 
exactly when we add its ten first terms. 

(v) For c =! and c =! we obtain, respectively, 

i exp[ - (m + ~)2] 
m=O 3; 

= ,fiT + i: (- ~) m t ( - 2m, ~) 
2 m=O m. 3; 

,fiT 00 + ( - 1)J- L exp( - m2r), j = 1,2. (28) 
2 m=1 

In these cases, contributions from the two series in the rhs 
must be taken into account. The first of them is asymptotic 
[as in (iv) 1 and has exactly the same characteristics as the 
one in (27), both forj = 1,2. The second series is extremely 
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v. THE GENERAL EXPRESSION FOR N=2 rapidly convergent (much more than the series on the Ihs). 
These characteristics are maintained over the full range 
0< C<; 1 (but for the very special values c = !,1 considered 
above). 

One may ask what is gained with these asymptotic ex­
pressions. The answer has already been given before, in Eqs. 
(7) and (9), which extend these equalities by analytic con­
tinuation to any value of s, and not simply to the case 
s = - 1 exemplified here. I will be more precise in what 
follows. Before being so, let me present two more examples 
of interesting, original relations that come from Eq. (22): 

The calculation of the general expression (4) will be 
now illustrated, for the sake of clarity, in the simpler case 
N = 2. By using the Mellin transform, we write 

E2(s;a"a2;c"c2) 

"" = L [a,(n, + C,)2 + a2(n2 + C2)2]-, 
n •• n1=O 

I "" L"" =-- L dtt,-I 
r(s) n,.n,=O 0 

xexp{ - t [a,(n, + C,)2 + a2(n2 + C2)2]}. (31) 
"" L exp[ - (m + C)2] =..[ii + 2..[ii cos (21TC)S( rr), 

m= - 00 

(29) 

We shall need the following generalization of Eq. (22)­
again a basic outcome of my regularization theorem (7 )-( 9) 
and obtained in the same way-

"" "" L m exp[ - (m + C)2] L exp[ - a(m + C)2] 
m=O 

1 "" (- I)m 
=-+ L 

2 m=O m! 

..[ii 
X [t( - 2m -I,c) -ct( - 2m,c)] -Tc 

+..[ii[1Tsin(21Tc) -CCOS(21Tc)]S(rr). (30) 

m=O 

"" ( I)m 
= L -, amt( -2m,c) 

m=O m . 

+J... ~+ ~COS(21TC)S(rr). 
2\ja \ja a2 

Substituting (32) into (31), we get 

This gives 

E2(s;a"a2;c"c2) 

= a2-' i: (- I)mns + m) (a,)m t( _ 2m,c,)t(2s + 2m,c2) + a2-

2 

(1Ta,)112 ns - p t(2s _ l,c
2

) 

r(s) m=O m! a2 2 a2 r(s) 

2"" "" "" [ ~ ] + --cos (21TC )a - ,12 - 1/4a - ,/4 + 1/4 ~ ~ n'- 'l2(n + c ) - ,+ 1/2K 21T...1. n (n + c ) r( ) 'I 2 ~ ~, 2 2 ,- '/2 '2 2, 
S n,=' n,=O a, 

(32) 

(33) 

(34) 

where Kv is the modified Bessel function of the second kind. Equation (34) constitutes the general analytic continuation 
formula for two-dimensional series I was looking for. As is apparent, it involves Bessel functions as well as Hurwitz functions. 
However, the following particular cases look especially simple. 

For s = - k, k = 0,1,2, ... , one obtains 

E2( - k;a"a2;c"c2) 

= a~ ± (- I)mnm - k) (a,)m t( _ 2m,c,)t(2(m _ k),c2) 
r( - k) m=O m! a2 

k ( I) k "" k(k - I)'" (k - m + I) (a,)m = a2 - - c, t( - 2k,c2) + a2 L , - t( - 2m,c,)t(2(m - k),C2)' 
2 m=' m. a2 

(35) 

In particular, for s = 0, 

E2(O;a"a2;c"c2) = (c, - !)(c2 - !), (36) 
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and, for s = - 1, 

E 2( - 1;01,02;ct>c2) 

= 02(! - CI )t( - 2,c2) + °1 (! - c2)t( - 2,cl ) 

= !(c i - !)(c2 - !)[OICI (1 - cI ) + 02C2(1 - C2)]' 

For s = 2, we obtain 

E2 (2;0 1>02;C I,C2) 

(37) 

= ~ f (- l)m(m + 1) (Ol)m t( - 2m,c l )t(2m + 4,c2 ) + .!!-._I_ t (3,c2 ) 

02 m=O 02 402 ~0102 

+r?COS(21TCI) f {(n+c2)-2[exP (21T g(n+C2»)_I]-2 

°1°2 m=O "i °1 

+ [(n + C2)-2 + \ff: (n ~;)-3] [exp( 21T\ff:(n + C2») - 1] -l (38) 

The first two terms on the rhs yield properly the result of the zeta-function regularization method (naive commutation of 
the series summations plus Weldon's additional contribution3

). They produce the desired expression of (4) in terms of zeta 
functions. The last term in (38) generalizes to arbitrary C I,C2 > 0 the supplementary corrections detected in Ref. 4 for 
CI = C2 = 1 and which had been loosely forgotten in Ref. 3. In spite of the imposing aspect of this last term, its contribution is 
actually very small, and the series in n is very quickly convergent (only the first couple of summands need to be taken into 
account in practice). For an arbitrary value of s, one must use the general expression (34). 

VI. A GENERAL EXPRESSION FOR ARBITRARY N 
The preceding calculations can be generalized to multiple sums (4) with arbitary N. The fundamental formula (32) 

introduced into the Mellin transform [as in (31 )-( 33)] allows us to proceed recurrently. One obtains the (exact) equation 

EN (S;OI,· .. ,ON;CI"",CN ) 

Notice, once more, that the last term is a small correction to 
the first two, so that, in practice Eq. (39) can be viewed as a 
recursive formula with a small correction term A (the last 
one) that can be estimated numerically. This is also dis­
cussed in Ref. 4 (for the particular case C I = ... = C N = 1) 
in greater detail. 

The application of the formulas derived in this paper to 
the direct evaluation (exact, or at worst, six to seven decimal 
places precise) of the Casimir effect, by just summing over 
modes (provided that they are known exactly) and by zeta­
regularizing the resulting expressions, will be developed in a 
separate publication. 
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Basic equations of three-dImensional radiative transfer 
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Chandrasekhar developed one-dimensional mathematical models of radiative transfer in 1949 
[Radiative Transfer (Oxford U.P., New York, 1950) J. This paper is a systematic extension of 
Chandrasekhar's work to three dimensions, including discussions of specular and diffused 
parts, reciprocity, solutions, and approximation. 

I. INTRODUCTION 

Lord Rayleigh,1 in 1899, investigated the problem of 
specifying the radiative field in a light scattering atmo­
sphere. In 1905, Schuster explained the absorption and 
emission lines in stellar sectra and, in 1906, Schwarzschild3 

introduced the concept of radiative equilibrium in stellar at­
mospheres. Until 1949, the subject of radiative transfer had 
been principally investigated astrophysically rather than 
mathematically. 

Then Chandrasekhar published Radiative Transfer.4 

He systematically presented radiative transfer as a branch of 
mathematical physics. Developing the general "principle of 
invariance," he constructed a complete one-dimensional 
mathematical model for radiative transfer in plane-parallel 
atmospheres. Since then there have been many interesting 
developments in this area. 

Uenos and Bellman and Kalaba6 described their method 
of "invariant imbedding." At the same time, 1956, Red­
heffer developed the closely related transmission-line ap­
proach.7 Other important contributions were made by Prei­
sendorfer,8 Paszkowski,9 Wing,IO Ueno and Wang,1I 
Wang,12 and many others. The mathematical models asso­
ciated with the above were all based on one-dimensional 
time-independent radiative transfer. 

Recently, investigators have been forced to study three­
dimensional radiative transfer: for example, the study of ra­
diative transfer in a free non-plane-parallel atmosphere, or in 
a plane-parallel atmosphere with nonuniform ground reflec­
tion. Models in these three-dimensional cases have immedi­
ate applications in Earth image processing and target identi­
fication. 13- 16 

The purpose of this paper is to construct, in a compact 
and geometric way, a complete set of mathematical models 
for three-dimensional radiative transfer using integral oper­
ators and scattering theory. 7 With our interpretation of such 
operators, results may be applied to three-dimensional prob­
lems in neutron transport, probability and circuit theory, 
etc. A following paper extends three-dimensional radiative 
transfer to a time-dependent case. 

Symbols used in this paper can be found in Table I. 

II. BASIC EQUATIONS 

Splitting the radiative intensity at an incremental ele­
ment of a transfer medium into input and output, we find its 
equation of state, from which we derive, in linear operator 
form, the fundamental equation governing the variation of 

intensity in the medium. The intensity I(p,u) is separated 
into two parts, 1+ and 1-, i.e., I+(p,u) = I(p; + u), with 
0<8<17'/2, and I-(P,u) =I(P; - u), wit'li 17'/2<8<17'. As 
I+(p,u) andI-(p,u) travelsfromptop' = p + ap (see Fig. 
1 ), there are differences in energies arising from the trans-

TABLE I. Symbols used in this paper. 

p = (x.y,z) 

a(p) 

u(p) 

I(p,u) 

/(p,u,u') 

t,T 

p,r 

s 

T,n 

R,P 

t.r 

r,p 

!f,B,C,D 

a,b,c,d 

K 

* 

Q 

I 1,1111 

the position, i.e., a point in three-dimensional 
Euclidean space 

a directional vector; JL = cos 0, Ois the polar angle, and ~ is 
the azimuthal angle 

the position-dependent attenuation coefficient 

the position-dependent scattering coefficient 

radiant intensity at position p in the direction u and in an 
element of solid angle 

the position-dependent phase function for an angle be­
tween u and u' 

transmission operator, see Sec. II 

reflection operator, see Sec. II 

scattering matrix, see (2.4) 

specular part of transmission operator 

diffused part of reflection operator 

diffused part of transmission operator 

dilfused part of reflection operator 

generators associated with specular part of 
operators, see (2.5) 

generators associated with diffuse part of 
operators, see (2.5) 

ground reflection operator 

superscript *, see (3.16) 

overall reflection operator, see (4.1) 

see (4.1) 

norm and sup norm, see Sec. v. 
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y 

9 

, . .. ' 

Up, 0) 
p=(z,x,y) 

p + ll.p = (z + ll.z,x + ll.x,y + ll.y) 

~f'-,.......;'~--~ x 
cp: - . ..... 

FIG. l. Radiation fields at points p and p + !J.p. 

mission and reflection in the frequency interval and element 
of solid angle considered, Denoting transmission by i and f 
and reflection by r and p, their relations are given by 

(I + (P',U») (i(P,p"u,U') P(P,P',U,U'») (I + (P,u') ) 
\J-(p,u) = r(p,p',u,u') f(p,p',u,u') \J-(p',u') , 

(2,1) 

that is, the input-output pairs in direction u' are mapped to 
the input-output pairs in direction u (see Fig. 2), where, 
using i to denote the operator as well as its kernel, 

i(p,p',u,u')'I + (p,u') = J i(p,p,u,u')I + (p,u')du', 

likewise for the other operators, p, r, and f. We denote the 
generators associated with i, f, p, and r, respectively, by 
b, iI, ii, and C. Then taking the limit as !:..p-+O, we obtain the 
equation 0/ state 

l.~ {I + (P,U») 
v ds \J-(p,u) 

= (b(P~U'U') , 
- c(p,u,u) 

ii(p~u,u') , ) . {I: (P,u:») , (2.2) 
- d(p,u,u ) \J (p,u) 

where d / ds is the directional derivative in the direction of R, 

d 
-I ± (p,u) = VI ± (p,u)-R. 
ds 

(2.3) 

The advantage of the present formulation is that the 
apparently preferred variable, s, in (2.2) can be adjusted to 
the application, e.g., Sec. III, without the transverse or radial 
symmetry assumption of one-dimensional radiative transfer. 
If z is the preferred variable, we have transverse or plane­
parallel symmetry and (2.3) becomes 

~I+(p,u) = ~I+(z,u). 
ds dz 

FIG. 2. Reftection and transmission of 
pencils of radiation. 

Similarly, if the medium is radially symmetric, the preferred 
variable is r = (x2 + Y + r) 1/2 with an equation similar to 
(2.3), cf. WangY Thus previous treatments are restricted 
cases of the present treatments. 

It is known,4 in the treatment of radiative transfer, that 
it is convenient to distinguish between the reduced or specu­
lar radiation, which penetrates to a point in a medium with­
out being scattered, and the diffuse radiation field, which has 
been multiply scattered. The appropriate representation for 
a scattering matrix 

S ' , (i P
r
--) (p,p ,u,u ) = r 

is a linear combination of its specular and the diffused parts 

S(p , u u') = (T(u')t5(u - u') P(u')t5(u + u') ) 
,p, , \R(u')t5(u + u') n(u')t5(u - u') 

(
t(U,U') P(U,U'») 

+ r(u,u') r(u,u') , 
(2.4) 

where t5 is the Dirac distribution and the dependence on p 
and p' are understood. 

The associated generator also allows for both specular 
and diffuse parts, 

(
b(U,U') ~(U,U'») 
c(u,u') d(u,u') 

(
B(U')t5(U - u') A(u')t5(u + U'») 

= C(u')t5(u + u') D(u')t5(u - u') 

(
b(U,u') a(u,u'») 

+ c(u,u') d(u,u') , 

suppressing the variable p for convenience. 
Set I + (p,u') = 0 in (2.1); then 

(2.5) 

~p(u,u') = B(u)p(u,u') + p(u,u')D(u) +A(u')t5(u + u') + a(u,u') + J b(u,u)p(u,u')du 
ds 

+ J p(u,u)d(u,u')du + J p(u,u)C( - u)p( - u,u)du + J J p(u,u)c(u,u)p(u,u')du duo (2.6) 
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Substituting 

p(u,u') = P(u')t5(u + u') + p(u,u'), 
!!... r(u,u') = c(u,u') + f r(u,ii)c(ii,u') T(u')dii 
ds 

as in (2.4), into Eq. (2.6) and grouping all terms involving + f f r(u,ii)c(ii,u)t(u,u')dii du, 
t5(u + u'), we obtain the equation containing only thespecu-

(2.12) 

lor part of the reflection operator p, with 

!!...P(u) = A(u) + B( - u)P(u) c(u,u') = n(u)c(u,u')T(u') 
ds 

+ P(u)D(u) + P(u)C( - u)P(u). (2.7) + n(u) f c(u,ii)t(ii,u)dii. 

The remaining part of (2.6), i.e., the diffused part, is repre- Finally, the specular part and the diffuse part of the trans-
sented as mission 1- are 

d -
-p(u,u') = a(u,u') + B(u)p(u,u') + p(u,u') 
ds 

+ f b(u,ii)p(ii,u')dii + f p(u,ii)d(ii,u')dii 

+ f f p(u,ii)c(ii,u)p(u,u')dii du, (2.8) 

where the coefficients are defined as follows: 

a(u,u') = a(u,u') + b(u, - u')P(u') + P(u)d( - u,u') 

+ P( - u)c( - u, - u')P(u'), 

B(u) = B(u) + P( - u)C(u), 

15(u') = D(u') + C( - u')P(u'), 

b(u,ii) = b(u,ii) + P( - u)c( - u,ii), 

d(ii,u') = d(ii,u') + c(ii, - u')P(u'), 

c(ii,u) = c(ii,u) + C(u)t5(ii + u). 

The specular part [Eq. (2.7)] is a one-dimensional one 
while the diffuse part [( 2. 8)] is three dimensional and in­
volves the specular part. 

Considering 1- (p' ,u') = 0 in (2.1), taking the direc­
tional derivative, and separating the t5(u - u') terms, we 
have the specular part of the transmission, 

!!... T(u) = [B(u) + P(u)C( - u)] T(u), 
ds 

while the diffused part is 

!!... t(u,u') = b(u,u') + B(u)t(u,u') 
ds 

+ f b(u,ii)t(ii,u')dii 

+ f f p(u,ii)c(ii,u)t(u,u')dii du, 

where the new coefficient 

(2.9) 

(2.10) 

b(u,u') = b(u,u')T(u') + f p(u,ii)c(ii,u')dii T(u'). 

Similarly, the specular part of r satisfies the equation 

!!... R(u) = n(u)C(u) T(u), (2.11) 
ds J 

and the diffuse part of r satisfies 

and 

d 
- n(u) = n(u) [D(u) + C( - u)P(u)] 
ds 

!!...r(u,u') = d(u,u') + r(u,u')15(u') 
ds 

+ f r(u,ii)d(ii,u')dii 

(2.13) 

+ f f r(u,ii)c(u,u)p(u,u')dii du, (2.14) 

with 

d(u,u') = n(u)d(u,u') + n(u) fC(U,ii)P(ii,U')dii. 

With the basic equations completed we note that the 
derivation is closely related to Redheffer's transmission line 
theory, and the concept to Chandrasekhar's principle of in­
variance. Also, the three-dimensional model is motivated by 
Ueno. In the case where the operator p is independent of 
(x,y), Eqs. (2.7) and (2.8) reduce to those obtained by Red­
heffer. When IP - p' 1-+ 00 , so that 

S(p,p',O,O') -+S"" (0,0') 

and 

!!...S(p,p',O,O') = 0, 
ds 

then the above differential-integral equations (2.6)-(2.14) 
all become integral equations. Solutions of such equations 
are of great interest in radiative transfer; indeed, they are 
related to the "law of darkening" in astrophysics. 

III. RADIATIVE TRANSFER 

In this section we consider the three-dimensional radia­
tive transfer model consisting of an atmosphere extended 
from optical thickness z = 0 to z = Z I' At the top z = ZI' it is 
uniformly and monodirectionally illuminated by parallel 
rays of solar radiation of constant net flux, 1rF, per unit area 
normal to the incident direction. At the bottom Z = 0, it is 
bounded by a flat reflecting surface. The upward intensity of 
radiation emergent in the direction from the level z, O..;;;z..;;;z., 
at the horizontal rectangular coordinates (x,y) , is 1- (p,u) 
and the downward intensity is I + (p,u). In this case, 

d ( aI ± aI ± aI ± ) -I±(p,u) = --+tan o sin <,6--+ tan o cos <,6-- , 
ds az ax ay 

(3.1 ) 
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since R = (1, tan () sin rp, tan () cos rp) with u = «(},rp). 
Lettingp"':p' as in Fig. 2, the integral equation genera­

tors ii, b, c, and d of the previous section are determined by 
the physical properties of a thin increment of the medium in 
this case. It can be shown 11 that 

(
b a) = u(z) (f(Z,U,U') , f(z,u, - u') , ), (3.2) 
c d 41T fez, - U,u) fez, - u, - u ) 

where u(z) is the position-dependent scattering coefficient 
and f(z,u,u') is the position-dependent phase function for 
the angle between u and u'. It is also well known14 that 
specular radiation, in this case, occurs only in transmission; 
therefore A = C = O. Thus the equation for Pin (2.7) re­
duces to the linear equation 

.!{P(u) =B( - u)P(u) + P(u)D(u). (3.3) 
ds 

Because there is no specular reflection radiation when the 
optical thickness is zero, the proper initial condition in (3.3) 
is zero. Hence the unique solution of (3.3) for radiative 
transfer is 

P(u) = O. (3.4) 

It follows [(2.8)-(2.10)] that a, b, c, a, a, and D are a, b, c, 
d, B, and D, respectively. In radiative transfer the reduced or 
specular transmission radiation field is equal to e - a(z)/IJ, the 
amount ofincident flux at level z. With u = (p"rp) , this yields 
the values 

B(u) = - a(z)/p, and D(u') = - a(z)/p,. (3.5) 

Combining (3.4) and (3.5) with the remarks following 
(3.4), Eq. (2.8) has the integral form 

[.!{+ a(p)(~+~)]P(U'U') = u(z) [f(P,U, - u') + -1-Ip(U,U)f(P, - U, _ u') ~u 
ds p, p,' 41T P, 

1 Iji1 '") (oo ,)dit 1 II ( ),1"( "-) (- ') dit dU] (36) + 41T \p,u,u P u,u r; + 16~ P u,~ 'J \p, - U,U P u,u r; r; , . 

with initial condition 

p(u,u') = 0, for p = (O,x,y). (3.7) 

Equation (3.6) is identical to the result ofUeno and Wang. 11 

Applying the above conditions to Eq. (2.9), we have 

.!{ T(u) = - a(p) T(u), (3.8) 
ds p, 

with initial condition T(u) = t5(u - u'), where t5 is the Dirac distribution. The unique solution for (3.8) is 

T(u) = exp( - a(p)/p,}. (3.9) 

The corresponding equation (2.10) for radiative transfer now has the form 

[! + a~) ]t(U,U') =A.(p) [exp( - a~) )r(P,U,U') + ~I {exp( - a~) f(U,U)f(P, - U,u') 

ji1" - ') (- '>} du 1 II ('"),I"( .. -) (- ') dit dU] + \Y'u,u t u,u r; + 16~ P u,u 'J \p, - u,u t u,u r; r; , (3.10) 

with initial condition 

t(u,u') = 0, when p = (O,x,y). (3.11 ) 

Assuming independence ofp, a, and A. on (x,y), the atmosphere is homogeneous in the (x,y) but not in thezdirection, 
with anisotropic scattering in a "free space," i.e., K = 0, or in a "reflective space," with ground reflection uniform in (x,y). In 
this case, Eqs. (3.6) and (3.9) reduce to the results of UenoS, 18 and Busbridge}9 

As for Eqs. (2.13) and (2.14), it is observed that D = B and A = C = O. We have 

n(u) = T(u) (3.12) 

and 

[! + a~) ]1'(U,U') = A.(p) [exp( - a~) )f(P,U,U') + 4~ I {exp( - a~) )f(P, - u,u)p(p,u,u') 

( - ), 1"( - , )} du 1 I I ( .. ), 1"( " .. -) ( - ') dit dU] +1' u,u'J\p,-u,-u T+16~ 1'p,U,U'J\Y'-u,upp,u,u Tr; , (3.13) 

with initial condition 

1'(P,U,U') = 0, when P = (O,x,y). (3.14 ) 

For Eq. (2.11), R(u) = 0, since C(u) = O. Equation (2.12) for radiative transfer reduces to 
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[.!!.. + a(p)(~ + ~)]r(p,u,u') 
ds I'- 1'-' 

= exp( - a~») ~ I 1"(u,u)f(p, - U,u') ~ 

(
a (P») 1 Iji oooo, du 1 I I ( .. ), "(P .. - -, du du +exp ---- (p,-u,u)t(u,u)-oo-+~ 1"U,U'J' ,-u,u)t(u,u)-.. --_-, 

I'- 41r I'- 1611 I'- I'-
also with the initial condition 

r(u,u') = 0, when p = (O,x,y). 

IV. RECIPROCITY RELATIONS 

Suppose the phase function depends only on the cosine ofthe angle between u and u', i.e., 

f(z,u,u') =f(z, cos r/J), 

where 

cos r/J = 1'-1'-' + (1 - 1'-2) 1/2(1 - 1'-') 1/2 cos(rp , - rp). 

Thus 

f*(z,u,u') =f(z,u,u'), f*(z,u, - u') =f(z,u', - u), 

wheref* is obtained fromfby transposing u and u', 

f* (z,u,u') = f(z,u' ,u). 

Letp be a solution of (3.6); then interchanging u and u', and using Eq. (4.1), 

[.!!.. + a(p)(~ + ~)]P*(U'U') 
ds I'- 1'-' 

= u(z) [f(P,U', - u) + _1_ Ip(U',U)f(P, _ U, _ u) ~u + _1_ If(P,U',U)P(U,U) ~u 
41r I'- 41r I'-

1 I I ( 'OO)j( • -) (- ) du dU] + 16"r p u ,u P, - u,u P u,u r;:---r: 
= u(z) [f(P,U, - u') + _1_ If(P,U,U)P(U,I'-') ~u + _1_ Ip*(U,U) (u,u) ~u + 1-.2 I Ip*(U,U) 

411" I'- 411" I'- 1611 

ji( _ .. ) * ( .. ') du dU] X P, - u, - u p u,u -oo- -_- • 

I'- I'-

This Riccati equation has a unique solutionl7
•
2o thus 

p(u,u') =p*(u,u'). (4.3) 

Likewise, by (3.10), (3.13), (3.15), and (4.1), it can be 
shown that 

t(u,u') = 1"* (u,u') (4.4) 

and 

(u,u') = r*(u,u'), (4.5) 

the reciprocity relations for three-dimensional radiative 
transfer. 

Conversely, we assume that the reciprocity relations 

d d 
-r(u,u') =-r*(u,u') 
ds ds 

and 

d
d p(u,u') = .!!..p*(u,U'), 
s ds 

we obtain 

f(z,u,u') =f(z,u',u) 

and 

f(z,u, - u') =f(z, - u,u'). 

(3.15) 

(4.1 ) 

(4.2) 

(4.7) 

(4.8) 

(4.3)-(4.5) hold. Then 

d *( ') _ d ( ') - t u,u - - 1" U,U . 

Equations (4.6 )-( 4.8) imply (4.1). Thus Eq. (4.1) holds if 
and only if the reciprocity relations are true. 

ds ds 
Using (3.2) and letting Z-+ (O,x,y) , we have 

f(z,u,u') =f(z, - u, - u'). 

Similarly, since 
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(4.6) 

As for isotropic scattering, 

t(u,u') = t*(u,u'), (4.9) 

and the above reciprocity relations reduces to the Holmboltz 
Principle. 
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v. SOLUTIONS AND APPROXIMATION 

The basic problem, associated with the physical model 
in Fig. 3, is to determine the upward radiation field I + (z,u) 
at the top of the atmosphere in the direction u due to the 
solar or other incident radiation, I j (z, - u'), in the direction 
u'. Let 

I+(z,u) = Q(u,u')Ij(z,u'), (5.1) 

where the linear operator Q is called the overall reflection 
operator, because it consists of the reflection by the atmo­
spheric layer and the multiple reflection between atmo­
sphere and the ground. Letting p and K denote the upward 
reflection operators of the atmosphere and ground, respec­
tively, it is known7,12 that 

Qm =P + IR m (K)r, 

with 
m 

Rm (K) = K L (rK)n, 
n=O 

(5.2) 

where r is the downward reflection operator of the atmo­
sphere, and 

Q(u,u') = lim Qm (u,u'). (5.3) 
m-oo 

Here, uniform convergence is assumed. It is clear from the 
definition that Qm approximates the overall reflection by 
taking the mth order of multiple scattering between the at­
mosphere and ground. Then Qm is called mth order overall 
scattering or the mth-order approximation of Q. 

IfEqs. (3.6), (3.10), (3.13), and (3.15) can be solved 
for p, t, 1", and r, then Eq. (5.3) has the form 

Qm =p+exp(-a(p)/p)[2Rm +IRm +Rm r ] +IRmr, 
(5.4) 

where, by (3.12), I = t + T, 1'= l' + fl, and T= fl, with 

p = (zl'x,y). 

The right side of Eq. (5.4) has the following physical inter­
pretation: first term, the diffuse reflection due to the atmo­
sphere only, i.e., K = 0; second term, combinations of specu­
lar and diffusion due to the existence of the reflector K; and 

I-(p, u) Ii = incident solar radiation 

z=O 

\...J 
ground reflection K 

y 

FIG. 3. A three-dimensional model. 
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third term, pure diffusion reflection due to the existence of 
the ground reflector K. 

Thus Qm captures the intuitive physical notion of mth­
order approximation. Furthermore, Qm can be easily "up­
dated" from m to m + 1. Indeed, 

Qm+1 = Qm + aQm' 
where 

aQm = exp( - a(p)/p)[2K(rK)m + 1+ IK(rK)m + I 

+ K(rK)m+ If] + tK(rK)m+ 11'. 

(5.5) 

(5.6) 

We recall that operators in (5.6) are in integral form. 
For convergence, the norm 

I l(p,u,u')I(u') 1= f f l(p,u,u')I(u')du du' 

and the sup norm 

11/11 = sup I/(p,u,u')I(u') I 
p 

are used. Then 

lIaQmll<lIrKllm+IIIKII{2+ 11111 + 111'11 + 1I11I1Irll} (5.7) 

If the system is dissipative, i.e., 

liS II < 1 and 11K 11<1, 
then 

(5.8) 

Since IlrK II < 1, IlaQm 11-+0, and (5.8) gives the (m + 1 )th­
order of convergence. 

To compute Qm and Qm + I in (5.4) and (5.5) it is nec­
essary to obtain the solutions of Sec. III for p, I, 1', and r, 
which in this setting is more cumbersome than in the Chan­
drasekhar problem. A detailed discussion of these solutions 
is beyond the scope and intention of this paper. However, 
there are several techniques that can be used: (i) the succes­
sive order-of-scattering method of Bellman et al.21

; (ii) the 
extended adding procedure ofPom and Uen022

; and (iii) the 
modified WKB method of Duddley and Wang. 23 
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For the Dirac equation with potential V(r) obeying fo (1 + r) I V(r) Idr < 00 we prove a 
relativistic version of Levinson's theorem that relates the number of bound states in the 
spectral gap [ - m,m] to the variation of an appropriate phase along the continuous part of 
the spectrum. In the process, the asymptotic properties of the Jost function as E -+ ± mare 
analyzed in detail. The connection with the nonrelativistic version of Levinson's theorem is 
also established. 

I. INTRODUCTION 

In this paper, we consider the Dirac equation for a parti­
cle moving in a central electrostatic potential V(r). Separa­
tion of variables leads to the following systems of equations 

./, (0 -01).", H/C(e)",=e 1 '" 

+ ( me? + V(r) K/r ) 

K/r - me? + V(r) '" 

=E""",=("'I(r») (1.1) 
"'2(r) 

on ° < r < 00. Here, m is the mass of the particle, e is the 
velocity oflight, E is the energy (in units where Ii = 1), and 
K is a nonzero integer. We assume that V(r) satisfies 

1"0 (1 + r) lV(r) Idr< 00. ( 1.2) 

This condition guarantees that the differential operator H is 
limit point at zero l (it is always limit point at infinity2) so 
that H/C can be viewed as a self-adjoint operator in the Hil­
bert space of vector-valued functions", satisfying fo (1"'11 2 

+ 1"'21 2)dr< 00. The spectrum of H/C is absolutely contin­
uous on ( - 00, - me2

] U [me2
,00) and consists of at most 

finitely many (simple) eigenvalues in the gap [ - me2,me2
]. 

There is a deep connection between the continuous part 
and the discrete part of the spectrum. In the SchrOdinger 
case, this is the content of Levinson's theorem.3 Here we 
study its relativistic analog. In order to facilitate the com­
parison with other authors, we make the substitution 
t/J = (~ ~ ) "', which converts (1.1) into 

me + e-IV(r) - e-IE) t/J. 
-K/r 

( 1.3) 

Henceforth, we will only consider K-, 1 which causes no loss 
of generality since on interchanging the components of t/J the 
problem corresponding to K, V, E is equivalent to that corre­
sponding to - K, - V, - E. We now also set e = 1 in this 
section and in Sec. II. Under assumption (1.2), Eq. (1.3) 
has a solution called the regular solution, which satisfies 

lim -/C E - (1/(2K-1)!!) (1.4) 
r flJK ( ,r) - ° . 

r_O 

As r-+ 00 this solution behaves like 

flJK(E,r) = k -/C!F/C(E) I 

( 
cos(kr - K'fr/2 - ~IC (E» ) 

X k/(E _ m)sin(kr- K'fr/2 - ~IC(E» 
+0(1). (1.5) 

The parameter k = ~E2 - m2 is defined by choosing a 
branch of k such that k> ° for E> m and 1m k-,O for 
1m E-,O. Then k < ° corresponds to E < - m. This choice is 
different from that in Ref. 4 where Re E-,O corresponds to 
1m K.o;;O. Also, due to different conventions, our phase ~K (E) 
differs in sign from that in Refs. 4 or 5 for E> m but agrees 
with it for E < m. Conceptually, the basic parameter for us is 
E and not k. The function FIC (E) is the analog of the Jost 
function in the Schrodinger case. It can be written as 

FIC(E) = IFIC(E)leillx(E) 

= 1 + iCC> (flJlC(E,t)VV(t)~(E,t)dt, (1.6) 

where 

1"0 _ IC([k
2
r/(E+m)]hIC _ I (kr») 

J K (E,r) - k k h k . 
r IC ( r) 

( 1.7) 

Here, hIC(kr) = nIC(kr) + ijIC(kr), where nIC andjIC denote 
spherical Bessel functions.4 Also, T denotes the ordinary 
transpose and a superscript ° indicates a solution of the un­
perturbed (V = 0) problem. We recall that the zeros of 
FIC (E) are all simple, lie in the interval [ - m,m], and corre­
spond to eigenvalues of H [see Ref .. 4, Sec. 2, where hK (k) 
corresponds to FIC (E) ]. The only exception occurs at 
E = - m for K = 1 when, if FI ( - m) = 0, the solution 
fIJI ( - m,r) is bounded but not square integrable at infinity 
[see (2.9),(2.11) below]. Then we say E= - m is a half­
bound state. 

Theorem (1.1): Let V(r) obey (1.2). Let N" (K-' 1) de­
note the number of eigenvalues of H IC in [ - m,m]. Then 

NIC = (1/'fr)(~IC( -m) -~K(m», K-,2, (1.8) 

NIC = (l/'fr)(~K( -m) -~IC(m»+ (1/2'fr)a, K= 1, 

where 

a= {O, 
-'fr, 

E = - m is not a half-bound state, 

E = - m is a half-bound state. 

( 1.9) 

( 1.10) 
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It is important to add that the difference is K ( - m) 
- iSK(m) may be viewed as the change of phase as we go, 

through real values, from E = m to + 00 and then from 
E = - 00 to E = - m. Relativistic versions of the Levin­
son theorem have been studied before, by Barthelemy4 and 
more recently by Ni6 and Ma and Nis and also in Ref. 7. 
However, in Ref. 5, the authors point out that the results of 
Refs. 4 and 6 are not correct in general and they go on to 
derive a correct form of Levinson's theorem in the case 
where VCr) has compact support. We will comment on the 
fallacy of Ref. 4 after the proof of Theorem (1.1). The hy­
pothesis (1.2) is weaker than that in Ref. 4 where 
SO'IV(r) IT" dr< 00 for n = 0, 1, or 2 was assumed and for 
Levinson's theorem n = 2 (and n = 0) were absolutely es­
sential. The condition (1.2) is optimal for large r as far as 
moment-type conditions go since if V _cr- 2 as r-+ 00 then 
Levinson's theorem must be modified.8 This remark should 
answer to some extent a question in Ref. 5 concerning the 
proper assumptions on V which will insure that Levinson's 
theorem holds. Concerning the behavior as r-+O, condition 
( 1.2) excludes a r- I singularity. It is conceivable to us that 
the methods used in this paper can be extended to include 
such a behavior. However, then the r- I singularity cannot 
be treated perturbatively, which leads to some complications 
at the level of the unperturbed problem. 

In Ref. 7, Dirac systems containing, in place of Klr, a 
coefficientp(r) such that SO' (1 + r) !p(r) Idr< 00 were con­
sidered. In that case, per) can be included in the perturba­
tion which leads to some simplifications in the analysis. Con­
ceivably, such a term per) could be added to Klr in (1.1) 
without essentially altering the analysis but we will not do so 
here. The Levinson theorem for the Schrooinger equation 
under assumption (1.2) was studied in Ref. 9. Although 
both Refs. 9 and 7 have provided us with some guidance for 
the present paper, we have encountered some unexpected 
complications in the case where FK ( ± m) = O. 

There exist several methods for proving the Levinson 
theorem in the relativistic and nonrelativistic case. In the 
relativistic case, the Green's function method was used in 
Ref. 5 and an approach based on the Sturm-Liouville 
theorem was used in Refs. 10 and 8. This latter approach was 
also used in the nonrelativistic case in Refs. 11 and 12. We 
follow Levinson's original proof for the Schrooinger equa­
tion3 which is based on a detailed study of the asymptotic 
properties of the Jost function whereby the main effort goes 
into analyzing the case where FK ( ± m) = O. As in Ref. 9 
but in contrast to Ref. 4 we do not work with the Jost solution 
at all, only with the regular solution f{JK (E,r) since the latter 
is better behaved as E -+ ± m than the former [compare also 
Ref. 9, Corollary (3.31)]. 

Theorem ( 1.1 ) is proved in Sec. II. In Sec. III we discuss 
the nonrelativistic limit C-+ 00. 

II. PROPERTIES OF FK(E) AND PROOF OF THEOREM 
(1.1) 
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The solution f{JK (E,r) defined by (1.4) satisfies4 

f{JK (E,r) = f{J ~ (E,r) + f K(E;r,t) V(t)f{JK (E,t)dt, 

(2.1) 
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where 

K(E;r,t) = f{J ~ (E,r)(~ (E,t) V - ~ (E,r){f{J ~ (E,t) V, 
(2.2) 

o (krjK_1(kr») 
f{JK(E,r)=k-

K 
[kl(E-m)]krjK(kr) , (2.3) 

.11l _ K ( (E - m)rnK_ 1 (kr) ) 
'f'K (E,r) - k krnK (kr) . (2.4) 

We first collect some results concerning the solutions at 
E = ± m which will be used later on. From standard 
asymptotic analysis based on (2.1) it follows that 

1 
f{JK (m,r) = (lK _ 1)!! 

( 
FK(m)r" + o(r") ) 

X [2ml(lK+ 1)]FK(m)r"+1 +0(r"+1) , 

r-+oo, (2.5) 

1 (FK ( - m)r" + o(r") ) 
f{JK(-m,r)= (lK-1)!! O(r"-I) ,r-oo, 

(2.6) 

respectively, where [by 0.6)] 

FK(m) = 1 + (lK-1)!! lao f{JK,2(m,t)V(t)t -Kdt, (2.7) 

FK( - m) = 1 - 2m(lK - 3)1! lao f{JK,d - m,t) 

X V(t)t -K+ 1 dt + (lK - I)!! 

X lao f{JK,1 ( - m,t) V(t)t -K dt. (2.8) 

The reason for having a term o( r" - I) in the second compo­
nent of (2.6) is that r- KS~f{JK,d - m,t) V(t)t K dt 
= o(r"- I) which follows from the behavioroff{JK,1 ( - m,t) 

as t- 00 and (1.2). Besides the solution f{JK' Eq. (1.3) has, 
for E = m, a second solution q, satisfying 

_ ( 0(r-
K

-
1
) ) 

f{JK(m,r) = , r- 00. 
r- K + o(r- K) 

(2.9) 

Similarly, for E = - m, we have 

_ ( _([2mI0-lK)]rl
-

K +O(rl
-

K») 
f{JK - m,r) - -K ( -K) , 

r +0 r 

r-- 00. (2.10) 

Here, if we replace the 0 terms by zero we get exact solutions 
of the unperturbed (V = 0) problem which are bounded at 
infinity. By considering Wronskians, we see that f{JK and q,K 
are linearly dependent if and only if FK ( ± m) = O. If that 
happens we set 

f{JK( ±m,r) = -AK( ±m)q,K( ±m,r) (2.11) 

and deduce from (2.1) the representations 

L
ao 2m 

AK(m) = f{JKI (m,t)V(t)tKdt+--
o ' lK+1 

X lao f{JK,2 (m,t) V(t)tK+ I dt, (2.12) 
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AK( -m) = l"" f{JK.'< -m,t)V(t)tKdt. (2.13) 

If E = m and FK (m) = 0, then, of course, there exists a 
second solution XK of (1.3) such that W(f{JK,XK) = f{JKXK.2 
- X K.I f{J K.2 = 1. It satisfies 

1 ( re + o(re) ) 
XK(m,r) = AK(m) [2ml(2K+ 1)]re+ 1 +o(re+ l ) , 

r- 00 (2.14) 

and 

XK(m,r) = (2K- 1)~I~_-KK~ o(r- K»)' r-O. (2.15) 

Similarly, at E = - m, if FK ( - m) = 0, then a second solu­
tion XK exists such that [again W(f{JK,XK) = 1] 

1 ( re + o(re) ) XK( - m,r) = I ,r- 00, (2.16) 
AK( - m) o(re-) 

XK( - m,r) = ( o(r-
K
) ), r-O. (2.17) 

(2K - 1 )lIr- K + o(r- K) 

The solution XK will be needed later. At the heart of our 
method is the following lemma whose proof we defer to the 
Appendix. 

Lemma (2.1): Let VCr) obey (1.2). Fix 15 > O. 
(i) If FK(m) = 0, K>I, then 

If{JK.j(E,r) -f{JK.j(m,r)I<Ck 2[rl(1 +kr)]K+I, j= 1,2, 
(2.18) 

for Ee[m,m + 15] where C depends on 15 but not on k and r. 
(ii) If FK( - m) = 0 and K>2, then 

If{JK.'<E,r) - f{JK.'< - m,r) I <Ck 2 [rl(1 + Ik Ir) ]K, (2.19) 

If{JK.2 (E,r) - f{JK.2 ( - m,r) I 

<Ck 2 [(rl(1 + Ik I r»1< + 1+ (rl(1 + Ik Ir»K], (2.20) 

while if K = 1, then 

If{JK.J (E,r) - f{JK.j ( - m,r) I 
<C [(Ik Irl(1 + Ik IrW + k 2rl(1 + Ik Ir)], j = 1,2, 

(2.21) 

for Ee[ - m - 15, - m]. 
The pertinent properties of the Jost function are sum­

marized in the next theorem. We denote the L 2 norm of a 
vector function by II II. 

Theorem (2.2): Let VCr) obey (1.2), then 
(i) FK (E) is analytic for 1m E> 0 and has an analytic 

continuation into the half-plane 1m E < O. Moreover, the ex­
tended function FK (E) assumes continuous boundary values 
as E approaches the real axis from either above or below. 

(ii) As IE 1- 00, 1m E>O, 

FK (E) _e'f~ V(t)dt. 

(iii) If FK (m) = 0, then 

FK(E) =cKk 2 +0(k 2
), 

CK = [(2K-1)1!/2mAK(m>]IIf{JK(m,')1I2
, 

as E-m uniformly in O<arg(E - m)<21T. 
(iv) If FK ( - m) = 0 and K>2, then 
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(2.22) 

(2.23) 

(2.24) 

FK(E) = dKk 2 + 0(k 2), (2.25) 

dK = - [(2K-l)!!/2mAK( -m)]IIf{JK(m,')1I 2
, 

(2.26) 

while if K = 1, then 

FK (E) = dKk + o(k), 

dK = 2miAK( - m), 

as E- - m uniformly in -1T<arg(E + m)<1T. 

(2.27) 

(2.28) 

Proof: (i) It follows from Ref. 4 that there is a constant 
C such that for all E with 1m E>O: 

If{JK.I(E,r) I <Ce(Im k)r[rl(1 + Ik Ir) y (2.29) 

and 

If{JK.2(E,r)I<CIE+mle(lmk)r[rl(1 + Iklr)]K+I. 

Also, 
~.I (E,r) I <C(k 2 liE + m I)e - (1m k)r 

X[(1+lklr)lry-l, (2.30) 

~.2(E,r)I<Ce-(lmk)r[(1 + Ik Ir)lr]K. (2.31 ) 

Hence, 

1(f{JK (E,r) VV(r).f.! (E,r) I <C I VCr) I (1 + r), 
IE ± ml<c5, (2.32) 

1(f{JK (E,r)VV(r).f.! (E,r) I <C lV(r) I, IE ± ml >15, 
(2.33) 

for any 15 > 0 with an appropriate constant C. Since f{JK (E,r) 
is an entire function of E and.f.! (E,r) is analytic for 1m E> 0 
and continuous for ImE>O the bounds (2.32), (2.33) in­
sure that FK (E) has the asserted analyticity and continuity 
properties. We get an analytic continuation into the lower 
half plane by the Schwarz reflection principle because FK (E) 
is real for - m <E <m. 

(ii) Since the construction of f{JK (E,r) only requires 
knowledge of Von [O,r] the large Ebehavior off{JK (E,r) can 
be inferred from Ref. 4, 

( 
cos(kr - K1T/2 - f~ V(t)dt») 

f{J (Er) =k- K 

K , sin(kr - K1T/2 - f~ V(t)dt) 

+ o(k -K), (2.34) 

and also 

.f.!(E,r) = k Kei(kr-1Nr12) ( ~) + o(k K), (2.35) 

as IE 1- 00 on {E:lm E>O}, Owing to (2.29), (2.30), and 
(2.31) we may insert (2.34) and (2.35) in (1.6) and apply 
the Lebesgue Dominated Convergence Theorem. Then 
(2.22) follows. 

(iii) Suppose E> m. We break the right-hand side of 
(1.6) into three parts, FK (E) = II + 12 + 13 , using 
FK(m) = 0, where 

II = l"" (f{JK (m,t)VV(t) [.f.! (E,t) -.f.! (m,t) ]dt, (2.36) 

12 = l"" [(f{JK(E,t)V - (f{JK(m,t)V] V(t).f.!(m,t)dt, 

(2.37) 
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13 = L
oo 

[('PK(E,t)V - ('PK(m,t)V] V(t) 

x [~(E,t) - ~(m,t) ]dt. (2.38) 

Consider I, first. By (1.4), (2.9), and (2.11) 

I'PK,i (m,r) 1 <C [,."/(1 + r)2K], j = 1,2. (2.39) 

Moreover, 

~(E,r) = (2K-~)I!r-K) 

and 

2( (2m)-'(2m-3)!!r- K+') 2 
+k (!)(2K-3)!!r- n2 +o(k) 

(2.40) 

~,2 (E,r) - ~,2 (m,r)I<Ck 2[r- K/(1 + kr)2-K]. 
(2.41 ) 

From (2.39), (2.40), (2.41), and (2.30) we find 

I, = a/Ck 2 + 0(k 2) as k-O(Elm), (2,42) 

where 

a = (2K-3)!! (rOO 'P (mt)V(t)t-nldt 
K 2m Jo K,I , 

+m Loo 'PK,2(m,t)V(t)t -n2dt) (2.43) 

[with the convention ( - I)!! = 1]. 
Now consider 12 , If we expand 

'PK (E,r) = 'PK (m,r) + (E - m)uK (m,r) + O(k4) 
(2.44) 

and use (2.18), then by dominated convergence 

I 2=hKk 2+0(k 2) ask-O, (2.45) 

where 

hK = (2K-1)!! roo (u/C,2(m,t)VV(t)t -/Cdt. (2.46) 
2m Jo 

For later use we need to know the asymptotic behavior of 
U/C (m,r) as r-O and r- 00. Equation (1.3) for E = m has 
the fundamental matrix 

( 
'PK,' (m,r) XK,I (m,r) ) 

RK(r) = , 
'PK,2 (m,r) XK,2 (m,r) 

(2.47) 

where XK is the solution introduced before, see (2.14), 
(2.15). Applying the variation of parameters formula to 
( 1.3), viewing (E - m) (? - 6 ) as the nonhomogeneous 
term we find 

UK (m,r) = f RK (r)R K- l(t) (~ ~ 1 ) 'PK (m,t)dt. 

(2.48) 

Therefore, by (1.4), (2.9), (2.11), (2.14), and (2.15) we 
can say that 

( 
O(~+I) ) 

UK (m,r) = ~+ 1/(2K + 1)11 ' r-O, (2.49) 

UK (m,r) = II'P/C(m, ) 112XK(m,r)(1 + 0(1», r- 00. 

(2.50) 
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Now, by (2.30), (2.41), (2.18), and (1.2) we have 

II3 1<Ck 2 roo (~)2tlV(t)ldt=0(k2). (2.51) Jo 1 + kt 

Therefore, FK(E) = (aK + hK)k 2 + 0(k2) and it only re­
mains to reducecK =aK +hK to the expression (2.24). This 
can be accomplished by means of the following identities: 

Loo UK,2 (m,t) V(t)t - K dt = Loo t - K'PK,2 (m,t)dt 

+ A K-I(m)II'PK (m, )112, 
(2.52) 

(2K - 1) Loo 'P/C,2 (m,t)t - K dt 

= Loo 'PK,I (m,t){2m - V(t»t - K+ I dt, (2.53) 

- 2 Loo 'PK.dm,t)t - K + I dt = Loo 'P/C,2 (m,t) V(t) 

Xt -K+2 dt. (2.54) 

To prove (2.52) we use the equation 

( 
K/r V(r) ) 

u~(m,r) = 2m _ V(r) _ K/r uK(m,r) 

(0 -1) + 1 0 'PK(m,r). (2.55) 

We multiply the equation U~,I (m,t) = (K/t)U/C,1 (m,t) 
+ V(t)UK,2 (m,t) - 'PK,2 (m,t) by t - K and integrate by 
parts. The boundary term is UK,I (m,t)t - KI 0' 
=A K-

I (m)II'PK(m,)1I 2 by virtue of (2.14), (2.49), and 
(2.50), Thus (2.52) follows. To prove (2.53) and (2.54) we 
use (1.3) and multiply the individual component equations 
by appropriate powers of t and integrate by parts. Now 
(2.52)-(2.54) are easily combined with (2.43) and (2.46) 

which yields (2.24). SinceFK (E) = FK (E), Eq. (2.23) also 
holds if Elm along the lower edge of the cut [m, 00 ]. There­
fore, by a variant of the Phragmen-Lindeloftheorem13 (the 
same argument was used in Ref. 7) we obtain the desired 
uniformity in arg(E - m). Part (iii) is proved. 

(iv) The proof is, of course, similar to that of (iii), but 
the case K = 1 requires special attention. Also, the estimates 
are more tedious because the two components of'PK ( - m,r) 
must be controlled by separate bounds, namely, 

I'PK,d -m,r)I<C[~/(1 +r)2K-I], (2.56) 

I'PK,2 ( - m,r)I<C [~/(1 + r)2K], (2.57) 

and similarly for the difference 'P/C (E,r) - 'PK ( - m,r) ac­
cording to Lemma (2.1). Assume K>2 first. Then 

I'O(Er)=(-2m(2K-3)!!r-
nl

) (2K-3)!! k 2 
h , (2K-l)!!r- K + 2 

x( - r- K+ I/m - [2m/(2K - 3) ]r- K+ 3) 
r- K + 3 

+ o(k 2) (2.58) 

and 
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~,I (E,r) - !?c,1 ( - m,r) I 
<Ck 2[rl -"/(1 + Iklr)I-"](l + [rl(1 + Iklr)]2), 

(2,59) 

~,2 (E,r) - !?c,2 ( - m,r) I <C(kr)2(1 + Ik Ir)2. (2.60) 

So, if we split F" (E) in analogy to (2.36)-(2.38) with re­
spect to E near - m, we have that 

11 = a"k 2 + o(k 2), k .... O(E t - m), (2.61) 

where 

a" = - (2K - 5)lIm L"" f{J",1 ( - m,t) V(t)t -,,+3 dt 

+ (2K-3)1I roo m (-mt)V(t)t-,,+2dt 
2 Jo T",2 , 

_ (2K - 3)11 Loo ( _ m t) V(t)t -K+ I dt 
2 f{J",I' m 0 

and 

I 2=13"k 2+o(k 2), k .... O, 

where 

13" = (2K - 3)11 Loo U",I ( - m,t) V(t)t - ,,+ I dt 

(2.62) 

(2.63) 

_ (2K-1)!! roo u",2(-m,t)V(t)t- K dt. (2.64) 
2m Jo 

Here, u" ( - m,r) obeys f{J" (E,r) = f{J" ( - m,r) 
+ (E - m)u" ( - m,r) + O(k 4

). By using dominated con­
vergence 13 = o(k 2) so that F" (E) = dICk 2 + o(k 2) with 
dIe = a" + 13" and we must reduce this coefficient to the 
form (2.26). To this end we use the following identities, the 
proof of which is similar to that of (2.52)-(2.54) and is 
therefore omitted: 

Loo U",2 ( - m,t) V(t)t -If dt 

= Loo f{J",2 ( - m,t)t -If dt 

- 2m Loo U",2 ( - m,t)t -" dt 

+A,,-I( -m)!lf{J,,( _m,)!l2, 

LOO u",d-m,t)V(t)t-,,+ldt 

= Loo f{J",1 ( - m,t)t -K+ I dt- (2K - 1) 

X Loo U",2 ( - m,t)t -If dt, 

Loo f{JIf,2 ( - m,t)t -If dt 

= --- f{J",1 ( - m,t) V(t)t -,,+ I dt, 1 L"" 
2K-1 0 

- 2 L"" f{J",1 ( - m,t)t - K+ I dt 

= 2m Loo f{J",2 ( - m,t)t -If+ 2 dt 
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(2.65) 

(2.66) 

(2.67) 

+ Loo f{J",2 ( - m,t) V(t)t -,,+2, 

(2K-3 LOO f{J",2(-m,t)t-"+2dt 

= - LOO f{JIf,d - m,t) V(t)t -" + 3 dt. 

(2.68) 

(2.69) 

Finally, if K = 1, then 12 and 13 both are o(k) on account of 
(2.21). Since !?c,1 (E,r) - !?c,1 ( - m,r) = - 2mikr 
+ O(k 2) and!?c,2 (E,r) - !?c,2 ( - m,r) = O(k 2) we get 

F" (E) = - 2mik Loo f{J",1 ( - m,t) V(t)t dt + o(k) 

= - 2mikA" ( - m) + o(k). (2.70) 

The uniform validity in arg (E + m) of (2.25) and (2.27) 
again follows from a Phragmen-Lindelof type argument. 
This completes the proof of Theorem (2.2). 

Pro%/Theorem (1.1): As in Ref. 7, we choose a con­
tour in the closed upper half plane consisting of a semicircle 
of radius R, two line segments [- R, - m - €] and 
[m + €,R] and two semicircles about ± m of radius €. Then 
we extend the contour into the lower half plane by reflection 
and assign a counterclockwise orientation. For € sufficiently 
small, all zeros of F" (E) except possibly those at ± m lie 
inside the contour. By the argument principle, the change in 
{j" (E) on this contour equals 21TH", where H" denotes the 
number of eigenvalues that lie in ( - m,m). Since F" (E) 
= FK (E) the change in {j" (E) on the top half of the con­
tour is the same as that on the bottom half. For K>2, the 
change on the small circles centered at ± m, respectively, 
approaches, as € .... 0, the value 

(2.71) 

Thus 

H" = (1/1T)({j" ( - m) - {jK (m» + (1/21T)(11 + + 11_ ). 
(2.72) 

Since N" also counts the eigenvalues at ± m ifthere are any 
we get ( 1. 8 ) from (2.72 ) by dropping the term 
( 1/21T)( 11 + + 11- ). Equation (2.71) also holds when K = 1 
with respect to E = m. If K = 1 and F" ( - m) = 0 then the 
change on the small circle centered at - m is - 1T if there is 
a half-bound state at - m and 0 otherwise. This establishes 
( 1.8) and ( 1.9) with respect to the above contour where now 
€ = 0 but R is still finite. Of course, we can let R .... 00 by 
using (2.22) so that {j" ( - m) - {jK (m) can be viewed as 
the change of phase over the continuous spectrum of H. 
Theorem (1.1) is proved. 

The version of Levinson's theorem in Ref. 14 can easily 
be seen to agree with ours because {j" ( ± m) = O(mod 1T) 
except for {jl( - m) which equals 1T12(mod 1T) when 
FI ( - m) = O. In connection with Ref. 4 we recall that there 
the concern was to find a relationship between the phase and 
the number of eigenvalues in [O,m] and [ - m,O], respec­
tively. Let the former be denoted by N / , the latter by N If- • 

Suppose E = 0 is not an eigenvalue. Then again by a contour 
argument (take a contour which lies in {E: Re E>O} such 
that it coincides with our previous contour for Re E> 0 and 
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consists of a vertical segment joining iR to - iR) we have 
that 

(2.73) 

A similar formula holds for N;; if we replace 15K (m) by 
15K (0) in (1.8) and (1.9). The discrepancy with Ref. 4is that 
the term 15K (0) is missing from the formula corresponding to 
(2.73). In Ref. 4 (p. 146) the phase changes over two line 
segments along the imaginary axis were said to cancel, but in 
our setting these segments correspond precisely to the seg­
ments from iR to 0 and from 0 to - iR, so the phase changes 
add, giving rise to the term 1T-

l t5K (0). 

III. NON RELATIVISTIC LIMIT 

The Jost function associated with (1.1) when c is no 
longer equal to one can be obtained from (1.6) by making 
thereplacementsE-c-IE,m-mc, V-+c-IV[cf. (1.3)] so 
that 

FK(E,c) = 1 + c- I Loo (9'K(E,c,t)V 

X V(t).f?c(E,c,t) dt, (3.1) 

where 

with ke = c-I~E2 - m 2c4, and where we have modified our 
notation in an obvious manner in order to exhibit the c de­
pendence. We are interested in the nonrelativistic limit 
c - 00 of FK (E,c) and its phase 15K (E,c) because by taking 
this limit we should be able to connect the relativistic Levin­
son theorem with the nonrelativistic one. Recall that if 
c -+ 00, then the Dirac equation goes over into a SchrOdinger 
equation in a sense that has been made precise by several 
authors, see Hunziker,14 Gesztesy et al. ls (and the refer­
ences quoted therein). The main goal of these papers was to 
develop the perturbation theory of eigenvalues and eigen­
functions in powers of c- I

• Some aspects of the scattering 
theory (convergence of wave operators) in the nonrelativis­
tic limit were studied by Yajima. 16 These authors admit gen­
eral, not necessarily spherically symmetric potentials. The 
only paper we are aware of which specifically considers the 
spherically symmetric case in a rigorous way is the old paper 
by Titchmarsh. 17 There it is shown that the solution 
9'K (E,c,r) has a convergent expansion in powers of c- I al­
though under the strong restriction that Vis a bounded func­
tion. But it has been pointed out in Ref. 17 and is not hard to 
verify that locally the integrability of V is the only require­
ment for the results of Ref. 17 to go through. In order to 
formulate our results we need some notation. Put F K+ (e,c) 

= FK (E,c) if E = mt? + e and F K- (e,c) = FK (E,c) if 
E = - me? - e where in both cases e>O. LetL It denote the 
SchrOdinger operators 

L!y= - (l/2m)y" + [K(K± 1)/2mr]y± Vy=ey 
(3.3) 

[withy(O) = 0 when K = 1] and letF K± (e) denote the cor-
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responding Jost functions.9 Also, put t5
K
± (e,c) 

= arg F K± (e,c) and~! (e) = arg F K± (e). Then we have 
Theorem (3.1): (i) As c- 00, F K+ (e,c) -+F K+ (e) and 

F K- (e,c) -+ F K- (e) uniformly on e>O. 

(ii) IfF K+ (0) #0, then t5K+ (e,c) -~/ (e) uniformly on 
e>O as c-+oo, while ifFK+ (0) =0, thent5K+(e,c)-+~K+(e) 
uniformly on e>E> 0 for any E. Analogous statements hold 
for F;; (e,c) with the difference that 15;; (e,c) -+ -~;; (e) 
[by (i)]. 

(iii) Let nK± denote the number of negative eigenvalues 
of L K± and let NK (c) be the number of eigenvalues of HK (c) 
in [- mt?,mt?]. Suppose F K± (0) #0. Then NK (c) 

= n/ + nK- for c sufficiently large. 
Proof: We omit the suffix K from the solutions 9'K andft! 

for this proof. Consider F / (e,c). By (2.29) and (2.30) we 
have 

c- II9'1 (E,c,t) V(t).fl (E,c,t) I 

<;;C [k ~/(e + 2mt?] [I V(t) It /( 1 + ket)] 

<;;Cc-I!V(t) I, (3.4) 

so this contribution to (3.1) vanishes as c- 00 uniformly on 
e>O [here we are also using that the constants C in the esti­
mates (2.29), (2.30) can be chosen to be independent of c; 
this follows from their derivation in Ref. 4]. Regarding the 
second component we note the bound 

c- I I9'2(E,c,t) V(t)i1 (E,c,t) I<;;C [(e + 2mt?)/c2] 

X [I V(t) It /( 1 + ket)] 

<;;C(e/t? + 2m)!V(t) It. (3.5) 

This shows that the theorem on dominated convergence is 
applicable to (3.1). Alternatively, the middle term in (3.4) 
can be estimated by 

C( l/c + ~2m/.[e) I V(t) I, (3.6) 

(3.5) and (3.6) together imply that in order to prove 
F / (e,c) -+F K+ (e) uniformly on e>O it suffices to prove 

Ic- I LR IP2(E,c,t) V(t)i1 (E,c,t)dt 

- LR qJ2(e,t) V(t),n (e,t)dt 1-0 (3.7) 

uniformly on every bounded interval O<;;e<;;eo' Here, 

qJ2(E,t) = lim C- I9'2(E,c,t) and ,n(e,t) = lim i1 (e,c,t). 
c_ 00 c- CX) 

This is so because the difference Ic- I f; ... - f; ... I can 
be made arbitrarily small uniformly in e by choosing R suffi­
ciently large and letting C-+ 00 [use (3.5) for ee[O,I] and 
(3.6) for ee(1,oo)]. Another appeal to (3.6) then shows 
that the difference in (3.7) can be made arbitrarily small 
uniformly in e for e>eo by choosing eo large enough and 
taking C-+ 00. To prove (3.7) for a finite energy interval we 
estimate separately the integrals 

LR (C- I9'2(E,c,t) -qJ2(e,t»V(t)i1(E,c,t)dt (3.8) 

and 
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foR ~2(e,t) V(t)~ (E,c,t) - n (e,t»dt. (3.9) 

Since t is restricted to a finite interval we can use the methods 
of Ref. 17 (and also Ref. 1) to show that IC- I972(E,c,t) 
- ~2(e,t) I o;;;Cc-2tK. Since the techniques are standard we 

omit the details. Inserting this estimate along with (2.31) in 
(3.8) showsthattheintegralisO(c-2

) uniformly on [O,eo)' 
Moreover, it follows that ~2(e,r) is a solution of L K+ Y = ey 
such that r- K-I~2(e,r) ..... 2m/(lK + 1)!! as r ..... O. Consider­
ing_ (3.9) we h!lve to est~m~te _the differen~ 11 (E,c,t) 

-lJ. (~,t) = k ~h'f. (k,,.t) - k "hK (k!) = (k ~ - k K)hK (ket) 
+ k"(hK (ket) - h" (kt» where hK (kt) = kthK (kt) and 

le = lim ke = ..}2me. Clearly, k ~ - le K = O(c-2) uniformly 
e-co 

on [O,eo)' Furthermore, It (ket) - t (let) I 
0;;; (ke - le)t suplh; (s) I where the sup is over se[let,ket). 

Now h;(s) = [(K+ 1)/s]hK(s) -hK+ds) and 
Ih,,(s)lo;;;Cs -K(1 +s)"sothat 

le"lhK(ket) -hK(let)1 

o;;;C(ke - le)(le /ke )"t«(1 + ket)/t)" + I. (3.10) 

Since 1~2(e,t)lo;;;CtK+I we see that the integral (3.9) is 
O( c- 2

). This proves the uniform convergence ofF + (e,c) to 
F K+ (e) = 1 + fO~2(e,t) V(t) n (e,t)dt. The identification 
of F / (e) as the lost function for L / is a straightforward 
computation using the relations nK (kr) = ( - 1)K 
X (1T'/2kr)1/2J_K_1I2(kr) and j,,(kr) = (1T'/2kr) 112 

XJK+ 112 (kr) [and keeping in mind that ~2(e,r) is 
(2K + 1) !!l2m times the standard solution y of L K+ Y = ey 
with r-K-1y ..... 1 as r ..... O]. In a similar manner, one proves 
the statements about F K- (e,c). One has to remember that 
since E < - mc2 then ke < 0 and hence one also has to use 
relations like J v (ker) = ei1TV J v (Ike Ir) in the process. Thus 
part (i) is proved. 

The statements in (ii) immediately follow from the uni­
form convergence of the lost functions and the fact that 
F ,,± (e,c) does not vanish for e > 0, and also not for e = 0 if c 
is sufficiently large and F K± (0) ;i:0. 

The assertion in (iii) is a consequence of Theorem (1.1) 
since 

NK (c) = (lI1T')(t5/ (oo,c) - 15/ (O,c» 

+ (lI1T')(t5K-(O,c) -t5K-(oo,c» (3.11 ) 
I 

so that on letting c ..... 00 the first term tends to 
(1I1T')(8/ (00) - 8K+ (0» = n/ by the nonrelativistic Le­
vinson theorem3 (remember our phase convention) and the 
second term tends to (1/1T')(8; (00 ) - 8; (0» = n; [since 

F ,,- (e,c) ..... F ,,- (e) ]. Theorem (3.1) is thus proved. 
In closing, we remark, that the weaker statement 

NK(c»nK+ + nK- for c sufficiently large can also be de­
duced directly from the results in Refs. 15 and 14 where it is 
shown (under somewhat different conditions on V) that 

2 1 (L,,+ -Z)-I 0) 
(HK (c) - m c - z)- ..... 0 0 

and 

2 -I (0 0 ) 
(-HK(c) -m c-z) ..... 0 (L

K
- -Z)-I 

in norm as c ..... 00 (1m z;i:O). By some additional arguments 
one can also obtain equality [i.e., NK (c) = n,,+ + n,,- ] and 
one can extend the result to nonspherically symmetric oper­
ators [the condition F K± (0) ;i: 0 then becomes a condition 
on the absence of zero-energy resonances, resp., zero-energy 
bound states, for the SchrOdinger operators 
- (2m)-la ± V]. Moreover, note that if K= 1 and 
F 1- (0) = 0 then 81- (e) ..... (1T'/2)(mod 1T') as e ..... O (Ref. 9, 
Theorem 4.1, case 1 = 0). In general, one will have 
F 1- (O,c) ;i: 0 for c large enough and so, since F 1- (O,c) is 
real, 151- (O,c) = O(mod 1T'). Thus in this case 151- (O,c) does 
not converge to - 81 (0) asc ..... 00 explaining the restriction 
e>~">Oin (ii). 
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APPENDIX: PROOF OF LEMMA (2.1) 

The method of proof is similar to that used in the Schro.. 
dinger case to prove a corresponding result (see Ref. 9, Ap­
pendix) but as already mentioned, there are several compli­
cations which need to be dealt with carefully. We give a 
detailed proof of part (i) and then only indicate the changes 
that are neededJor part (ii). 

(i) Let a97K (E,r) = 97K (E,r) - 97K (m,r) and define 
a97 ~ (E,r) and aVf.c (E,r) analogously. 

Then using (2.2) we may write 

- af/;~(E,r) f (tp~(E,t)VV(t)97K(m,t)dt- f/;~(m,r) f (a97~(E,t)VV(t)97K(m,t)dt 
+ f [97~(E,t)(f/;~(E,t)V - Vf.c(E,r)(97~(E,t)V] V(t) a 97K(E,t)dt. (AI) 

~I-----------------------------------
We denote the six terms on the right-hand side by A 1 through 
A6• The idea is to estimate these terms so that Gronwall's 
inequality can be used at the end. Suppose now that 
Ee[m,m + 15] for some 15 > O. We use C to denote a generic 
constant which depends on 15 and K but not on k and r. We 
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will frequently use the following bounds. 

IkliK (kr) I o;;;C [kr/(l + kr) )K+ 1, 

Ikrn" (kr) I o;;;C [(1 + kr)/kr]K, 
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IkryK (kr) - (krY+ 1/(lK + 1 )111 

<C(kry+ 3/(1 + kr)2, 

IkrnK (kr) - (kr) - K(lK - 1)111 

<C [kr/(1 + kr»)2 - K. 

(A4) 

(AS) 

In the following if we have a vector f = (%) and estimates 
lhl<al,lhl<a2' then we use the notation VI «::) to denote 
this fact. We also set L(kr) = kr/(1 + kr): 

Icp~(E,r)I<Ck -KLK(kr) (,/(1 ~ krJ, (A6) 

ItP~(E,r)I<CkKL -K(kr) G), (A7) 

IAcpo(Er)I<Ck2 ~+I(1+r) (1) (A8) 
K , (1 + kr)2 l' 

IA~(E,r) I<Ck I +KL I-K(kr) (,/(1 ~ krJ. (A9) 

Combining Al and A2, using ~(m,r) = (lK - 1)!!(~-.) 
and that the right-hand side of (2.7) is zero we get 

Al +A2 = - Acp~(E,r) loo (~(m,t)VV(t)cpK(m,t)dt, 
(AlO) 

so that by elementary estimates 

IA +A I<Ckl-KLK+I(kr) roo W(t)1 dt(l). 
I 2 J (1 + t)K 1 

(All) 

Estimating the third term in (A 1) yields 

IA 3 1<Ck l - KLK+I(kr) r W(t)1 dt(l). (A12) Jo (1 + t)K- I 1 

Similarly, for A4 and As we get 

IA41 <Ck I - KL K+ I (kr) r W(t) I dt (1), (A13) Jo (1 + t)K- I 1 

IAsl<Ckl-KLK+I(kr) r W(t)1 dt(l). (AI4) Jo (1 + t)K 1 

The entries of the matrix cp~(E,r)(~(E,t)V 
- ~ (E,r)(cp ~ (E,t»T are each bounded in magnitude by 

CLK+I(kr)L -K-I(kt)(1 +t). (AIS) 

So if we set 

u(E,r) = (IAcpK,dE,r) I + I AcpK,2 (E,r)I)L -K-I(kr)k K- I 

(AI6) 

and combine (A 11 ) - (A 1 S ), then we arrive at the inequality 

u(E,r)<C + C fW(t) 1(1 + t)u(E,t)dt. (AI7) 

Hence by Gronwall's inequality u(E,r) <Cwhich is equiva­
lent to (2.18). Part (i) is proved. 

(ii) Here, Ee[ - m - 8, - m),k <0. It turns out that 
the quantity k 2 L K + I ( I k I r) is not sufficient to control the 
difference AcpK (E,r) = CPK (E,r) - CPK ( - m,r), we must 
also use k 2 - KL K( I k Ir). So we introduce 

hK(r) =kl-KLK+I(lklr) +k 2- KL K(lklr). (AI8) 
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Proceeding as in (i) we can then show that 

IAcpK,1 (E,r) I 

<Ck 2- KLK(lklr) +Ck-ILK(lklr) f LI-K(lklt) 

X I V(t) I IAcpK,1 (E,t) Idt + CL K( Ik Ir) 

X f L - K( Ik It) W(t) I I AcpK,2 (E,t) Idt, 

forK>2, and 

(AI9) 

IAcpK,1 (E,r) I<CL 2(lk Ir) + Ck -IL( Ik Ir) 

X f W(t) I I AcpK,1 (E,t) Idt + CL( Ik Ir) 

X r L -I( Ik It) W(t) I I AcpK2 (E,t) Idt, Jo ' 
(A20) 

for K = 1. For all K> 1 we have 

I AcpK,2 (E,r)I<ChK(r) + CLK(lk Ir) 

X f L - K( Ik It) I V(t) I I AcpK,1 (E,t) Idt 

+ CkLK+ 1(lk Ir) 

X f L - K( Ik It) W(t) I I AcpK,2 (E,t) Idt. 

(A21) 

Now when K = 1 we set u(E,r) = (IAcpK,1 (E,r) I 
+ I ACPK,2 (E,r) 1)/hK (r) and when K>2 we set 
u(E,r) = IAcpK,1 (E,r) I/(k 2 - KL K( Ik Ir» + IAcpK,2 (E,r) 1/ 
hK (r). Then u(E,r) is seen to obey an inequality of the form 
(AI7) and hence (2.19), (2.20), and (2,21) followimmedi­
ate1y. This concludes the proof of Lemma (2.1). 
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Exact solutions of the Dirac equation in open and closed Robertson-Walker spaces are 
presented. A set of massive solutions is given for static metrics. In the case of nontrivial and 
arbitrary expansion factors, massless solutions are obtained via a conformal transformation. 
The set of massless solutions in open Robertson-Walker spaces is shown to be complete. 

I. INTRODUCTION 

Dirac spinor fields in the background of a gravitational 
field have been the subject of many investigations. In the last 
two decades, a number of such studies have been devoted to 
the determination of the renormalized vacuum expectation 
value of the energy-momentum tensor and the problem of 
creation of particles in expanding universes. 1-9 As a starting 
point, a complete set of solutions to the generalized Dirac 
equation is desirable. For the flat and closed Robertson­
Walker (R-W) spaces, sets of exact solutions to the massless 
and massive Dirac equations have already been 
found. 1.2.4.9-12 In the following, we present a complete set of 
masless solutions in open R-W spaces using the Poincare 
(or upper half-space) model of the three-dimensional hyper­
bolic space (H l ). Even if massless solutions in R-W spaces 
generate a conformally trivial case, preventing any creation 
of particles with expansion, these solutions can still be used 
to evaluate back reaction effects of quantum spinor fields on 
the gravitational field. 

The sketch of the paper is as follows. In Sec. II, we brief­
ly introduce the generally covariant formulation of the Dirac 
equation and we present its explicit form for the three classes 
ofR - W metrics (open, flat, and closed). Section III is devot­
ed to the description of the upper half-space model of the 
three-dimensional hyperbolic space (H l) and to a discus­
sion of its isometry group. In Sec. IV, the Dirac equation in 
the space R X H l with static metric is solved under specific 
requirements for the general massive case. Then a set of solu­
tions is generated by the action of isometries of H land 
massless solutions to the Dirac equation in open R-W spaces 
are obtained by application of a conformal transformation to 
the massless spinor determined for the static metric. In Sec. 
V, the spinor solutions found in RXHl are rewritten in 
terms of spherical coordinates. As a by-product, a transfor­
mation effected on the curvature parameter of these solu­
tions will give rise to solutions in closed R-W spaces. We 
show that the massless solutions in open R-W spaces form a 
complete set in Sec. VI. Finally, a summary of the results and 
possible future developments are given in the last section. 

II. THE DIRAC EQUATION IN ROBERTSON-WALKER 
SPACES 

The covariant formulation of the Dirac equation in 
curved spaces is presented in Lichnerowicz13 and Choquet­
Bruhat et al. 14 First, we summarize some of the definitions 

and notations. Let M be a four-dimensional manifold en­
dowed with a hyperbolic metric g of signature 
(+ - - - ). A Dirac spinor field 7/J on M is a (COO ) sec­
tion of the vector bundle associated to the spin bundle corre­
sponding to (M,g) via the D(I/2,O) eD (0,112) representation 
ofSL(2,C). For each class of Robertson-Walker spaces, a 
spin bundle exists and thus the spinor fields are globally well 
defined. Moreover, the Levi-Civita connection associated to 
g (with coefficients denoted by r~A) on the frame bundle 
over M determines a connection on the spin bundle (spin 
connection), which then defines a covariant derivative of the 
spinor field 7/J: 

VI'7/J= (al' +l:I')7/J, (2.1) 

where l:1" f.l = 0, 1, 2, 3, stand for the spin connection coef­
ficients. They take values in aD (1/2,0) e D (0,1/2) representation 
of the Lie algebra ofSL(2,C) and satisfy the following equa­
tion: 

arl' + r~A yA(X) + [l:",yl'(x>] =0. (2.2) 
ax" 

The j/s appearing in Eq. (2.2) are constrained by 

yl'y" + Y"yl' = 2gP"14' (2.3) 

With a choice of orthonormal frames {ea I a = 0,1,2,3} on 
M: 

(2.4) 

where a = 0, 1,2,3, the standard Dirac matrices are re­
trieved: 

(2.5) 

If 1/ ap denotes the Minkowski metric, it follows from (2.5) 
that the r's obey the relation defining a Clifford algebra on 
Minkowski space: 

(2.6) 

The covariant form of the Dirac equation in curved space is 
then written as 

(2.7) 

For instance, let us consider the R-W spaces with their 
metric expressed in terms of spherical coordinates IS: 

g = gl'"dxl' ® dx" 

= R 2(t)(dt 2 - di2 - f2(r) (d0 2 + sin20 dr/i», 
(2.8) 
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where R (t) is the expansion factor, and 

{

(sinh kr)/k, with O";;r < 00, 

fer) = r, with O";;r< 00, 
for the open case with curvature equal to - k 2, 

for the flat case, 

(sin kr)/k, with O..;;r";;1T/k, for the closed case with curvature equal to k 2. 

If we choose the following set of orthonormal coframes 
{oa}: 

0 0 = R(t)dt, 0 1= R(t)dr, 

0 2 = R(t)/(r)dO, 0 3 = R(t)/(r)sin 0 d¢l, 
(2.9) 

with 

ea(OP) =~, (2.10) 

then the spin connection coefficients are given by 

l:o = 0, 

l:1 = - !(R '/R)[yO,yl), 

l:2= -l«R'IR)/[yO,y2) +1'[yl,y2)), 

l:3 = - !{(R 'IR)/sin O[yO,y3) -I' sin O[yl,y3) 

-cosO[y2,y3)), (2.11) 

where the prime indicates the differentiation ofthe function 
with respect to its argument. Substituting this into equation 
(2.7), we obtain the generalized form of the Dirac equation 
for the R-W spaces: 

yO -+-- +imR14+yl -+-[ (a 3R ') (a 1') 
at 2R ar / 
+ j(:o + CO;O)+ /::Uo ~]tP=O. (2.12) 

In the massless case, a reduction of the Dirac equations 
in R-W spaces to the Dirac equations in spaces with static 
(R (t) = 1) metric can be achieved with the conformal map­
pingl6

: 

g' = R -2(t)g, (2.13a) 

and 

tP' = R 3/2(t)tP· (2.13b) 

As a result, a solution to the massless Dirac equation in 
lRXH~ is also a solution to the massless Dirac equation in 
open R-W spaces up to the above-mentioned conformal fac­
tor. Before showing solutions to this reduced equation, we 
review in the next section some properties of H ~ that will be 
useful. 

III. THE THREE-DIMENSIONAL HYPERBOLIC SPACE 

We will work with two models ofthe hyperbolic mani­
fold (H ~ ). One ofthem, which is more natural, is the geo­
desic model. In this model, H ~ can be viewed as the set of all 
triplets (r,O,¢I) with range O..;;r < 00,0..;;0..;; 1T, and O..;;¢I < 21T, 
called spherical coordinates. In these coordinates the metric 
tensor has the form 

h = dr + (sinh krlk)2(dO 2 + sin2 0 d¢l2), (3.1) 

where k is a positive constant. 
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In the second model, H ~ is described by the upper half­
space of the three-dimensional Euclidean space with coordi­
nates (xl,x2,y), wherey> 0, endowed with the metric 

h = «dXI)2 + (dX2)2 + dY)lk 2Y. (3.2) 

Both models are related to each other by the following trans­
formation: 

I sin 0 cos ¢I 
x = , 

coth(kr) - cos 0 
2 sin 0 sin ¢I 

x = , 
coth(kr) - cos 0 

and 

y = (cosh(kr) - sinh(kr)cos 8)-1, (3.3) 

where the origin of the spherical coordinates is mapped to 
the point (0,0,1) of the upper half-space model. 

The group ofisometries of H~ is PSL(2,C). It can be 
realized using quaternionic notation for the upper half-space 
coordinates (X I,x2,y) (Ref. 17): 

q=xl 'l +x2 'i+Y'j, 

q' = X'I • 1 + x·
2 

• i + y' 'j. 
(3.4 ) 

The action of PSL(2,C) on q corresponds to a fractional 
linear transformation, 

(3.5) 

where the matrix [t- ~] belongs to PSL(2,C). 
Let us restrict ourselves to the subgroup leaving invar­

iant the point (0,0,1) in the upper half-space model. One 
verifies that this subgroup of PSL (2,C), which is SO(3), 
preserves the origin in the geodesic model. It can be de­
scribed as the SU(2) subgroup ofSL(2,C) quotiented by its 
center, parametrized by 

[ 
aeix (e l + ie2 )b]ESU(2), (3.6) 

( - el + ie2)b ae- 1X 

where a2 + b 2 = 1, ~ + ~ = 1, and 0";;X<21T. 
Its action on a point of H ~ can be written explicitly in 

terms of the variables Xl, x 2
, and y: 

,1 1 [I 2 I 2 a] a x =- x - (elx +e~ )el +-el --el, a b b 

,2 1 [2 2 I 2 a] a x =-x - (elx +e2x)e2+-e2 --e2, a b b 
y' =yla, (3.7a) 

where 

(3.Th) 

A further geometrical meaning can be attributed to the 
transformation (3.7) if we look at the Hi analogs of the 
Euclidean planes the so-called horospheres, which are de­
fined by the equation 
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(b'y - (clb '»2 + (b 'Xl _ a'e;)2 

+ (b 'x2 - a'e;.)2 = (clb ')2, 

where c> 0, a'2 + b'2 = 1, and e;2 + e;.2 = 1. 

(3.8) 

If we fix a', b', e;, and ei, we obtain a one-parameter 
family of surfaces which we call a family of parallel horos­
pheres with direction « a' I b ' ) e; , (a' I b') ei). When b ' =1= 0, 
this family is composed of the spheres of radius clb ' tangent 
to the plane y = 0 at the point «a'ib ')e; , (a'ib ') ei,O). If 
b ' = 0, we have the family of parallel horosheres with direc­
tion (00,00 ) which consists of the planes y = l/2c and can 
be thOUght of as a family of spheres of infinite radius tangent 
to the plane y = 0 at the point (00,00,0). It can be shown 
that the transformation (3.7) maps the set of parallel horos­
pheres with direction «alb)el,(alb)e2) onto the set of par­
allel horospheres with direction ( 00 , 00 ). 

Moreover, for each set of parallel horospheres with di­
rection v = «alb )el' (alb)e2), we can define a family ofgeo­
desics with direction v by the equations 

1[ I 2 I 2 a] a C - X - (elx +e~ )el +-el --el = (3.9a) 
1:. b b 

and 

~[X2 - 2(elx
l + e~2)e2 + ~2] -!!... e2 = D, (3.9b) 

1:. b b 

where C and D are constants. 
The transformation (3.7) also maps the family of geode­

sics with direction v onto the family of geodesics with direc­
tion ( 00 , 00 ). 

IV. SOLUTIONS IN Rxffl 

In this section, we find explicit solutions to the massive 
Dirac equ'ations in the space R X H l using the upper half­
space model of H l. In this model; the nonzero coefficients of 
the Levi-Civita connection are 

r:3 = r~3 = n3 = -l/y, 

r~1 = n2 = l/y. 
(4.1 ) 

We choose the following set of orthonormal frames and co­
frames on lRXHl: 

(J- 0 -_ dt, (J- I dx
l 

(J- 2 dx
2 

=- =-
ky' ky' 

with 

ea(lJP) =~; a,,8=0,1,2,3. (4.3) 

From (2.2), we derive the spin connection coefficients in 
terms of the Dirac matrices {yr}: 

:Io =:I3 = 0, 

:II = - (l/2Y)rlr 3, 

:I2 = - (l/2Y)r 2r 3
• 

(4.4) 

The generalized Dirac equation (2.7) in R XH l can then be 
written as 

{i' ~ + kyrl ~ + kyy2 ~ 
at axl ax2 

+ kyy3 ~ - ky3 + imI4 }", = 0, (4.5) 

where, for explicit calculations, we will use the representa­
tion of the Dirac matrices given below: 

i' = [02; 
U2 

U2] [02 - iU3]. 

° 
rl = . O

2 
' 

2 -IU3 

r = [02- 12]; y3 = [?2 iUI ], 12 O2 lUI O2 

(4.6) 

with the U1's (i = 1,2,3) standing for the Pauli matrices. 
Let us determine spinor solutions propagating along the 

y axis. If they stay constant on the horospheres with direc­
tion ( 00 , 00) (corresponding to the y axis), then they can be 
expressed as 

'" = eiW1t/>(y), (4.7) 

where t/>(y) satisfies the equation 

kyy3 : + (iwi' - ky3 + imI4 )t/> = O. (4.8) 

A general solution to (4.8) is 
4 

t/>(y) = L caya·Va, (4.9) 
a=1 

where the ca's are complex constants; 

a I = a2 = 1 + (.j m Z 
- w ) I k, a 3 = a4 = 1 - (~ mZ 

- WZ ) I k, 

[ 

0 ] [~ mZ 
- WZ - m - iW] 

~ m2 
- WZ - m + iw 0 

VI = , V2 = , 
~ mZ - WZ - m - iw 0 

o ~mz_WZ -m+iw 

[ 

0 ] [ - ~ m2 
- WZ - m - iW] 

I 2 2· 0 -vm -W -m+IW 
V3 = , V4 = , 

- ~ m2 _ WZ - m - ;W 0 

o - ~ mZ 
- WZ - m + ;W 

(4.10) 

are, respectively, the eigenvalues and eigenvectors of the matrix: 

14 +- (iwlk)y3i' + (imlk)y3. (4.11) 

Thus any solution of (4.5) with direction ( 00,00 ) can be put in the form 
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4 

",(t,y) = eiwt L cayaaVa· ( 4.12) 
a=1 

Let us mention that the plane wave spinor solutions in Minkowski space traveling along the y axis are recovered in the zero 
limit of the curvature parameter k with the substitutiony + (11k) for y. 

In order to obtain spinor solutions moving in the direction {(alb)el,(alb)e2), we apply the transformation (3.7) that 
maps the family ofhorospheres with direction ( ( alb) e I' (alb) e2) onto the family ofhorospheres with direction ( 00 , 00 ). Since 
these transformations leave the metric invariant, the solutions to (4.5) in the direction ((alb)e l,(alb)e2) are 

'I1(t,xi,x2,y) = St(a,b,el,e2)"'(t,y'), (4.13) 

where S represents the D (1/2,0) E9 D (0,1/2) SL (2, C) representation of the rotation ~ of the orthonormal frames induced by (3,7), 
that is 

Stst = (~T)~rj (i,j= 1,2,3), 

with 

~ = (yly')J, 

1- Izl2~r [(Ime*z)2+ eir], 

(4.14 ) 

(4.15a) 

IZI;: r [e le2{(zl)2 - (zl)2 + r) + zlzl(~ - ei} ], 

;2r [e1e2{(zl)2- (ZI)2+ r )+ (ei -~)zlzl], 
Izl + 1 - Izl2 ~ r [(1m e*z)2 + eir], 

-2yzl 

IzI2+r' 

where ~ T is the transpose of the rotation matrix ~, J is the 
Jacobian of the transformation (3.7), ZI=XI - (alb)e l, 
zl=x2 - (alb )e2' Z=ZI + izl, and e=el + ie2' Explicitly l8: 

-ye*] * ESU(2). 
ze 

( 4.16) 

( 4.17) 

Hence, the spinor solutions with direction «alb)el, 
(alb )e2) to the Dirac equation in R X H i have the following 
form: 
'11 (t,xi,x2,y) 

= eiwt ± Ca [L]aa[u
t 

°u:] Va' (4.18) 
a= I Il. O2 

From this set of solutions, we obtain massless solutions to 
the Dirac equation in open R-W spaces by letting m = 0 and 
by applying a conformal transformation (2.13): 

'I1~-:0 = R -3/2(t) '11m =0' (4.19) 

where '11~-: 0 and '11m = 0 denote, respectively, massless solu­
tions in R-W space and the solutions (4.18) with m = O. 

We note that the limit of the curvature parameter k to 
zero in (4.18) leads to a set of plane wave spinor solutions in 
Minkowski space. In order to perform this limit, it is more 
appropriate to go back to the "Ball model" of Hi (Ref. 17). 
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-2yzl 

IzI2+r' 
- 2y [ 2 -2 I ..2] 
2 2 (e2 - ei)z - 2ele2" , 

Izl +y 

- 2y [ 2 -2 -.2 I ] 
2 2 (e l - e2 )z- - 2ele~ , , 

Izl +y 
(4.15b) 

1- 2r 
Izl2 + y2 

v. SOLUTIONS IN SPHERICAL COORDINATES 

For completeness, we present the spinor solutions found 
for the open R-W spaces in terms of the usual spherical 
coordinates. A simple modification to these solutions will 
allow us to introduce a set of solutions to the Dirac equation 
in closed R-W spaces. We recall that the spherical coordi­
nates are related to the upper half-space coordinates by Eq. 
(3.3). However, the transformation of the spinor fields re­
quires the SO ( 3, 1 ) transformation (A) between the two sets 
of orthonormal coframes: 

(fa = A'P(}f3, (5.1 ) 

with A given by 

[Al, ~ [ 
1 0 0 

-L] 0 cos 17 - sin 17 
0 cos tfi sin 17 cos tfi cos 17 
0 sin tfi sin 17 sin tfi cos 17 costfi 

~U 
0 0 0 

] e( - 211"/3,(3)(L, + L, + L')etf>L'eT/L, 

(5.2) 

. sin () 
sm 17 = , 

[cosh kr - sinh kr cos () ] 
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cosh kr cos () - sinh kr 
cos 7]= , 

[cosh kr - sinh kr cos () ] 
(5.3) 

and Li stands for the generator of rotations around the ith 
axis (i = 1,2,3). The generators satisfy the commutation 

I 

where 

v = e- i(4)/2)a'e- i(1//2)a, = ---------:'7.:.'" 
(cosh kr - cos () sinh kr) 1/2 

rules of the SO( 3) algebra: [ Li,L j] = EijkLk 
(i,j,k = 1,2,3), and El23 = 1. 

With respect to our choice of Dirac matrices (4.6), the 
D(1I2,O) EBD(O,1/2) SL(2,C) representation of A can be writ-

ten as 

(5.4) 

2 2 2' 
X 

[ 

( cos!!... - iek ,/2 sin !!"')cos .t 

( - i cos!!... - e - kr/2 sin !!"')sin .t 
2 2 2' 

( - i cos!!... + ek
,/2 sin !!"')Sin .t ] 

2 2 2' 

(cos ~ + iek
,/2 sin ~ )cos ~ . 

(5.5) 

Consequently the spinor field, defined in terms of the upper half-space coordinates, will undergo the following transforma­
tion: 

- - t I 2 'II(t,r,(},l/J) = S(A) 'II(t,x ,x ,y). (5.6) 

It follows that Eq. (5.6) will give rise to solutions ofthe Dirac equation in spherical coordinates if 'II (t,xI,x2,y) has the form 
( 4.18). The resulting spinor solutions are 

'II(t,r,(},l/J) = _e
i
_
W1 ± Ca[ ____ l ____ ]aa 
2 a= I Jl(cosh kr - sinh kr cos (}) 

[
Vt{12 - i(u1 - U 2 + ( 3 »ut O2 ] 

X T.(') TVa' O2 V 12 + I(UI + U2 + ( 3 ) U 
(5.7) 

where Jl and u are expressed in terms of spherical coordi­
nates viaEq. (3.3). With the conformal mapping (2.13b) of 
(5.7), we get the spherical coordinate representation of 
massless spinor solutions in open R-W spaces, that is 

'II~-~o(t,r,(},l/J) =R -3/2(t)'IIm =o(t,r,(},l/J). (5.8) 

Let us note that our choice of parameters a, b, e1 and e2 for 
the solutions in the upper half-space model does not lead to 
simple expressions when transcribed in spherical coordi­
nates. However, a more suitable parametrization is derived 
if, first, the spinor solution in the direction v = (00,00) is 
mapped to spherical coordinates by (5.6), and then the 
spinor is transformed by the SO (3) isometries. 

Finally, we observe that changing the parameter k by ik 
and restricting the variable rto the interval [0,( 1T/k)] in the 
open R-W metric, we retrieve exactly the closed R-W class. 
Applying this transformation to (5.8), we get a set of spin or 
solutions to the Dirac equation in closed R-W spaces. These 
solutions are well defined everywhere on S3, except at the 

I 

Ali 7/J ( t ,p,w) =-:::3 
1671 H' 

o 

rj--------------------------------------
poles r = 0, 1T/k. Let us mention that the massless solutions 
found in Refs. 2, 10, and 11, which can be expressed as Jacobi 
polynomials in "cos ()" or "cos r," differ from the above. 

VI. COMPLETENESS OF THE SET OF MASSLESS 
SOLUTIONS 

In the following, a sketch of the proof of completeness of 
the massless solutions in open R-W spaces is presented. It is 
understood that the set of solutions (4.19) with m = 0 is 
complete if any solution to the massless equation (4.5) can 
be expressed as a linear combination of them. For simplicity, 
we consider the case when the curvature parameter k = 1. 
We also ignore the expansion factor R(t), since the confor­
mal map (2.13) preserves the completeness. 

As a generalization to hyperbolic space of the spatial 
Fourier transform for massless spinors, we define 

o 

O2 ] I 2 dx 1 dx2 dy 
*( I 2 ;{3) 7/J(t,x,x,y) y , u x,x,y' 

(6.1 ) 
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with the inversion formula 

t/J(t,xl,x2,y) = r r [U
t
(xi,x

2
,y;{3) 

JRJaH' O2 
-iw(y!Jl)l-iW 

o 

x _iW(y/I1)I-iW 

o 
_ iw( y/l1) I + iw 

(6.2) 

wherefJ=.(a/b)eeaH 3 (boundary ofH 3
), u is given by (4.17), and 11= (lx-fJI2+r)/(1+ IfJI 2 )(3.7b), with 

x=.xl + ix2. 
In this representation, we can write the general solution to Eq. (4.5) with zero mass as 

t/J(t,xi,x2,y) = r r eiwt[ut(xi,x2,y;{3) T 1°22 ] 

JR JaH' O2 U (x,x ,y;{3) 

- iw( y/I1)I-iW 

° iw( y/l1) I +iw 
x - iw( y/I1)I-iW 

o 

where ~(O,fJ,w) stand for the "Fourier transform" of the 
initial data. 

The consistence of equations (6.1) and (6.2) follows 
from the formula 

f_+oooo iH
3 
ut (XI',X2',y',fJ) 

[ 
(y'/I1,)I-iW(y/I1)1 +iw 0 ] 

X ° (y'/I1,)I+iW(y/I1)I-iW 

X u(x l 2 ;{3) w
2 

dw dfJI dfJ2 
,x ,y (1 + IfJ 12)2 

= 161i3y36(x - x',y - y')12' (6.4) 

In order to verify this identity, we first split the w depen­
dent matrix in its w even and w odd parts, that is 

[ 
(y'/I1,)I-iW(y/I1)I+iW 0 ] 

° (y'/I1') 1 + iW(y/I1)I- iw 

= ~ [ (~, r -iw (~ r + iw + (~, r + iw (~ r -iW] 12 

+ ~ [ (~,) I-iw (~ )1+iW 

_(~, r+iW(~ r-
iW ]u3• (6.5) 

Substituting (6.5) in (6.4), the w odd part vanishes once 
integrated over w, leaving only the w even contribution. The 
residual integral can be reduced to the form 

J+oo r ut (xi',x2',y';{3)u(xI,xt,y;{3) 
- 00 JaB 3 
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iw( y/l1) 1 +iw 
(6.3) 

X [(y' )1- iw (.1...)1 + iW] w
2 

dw dfJI dfJ2 
11' 11 (1 + IfJ 12)2 

= 16,r6(x - x', y - y')12' (6.6) 

Since the identity (6.6) is invariant with respect to the 
action of any isometry ofH 3 on (xi',xi,y') and (X I,X2,y), we 

can put without loss of generality: Xl = x2 = xi' = xi = ° 
andy' = 1. In other words, the group of H 3 isometries can be 
used to map (xi',xi, y') to (0,0,1) and (X I,X2,y) to a point on 
the positive y-axis, relabelled (O,O,y). As a consequence, 
(6.6) is simplified to 

L+oooo iH' ut (O,O,I;{3) u(O,O,y,/3) 

X [y(1 + IfJ 12) ] 1 + iw w2 dw dfJI dfJ2 
y2 + IfJ 12 (1 + IfJ 12)2 

= 16,ry6(x,y - 1)12, (6.7) 

We obtain from (4.17) that 

u t (0,0,1;{3) u (O,O,y;{3) 

1 

~(lfJ 12 + 1)(lfJ 12 + J2) 
X [ IfJ 12 + y - fJ*(1 - y) ] 

fJ(1 - y) IfJ 12 + y . 
(6.8) 

The integration over the parameters fJI and fJ2 can now 
be carried out. Inserting (6.8) in (6.7) and passing to polar 
coordinates: fJ = fJI + ifJ2 = IfJ 1 eiY, where O<r < 217', we 
find that the off-diagonal integrals over the angular variable 
r vanish while the diagonal contribution becomes 
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21Tf+00 dWIff- (00 dlPI IPI(IPI
2
+y) 

_ 00 Jo (1 + IP 12)2 ~ (IP 12 + 1)( IP 12 + I) 

[
y(1 + IPI 2) ]1+iw1 

X r+ IPI2 2 

(6.9) 

We evaluate the second integral on the left-hand side of 
(6.9) using the following substitution: 

IP 1= ~(1 + 1)/(1 - I), 

where - 1 ";;1";; 1. 

After integration, Eq. (6.9) is transformed to 

2~/21(y) = 16ffly<5(x,y _ 1), 
(1 + y)2(1 - y) 

where 

l(y) = dw Iff- Re . f + 00 { y - 1/2 + iw + Y 112 - iw } 

- 00 1/2 - iw 

(6.10) 

(6.11 ) 

(6.12) 

The change of variables, y = eS, where S E R, allows us to 
rewrite (6.11) as 

(- 1/4 sinh S cosh(s /2» l(s) = 8~y<5(x,y - 1), 

(6.13 ) 

where 

f+ 00 (eiS"(w+ (i12» - e-iS"(w+ (i/2») 2 
l(s) = w dw. 

- 00 - i(w + (i/2» 

Differentiating l(s), we find that 

1'(s) = 417" cosh(s/2)<5"(s). 

(6.14 ) 

(6.15 ) 

A symbolic expression for l(s) can be derived with help of 
the following equalities l9

: 

cosh (s /2)<5" (s) = <5" (s) (6.16) 

and 

cosh(s /2)<5'(s) = <5'(s)· (6.17) 

In fact, we get from Eqs. (6.15) and (6.16): 

l' (s) = 417"<5" (s). (6.18) 

Using (6.17), the integration of (6.18) gives rise to 

l(s) = 41Tcosh(s/2)<5'(s), (6.19) 

where the constant of integration vanishes since l(s) and 
<5' (s) are both odd distributions. 

Finally, inserting this last result in the identity (6.13), 
we arrive to 

- <5' (s)/sinh s = 8~<5(x,y - 1). (6.20) 

The validity of this identity is shown below. It enables us to 
conclude that (6.4) is verified, and consequently, that (6.1) 
and (6.2) are consistent. 

In order to justify (6.20), we use spherical coordinates. 
First, we note that Is I can be identified with the variable r in 
(3.3), which is the geodesic distance between (0,0,1) and 
(X I ,x2,y). The identity (6.20) is then confirmed by verifica­
tion of the next formula for any test function/, expressed in 
both the upper half-space coordinates (X I,X2,y) and the 
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spherical coordinates (r,O,;): 

f 
~1~2~ 

- 817" y<5(x,y - 1 )f(x l ,x2,y) Y 

= 2 (00 sinh2 r dr f sin2 0 dO d; I( r,O,;) ~' (r) . 
Jo smh r 

(6.21) 

VII. SUMMARY 

We were concerned in this paper with Dirac fields in the 
background of R-W metrics. In the case of open R-W 
spaces, a set of explicit massless solutions to the Dirac equa­
tion has been found. Each solution propagates along the di­
rection defined by a set of parallel horospheres, the analogs 
of the planes in flat space. For this purpose, we have used the 
upper half-space representation of the three-dimensional 
spatial submanifold. In the limit of zero curvature, one can 
show that spinor plane-wave solutions in Minkowski space 
are retrieved. We also expressed the open R-W spinor solu­
tions in terms of spherical coordinates. It follows that the 
substitution of the parameter k by its imaginary form and the 
restriction of the domain of the spatial variable r lead to 
closed R-W spinor solutions. Finally, it has been verified 
that the set of spinor massless solutions presented for the 
open class is complete, a property which is certainly very 
important for quantum field theoretical considerations. 

Let us recall that only massless solutions have been de­
termined for metrics with nonconstant and arbitrary expan­
sion factor R (I), since a conformal map of the static metric 
was carried out. It would be interesting in a future investiga­
tion to exhibit massive spinor solutions in R-W spaces with 
nontrivial expansion factors, as worked out for the flat case 
in Ref. 12. 
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IlYfhe spinor transformation S has been determined from the normal eigen­
vector (il) corresponding to the eigenvalue I and the two other eigenval­
ues (e±ia) of fJli. The canonical homomorphism between SU(2) and 
SO( 3) is then used to arrive at u( = cos (a/2) - iil· iT sin (a/2». 

19In theformulas (6.16) and (6.17), the absolute value of the variable 5" will 
later be interpreted as the spherical coordinate r introduced in Sec. III. If 
we consider test functions ft.5"), (6.16) and (6.17) are proved by showing 
that the following relations are satisfied, respectively, 
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and 
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An extensions theory setting for scattering by breathing bag 
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A model of the scattering of a structure1ess pointlike particle on a spherical bag with an 
internal structure, imitating "quark" degrees of freedom, is considered. It is assumed that the 
bag is a dynamical object and its radius plays the role of additional dynamical variable. The 
energy of the collision is distributed among the quark excitations and the vibration degrees of 
freedom of the bag surface. In the frame of the theory of extensions the Hamiltonian of the 
coupled bag-quark system interacting with the pointlike particle is constructed. The formal 
multichannel S matrix of the problem is obtained. 

I. INTRODUCTION 

Let us consider two conservative quantum systems Q. 
and Q2 with Hamiltonians H. and H2 acting in Hilbert 
spaces K. and K 2, respectively. We assume that the system 
Q. consists of two noninteracting subsystems ft and r;r. Let 
the Hamiltonian H. ofthe system Q. be a direct sum ofthe 
corresponding Hamiltonians Hb and H", which determine 
independent evolutions of the subsystems: H. = W EIlH" in 
the Hilbert space K. = Kb EIlJr"l. The total Hamiltonian 
Ho of the system Q. U Q2 is represented as a tensor sum of the 
operators Hi' i = 1,2, 

(1) 

Because of the decomposition K. = Kb Ell Kq, the rela­
tion (1) can be written in the form 

Ho = (H b®I2 + Ib ®H2) 

Ell (Hq®I2 +Iq ®H2 ) 

=L. EIlL2• (2) 

One could switch on an interaction between the subsys­
tem in the composite quantum system Q. UQ2' as was done 
in Ref. 1. The method of the paper· deals with the situation 
in which the total Hilbert space is a direct sum of its sub­
spaces. An interaction arises as a result of construction of a 
set of self-adjoint extensions of some symmetric operator. 
This symmetric operator is the result of the restriction of the 
direct sum of initial Hamiltonians L. Ell L 2• This set, in par­
ticular, contains the initial Hamiltonian of the composite 
system. Any other self-adjoint extension can be interpreted 
as the total Hamiltonian determining the coupled dynamics 
of the subsystems and the interaction between them. 

In this paper we use the techniques of Refs. 1-4 for the 
operatorsL i , i = 1,2, of special structure (2), i.e., in the case 
when the total energy of the subsystems ft, r;r, and Q2 is the 
sum of the subsystem energies. We consider the scattering of 
a pointlike particle on a dynamical quark bag5 (DQB) as an 
illustration of the scheme described above. 

In this interpretation the operator Hb determines the 
dynamics of the DQB surface, Hq corresponds to the inter­
nal (quark) degrees of freedom, and H2 is the operator of 
kinetic energy of the pointlike particle. We construct an in­
teraction between the abovementioned degrees of freedom 

oj Present address: Freie Universitiit Berlin. Berlin (West). Germany. 

on the base of the extensions theory. 1-4 It will be shown that 
this approach leads to a nontrivial scattering matrix. 

II. MODEL 

Let us assume that the dynamics of the bag surface is 
given by the self-adjoint operator acting in the Hilbert space 
Kb = L 2 (0, 00 )5, 

b ( 1 d
2 

) HX= ---+V(R) X 
2M dR 2 

' 

with boundary condition 

X(O) = 0. 

(3) 

(4) 

To simulate the breathing character of the system one should 
choose the potential V(R) with confinement: V(R) ..... 00 as 
R ..... 00. 

In this case the Hamiltonian Hb has the pure discrete 
spectrum U(Hb) = {En] }: = 0 and its eigenfunctions form 
the basis in the Hilbert space Kb. 

The dynamics of quark degrees of freedom inside the 
DQB is determined by a self-adjoint operator H", acting in 
an abstract Hilbert space Kb. The nature of the Hamilto­
nian Hb can be treated in different ways. It might be under­
stood as the few-body SchrOdinger operator with confining 
potentials (if one needs a nonrelativistic description); or as 
some relativistic Hamiltonian. Since there is no adequate 
mathematical description of multiquark dynamics at dis­
tances of the order of the confinement, we use the informa­
tion about the structure of the spectrum of the Hamiltonian 
H" only, omitting concrete details of the evolution of inter­
nal (quark) d~grees of freedom. In this case the bound states 
of Hq can be treated as quark excitations of the DQB. 

Finally, the role of the operator H2 is played by the 
Hamiltonian of the free particle 

1 d 2 

H 2u = - 2m dr u, r;;oO, 

u(O) = 0, 

(5) 

(6) 

in the Hilbert space L2 (0,00 ). Let us assume that the interac­
tion between the particle and DQB switches on if and only if 
the coordinates Rand r are equal, and the pointlike particle 
does not penetrate into the bag. As a consequence, the con­
figuration space ~2+ is divided by the line y = ax into 
two sectors V± = {v;;o<ax}, where a = (m/M) 1/2, 
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x = ~2M R, y = ~2mr, and the scattering should be consid­
ered in "physical" sector V+ only. 

The condition of nonpenetrability into the bag leads to 
the following rather simple model of an interaction between 
the quantum systems (! and Q2' One needs to solve the 
Schrooinger equation in the physical sector V +: 

( 
a2 a 2 ) 

- ax2 - ay2 + Vex) - E t/J(x,y) = 0, (7) 

with the boundary conditions 

t/J(x,y)ly=ax =0, t/J(x,O) =0. (8) 

To include the interactions between the systems (! , (l1 , 
and Q2 in accordance with Refs. 1-4, let us restrict the do­
main of the operator Lito the set of all smooth functions in 
the sector V +, which vanish at the vicinity of the line y = ax. 
The symmetric operator L JO, restricted in such a way, has 
infinite deficiency indices. The boundary form 1-4 of its ad­
joint operator L To can be calculated as follows: 

(L To t/J,rp ) - (t/J,L Torp ) = i (an t/J q; - anq; t/J)dy, (9) 

where an denotes the normal derivative of the functions t/J, rp 
on the curve y. [Of course, the expression for the boundary 
form (9) on the domain 9 (L To) needs some regulariza­
tion. But for further purposes it is sufficient to consider the 
boundary form (9) only on the class of smooth functions, 
which do not satisfy any boundary condition on the line y. In 
this case one does not need any regularization and (9) holds 
in the ordinary sense.] 

The next step of the scheme l
-4 is the restriction of the 

operator L2 to some symmetric operator L 20. Since the oper­
ator L2 = Hq + H2 acts in the tensor product ofthe Hilbert 
spaces JYt"'I ® ~2 we shall restrict the domain of the operator 
Hq only, so that the fixed elements () from JYt"'I be the defi­
ciency element for the restriction HZ, 

9(HZ) ={(Hq-iI)-It/J,t/JE~'B()}. (10) 

We call the coefficients E! of the decomposition 

U = Uo + En+ Hq(Hq - iI) -I() + En- (Hq - iI)(), 

uoE9(HZ), uE9(Hg*) (11) 

of arbitrary element U from the domain of the adjoint opera­
tor HZ', the boundary values. In a general case, the bound­
ary values E ± of the elements U from 9 (L 10 ) become the 
functions of the variable y and the boundary form of the 
operator L 10 is given by 

(L 10u,v) - (u,L !ov) = r [Eu- (y) E; (y) JR + 

- Ev- (y) Eu+ (y) ] dy, (12) 

In order to construct a self-adjoint extension H of the opera­
tor L JO e L 20, in accordance with our general method, one 
should impose on the line y such boundary conditions that 
nullify the sum of the boundary forms (9) and (12). One of 
the simplest possibilities to do it is to study the following 
boundary conditions, mixing all the channels together: 

ant/Jlr =PE-(Y), E+(y) =Pt/Jl r, PER I. (13) 
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III. SCATTERING PROBLEM 

The spectral analysis of the total two-channel Schro­
dinger equation 

(H -E)t/J= 0 (14) 

can be reduced to some boundary-value problem in the sec­
tor V +. More precisely, it can be shown4 that the boundary 
values E ± on the solutions of the problem (14) are connect­
ed with the relation 

(15) 

Here Q(E + d 2/dy) is the integral operator acting in the 
space L 2(R ~ ) with the kernel Q(y,y',z), 

Q(y,y',z) = 2~ i a(t)ro(Y - y',z - t)dt, (16) 

where ro(u) = (H2 - z) -I is the resolvent of the operator 
- d 2/dywith boundary conditions t/Jly=o = 0, act) is the 

Schwartz integral of the spectral measure of the operator 
Hq, and the counter r encircles the spectrum of the Hamil­
tonian lJ'I in the complex plane (t). 

Equality ( 15) reduces the problem ( 14) to the search of 
the components of the wave function '11 in the space 
~q ® ~2 as the solutions of the following boundary value 
problem in the sector V +: 

( 
a2 a 2 ) ----+ Vex) -E t/J=O, 
dx2 dy 

with energy-dependent boundary conditions 

an t/JI r =P2Q(E+ :;)t/Jlr' 

t/Jlx=o = 0, 

(17) 

( 18) 

(19) 

and appropriate asymptotic conditions at infinity. All the 
information about internal degrees of freedom penetrates 
into the boundary-value problem (17)-(19) through the 
Schwartz integral act) of the Hamiltonian Hq, 

f A; + 1 
a(t)= --d(E;.(),(), 

A-t 
(20) 

(21) 

Here fJEK'l is a vector parameter of the theory [see (10) ] . 
The function act) is an analytical function with a positive 
imaginary part in the upper half-plane of the complex vari­
able t. If the Hamiltonian lJ'I is a finite-dimensional self­
adjoint operator with a simple spectrum, As are its eigen­
values and Es are the corresponding orthogonal 
eigenprojectors, then act) is a rational function, 

(22) 

The formal solution6 of the problem (17)-(19) can be 
represented in the form 

n 

where kn =,j E - En are the reduced channels momenta. 
Substitution (23) into boundary conditions (18) yields 
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the following set of equations: 

L {8mn e - iP"x(a ax + gA n- + ikn) - SmneiP"x 
n 

(24) 

where Pn = akn are renormalized channels momenta and 
g = /32~. To determine the operators A n+ one needs 
to calculate the action of the integral operator Q(E 
+ d2ldr) on the elements ¢! (x,y) = e± knYXn (x) consid-

ered as the functions of the only variable y = ax, 

Q (E + :; )¢n± (yla,r) 

= e± iP"xQ( E + (~ ax ± iknY)Xn (x) 

= e ± ip"x -21 . j a(~)9' n± (x,E - ~)d~ 
1/"1 jr 

== - e ± ipnxA ! Ix n ). (25) 

Here the functions 9',f (X,A) are the L 2 solutions of the 
boundary-value problem 

[(1la)ax ±ikn]29'n± + A9' n± =Xn' 9',flx=o =0. 
(26) 

If the channel n is opened, 1m k n = 0, then 9' ,,+ = 9' n- • 

Formally, the S matrix can be determined by projecting 
the system (24) on the basis {X n }. In this case the system 
(24) can be written in terms of the matrices W± ,playing the 
role of the wave operators 

W';n = (Xm le± ip"x(a ax + gA n± =+= ikn) IXn) (27) 

in the following way: 

(28) 

On the opened channels we obviously have 
( W';:-n ). = W';n· 

IV. RESUME 

The next step is the studying of analytical properties of 
the suggested S matrix 

S= (W+)-IW-. (29) 

It will be done anywhere. Let us note here the following 
circumstances. 

( 1) The scheme of the exclusion of the channels 7/"b 
and 7r'" described above demonstrates that the scattering on 
DQB can be reduced to some effective matrix-many-channel 
problem in the space 7/"2' 

( - :y: ® I + B - E )<1> = 0, (30) 

with energy-dependent boundary conditions 

<I>-I<I>'ly=o = 9(E). (31) 
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Here B is a diagonal matrix of thresholds 

B = diag{E,,}, 

P(E) = -iKI/2(W+ + W-)-I 

(W+ - W-)K 1/2 

is a P matrix 7 of the problem, 

K = diag{kn }. 

(32) 

(33) 

(34) 

(2) In the opened-channel approximation we can use 
the finite set of equations 

N 

L W.;:-"S,,/ = W ';/. 
,,=1 

Denoting by a + the determinate of the matrix W + , 

a + = det W+ = a + (k l ,k2, ... ,k,,), 

we find 

(35) 

Here we treat the channel momenta k n as independent 
variables and consider matrix element S m/ as the function of 
these variables. 

The studying of analytical properties ofthe S matrix can 
be reduced to the investigation of corresponding Fredholm 
determinants Ii.. + (Ref. 8). 

Nevertheless the most interesting question is to study 
the limit N ..... 00 and analytical behavior of the the total S 
matrix. 

In conclusion, we have demonstrated that the new 
method of coupling of different degrees of freedom in the 
system proposed, leads to a rather interesting scattering 
problem here. For more realistic simulation, the peripheral 
interaction in the Hamiltonian H 2, as well as higher partial 
waves in the corresponding channel, should be taken into 
account. 
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A general framework for understanding Kepler-type dynamical symmetries is presented. The 
main concern is the geodesic motion in Euclidean Tauh-NUT space, which approximates the 
scattering of self-dual monopoles for long distances. Other examples include a test particle 
moving in the asymptotic field of a self-dual monopole and two other related metrics. 

I. INTRODUCTION 

In this paper we present a general method for under­
standing Kepler-type dynamical symmetries. Our main in­
terest lies in explaining those symmetries found recently in 
the long-distance limit of monopole-monopole scatter­
ing, 1-4 as well as for a test particle in the asymptotic field of a 
self-dual monopole.5 

In the long-distance limit, the relative motion of two 
monopoles is approximately described in fact by the geode­
sics of the Euclidean Tauh-NUT space of parameter 
m = -!, with the line element 

d~ = (1 + 4mlr)(dr + redO 2 + sin2 0 dfP» 

+ [(4m)2/(1 + 4mlr) Hd1/l + cos 0 dO)2. (1.1) 

For m > 0, (1.1) is just (the space part 00 the line ele­
ment of the celebrated Kaluza-Klein monopole of Gross 
and Perry and Sorkin.6 The problem of geodesic motion in 
this metric therefore has its own interest independent of 
monopole scattering. The relativistic aspects of such metrics 
have been studied recently by Gibbons and Ruback3 in great 
detail. Here we explore instead the relation to dynamical 
symmetries. 

In the Tauh-NUT limit the electric charge q (the 
N cether quantity conjugate to a 1 a1/l) is conserved and, for a 
fixed q, symplectic reduction 7 leads to the three-dimensional 
Hamiltonian 

h = !(p2/(1 + 4mlr) + (1 + 4mlr)(qI4m) 2), (1.2) 

where p = (1 + 4mlr)v = a£/av - qA, where A is a Dirac 
monopole vector potential. The fundamental Poisson brack­
ets {pj'Pj} = - qEjjk (~/r), {rjOpj} = Bij correspond to 
the symplectic form 

0= dr I\dp + (qI2r)EjjkI drj I\d~ (1.3) 

on the phase space, according to {f,g} = o (Xf,Xg ), 

df= O(X/,·). 
The second system we study here is a spinless test particle 

moving outside the core of a self-dual monopole. The Higgs 
field <I> can be identified with the extra space component of a 
pure Yang-Mills field in four dimensions. The equations of 
motion can be obtained from the Kerner-Wong8 equations 
in 1 + 4 dimensions by dimensional reduction.5 For large 

distances, the only surviving gauge field component is the 
one parallel to <1>. The particle's isospin projects into the 
conserved electric charge q. 9 This leaves us with an effective 
Dirac monopole and a long-range scalar field <I>-I-I/r. 
Our particle is described by the same symplectic structure as 
in (1.3) and the Hamiltonian 

h=!(p2+i[1-l/r]2), (1.4) 

where p is the ordinary momentum. This system was studied 
previously by McIntosh and Cisneros and ZwanzigerlO be­
cause of its remarkable symmetries, but without its present 
physical interpretation. Such a role has been hinted at by 
SchOnfeld. l1 See, also, Refs. 5 and 12. 

For both systems, the clue of the solutions is provided by 
a conserved Runge-Lenz-type vector, which allows one2

•
3 to 

prove that the trajectories are conic sections. We shall main­
ly consider the bound motions. We mainly concentrate on 
the more recent and less explored Tauh-NUT problem. 

Observing that the conserved angular momentum vec­
tor j and the rescaled Runge-Lenz vector k [ (2.8)] form an 
0(4) algebra for the bound motions and an 0(3,1) algebra 
for the scattered motions, the Pauli method 13 allows one to 
recover the bound-state spectrum and the Zwanziger meth­
od 10 allows one to derive the S matrix.2 

The 0(4)/0(3,1) symmetry can be extended into 
0(4,2). For example,3 application of the so-called "Kus­
taanheimo--Stiefel"14 transformation carries the Tauh­
NUT system into a harmonic oscillator. The latter admits an 
sp(8, R) dynamical symmetry; those transformations that 
preserve the charge constraint form an su (2,2) ::::: 0 ( 4,2) . 

In Barut's methodl5 (for the Tauh-NUT system, for 
example4

), one starts instead with the time-independent 
Schrodinger equation h'l1 = e'l'. Assuming that e < q21 
32m2, one multiplies the SchrOdinger equation by (r + 4m) 
and redefines position and momenta as 

After rearrangement, the Schrooinger equation takes the 
form 

{!R(P2 + 1) + iI2R}'I1 

= (4m[e - (qI4m)2]1~ (qI4m)2 - 2e)'I'. (1.6) 
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On the lhs of ( 1.6) one recognizes r 0' the generator of an 
0(2,,1) group, to which one can add4.1s 14 more operators, cf. 
(3.11 a-g) which generate an 0(4,2) operator algebra inde­
pendent of the energy constraint. Therefore, the solution of 
the eigenvalue equation ( 1.6) can be deduced from the spec­
trum of r o. The same procedure works in the other cases. IS 

The method we present here consists in completing! (r, 
p) - (R,P) into a canonical trans/ormation. We do this by 
unfolding the system into Souriau'sI6"espace d'evolution" 
(evolution space) If = M X R, which is endowed with the 
presymplectic structure (1' = n + dh A dt. [If can also be 
viewed as the seven-dimensional "energy surface" lying in 
the eight-dimensional extended phase space T * (R3 X R) 17.] 
The classical motions are the characteristic curves of (1'. This 
is basically a generalized variational formalism l6: If 0 is a 
potential for (1', dO = - (1', then the classical -action is 
S£ = SO. 

The quotient (JV,liJ) of (If ,(1') by the characteristic foli­
ation of (1' is Souriau's "espace des mouvements" (space of 
motions). 16 In this framework, a symmetry is a transforma­
tion of If which preserves (1' and thus permutes the classical 
motions: it projects into a symplectomorphism of (JV, liJ). 

The information on the global stI'Qcture is encoded into 
the topology of JV. A fixed t = to section No of the evolution 
space is the "phase space at to" 16; the restriction of (1' to No is 
symplectic. The mapping No-JV (obtained by composing 
with the projection If -JV) is injective and symplectic, but 
may not be onto. In the Kepler problem, for example, the 
phase space No does not intersect those motions that hit the 
center at t = to.18 Therefore, No may not reflect the global 
structure of the space of motions. 

The situation is similar for the Tauh-NUT system. The 
metric (1.1) is singular for r = 41ml, which should be ex­
cluded. The energy is positive for r>4lml and negative for 
r<4lml and, by energy conservation, no motion can cross 
the singular sphere S = {r = 41ml}. Hence the space of 
bound motions has two connected components. The nega­
tive-energy part If _ of the Tauh-NUT evolution space If 
contains the tightly-bound motions (JV _) and the positive­
energy part If + contains the lightly-bound motions (JV + ). 
For us, If + is more interesting since the Tauh-NUT approx­
imation is justified only for large r. 

In both components, the radial motions leave their re­
gions and hit the singularity. In other words, for m < 0 the 
Tauh-NUT space is not a complete Riemann manifold. 
Consequently, thespacesofmotionsJV ± = If ± /Ker (1'are 
not Hausdorff. 

A regular system is one whose presymplectic form de­
fines a foliation with one-dimensional, infinite curves: Its 
space of motions is a Hausdorff manifold. Regularizing the 
Tauh-NUT problem requires imbedding it into a regular 
"unphysical" one by an injective, symplectic mapping / 
whose image is a dense, open subset. Those "unphysical" 
motions, that correspond to the Tauh-NUT motions that 
leave the evolution space can be made infinite by restoring 
their points not in 1m! Identifying the preimages in the 
Tauh-NUT space of motions, we obtain a smooth Hausdorff 
manifold, namely the "unphysical" motion space. 

We choose the following regular "unphysical" system 
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(1.,1:.): We consider in fact those zero-mass, helicity-s, 
coadjoint orbits (M.,OJ.) associated with the action of 
SU(2,2) on twistorspace. I 9-21 Thesu(2,2) ::::;o( 4,2) genera­
tors are the classical counterparts of those operators in Refs. 
4, 15,21, and 22. Choosing the generator ro [(3.12a)] as 
Hamiltonian and adding a "fake time" T, we obtain an "un­
physical" evolution space 1. = M. X R endowed with 
1:. = OJ. + dB AdT. The 0(4,2) generators are extended to 
1. so as to remain constant along the trajectories. The 
space of "unphysical" motions, 1./Ker 1:., is globally sym­
plectomorphic to the T= 0 phase space which is (M.,OJ.). 
This system has a manifest C T+ (3,1)=SU(2,2)/(center) 
symmetry. 

To summarize, our canonical transformation / allows 
us to regularize the "physical" problem as well as exhibit its 
"hidden" conformal symmetry. Our method is particularly 
useful in discussing global problems. 

This transformation is found by completing (1.5) with 
the rule of transforming the time, 

T= [~(q/4m)2 - 2h /4mh ] 

X{ - p'r - «q/4m)2 - 2h)t}. ( 1.7) 

Equation (1.7) is chosen to compensate for the noninvar­
iance of dr A dp under ( 1.5), due to the energy being a func­
tion rather than a constant. The pullback of the "unphysi­
cal" presymplectic form is the Tauh-NUT presymplectic 
form. (The Lagrangians differ by a total derivative.) , 

The regularized lightly-bound Tauh-NUT motion 
spaces JV + are thus shown to be symplectomorphic to 
(M.,OJ.). The same is true for the tightly-bound motions 
JV _ . Therefore, both carry a C!+ (3,1) conformal symme­
try. 

In the McIntosh-Cisneros (MIC)-Zwanziger case no 
regularization is necessary and M. is thus also the space of 
bound test-particle motions in the asymptotic monopole 
field. (Mo is the space of regularized motions of the Kepler 
problem.21 Our method also yields the C!+ (3,1) symme­
try. 12 

The space of twistors can also be viewed as the phase 
space of a four-dimensional harmonic oscillator from which 
the "unphysical" system is obtained by reduction.3.15.22 

In Sec. V we study the scattered motions. We show that 
the space of regularized hyperbolic motions is symplecto­
morphic to the orbit (Ms ' OJ.) and hence carries (unlike in 
the Kepler case1S ) an action ofthe conformal group. 

We end this paper by a short discussion of two other 
(closely related) metrics whose geodesics are also 0(4,2) 
symmetric. The first metric (which is new) can be viewed as 
a curved-space model for a particle in a self-dual monopole 
field and the other has been found recently in describing 
some special motions of a closed string in the Tauh-NUT 
background. 

Applied to the Kepler problem, our method would yield 
an imbedding into Mo, which is the standard regulariza­
tion,t4.18.23 since Mo=T+(§3) = T*(§3)\.(zero section). 
The conformal symmetry is obtained for free. 

Cordani. Feher. and Horvlithy 203 



                                                                                                                                    

II. CLASSICAL MOTIONS IN TAUB-NUT 

Neglecting radiation, the motion of two self-dual mono­
poles is approximately described by the geodesics in the 
space of solutions of the Bogomolny equation, called the 
moduli space. I The moduli space is the product ofR3XS I

, 

the manifold of the center-of-mass motion, with a curved 
four-manifold whose metric was found by Atiyah and Hit­
chin. I The latter describes the relative motion of the mono­
poles. In the long-distance limit exponential terms can be 
neglected and we obtain a Euclidean Taub-NUT space of 
parameter m = -!, with the line element (1.1). The geo­
desic motion of a spinless particle of unit mass in (1.1) is 
described by the Lagrangian 

£ = ! gl'v;XI'xv = !( (1 + 4m/r)v2 

+ [(4m)2/(1 +4m/r)](~+cosO~)2), 
(2.1) 

where v = r. Here r>O and the angles 0, </>, '" (00;;;00;;;17', 
Oo;;;</> < 217',00;;;", < 417') parametrize S3. The points r = 41m I, 
where the metric (1.1) is singular, are excluded. The con­
served Noether quantity 

q = (4m)2[ (~+ cos 0~)/(1 + 4m/r)] (2.2) 

associated to the cyclic variable '" is the relative electric 
charge. From now on we choose and fix a nonzero value for 
q. It is convenient to introduce the "mechanical momen­
tum" p = (1 + 4m/r)v. The equation of motion is then 

dp v2 i r vXr Tt= - 2m7 r + Sm ""1- q --;s-. (2.3) 

We have the following conserved quantities. First, the ener­
gy, 

e =!(1 + 4m/r)[v2 + (q/4m)2], (2.4) 

and next the monopole angular momentum 

j = rXp + q(r/r). (2.5) 

Finally, we have the Runge-Lenz-type vector 

a = pXj - !(4m(e - (q/4m)2». (2.6) 
r 

Hence the trajectories lie simultaneously on the cone 
j·r/r = q and also in the plane perpendicular to 

n = qa + 4m[e - (q/4m)2]j, (2.7) 

because of the relation n·r = q(f - i). They are thus conic 
sections. 1,2 

For energies smaller than (q/4m)2/2 (which is only 
possible for m < 0) the motions are bound. We assume 
henceforth that m < O. 

Under the Poisson bracket and for e< (q/4m)2/2, the 
angular momentumj closes, with the rescaled Runge-Lenz 
vector 

a 
k = --;.j;:;:1 (q=/;:;:4m~)::::;;:2 =-~2e::::;1 

= PXj - (r/r)(4m(e - (q/4m)2» 

.j I (q/4m)2 - 2el 

into an o( 4) dynamical symmetry algebra. 
e> (q/4m)2/2 we instead obtain an 0(3,1) algebra.2 
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(2.S) 

For 

Via (2.4), the sign of the energy depends on r being 
smaller or larger than 41ml. The excluded points form a sin­
gular sphere 

S = {reR3lr = 4Iml}, (2.9) 

which divides the space into two regions. Energy conserva­
tion implies that a particle cannot go from one region into 
the other (although it can hit the boundary S, see below). If 
a finite-energy motion approaches S, its velocity Ivl goes, via 
(2.4), to infinity as (1-4Iml/r)-1/2; its momentum p 
hence goes to zero as (1 - 4Iml/r) 1/2. Those motions in the 
interior of S have negative energy; they are the tightly-bound 
motions JV _. Those motions in the exterior and having ener­
gy 0 < e < i /32m2 are the lightly bound motions JV+. We 
shall focus our attention on JV +. 

In the generic case the orbital angular momentum rXp 
is nonzero, and the cone has opening angle a(cos a = Iql/ 
U I ). Such motions avoid S. Indeed, we see from (2.5) that 
for nonvanishing orbital angular momentum, j cannot be 
radial. However, when hitting the singular sphere S, the or­
bital part necessarily vanishes requiring j to be radial. 

Consider now the radial motions. Fixing a direction, we 
work with r, p. If the initial velocity is inward, the particle 
reaches the singularity in finite time, and leaves the "phys­
ical" space. If the velocity is outward (but sufficiently low as 
to remain bound), 

v = .j«2e - (q/4m)2)r + qz/4Iml)/(r + 4m) (2.10) 

shows that there will be a unique turning point r I > 0 where v 
vanishes, namely at 

r l = 4Iml{(q/4m)2/[ (q/4m)2 - 2en > 41ml. (2.11) 

After reaching rl , the particle returns and falls inward until 
it disappears in S. At this very moment, another radial mo­
tion leaves the singularity and follows the same phase-space 
trajectory backward. When passing to the quotient, any two 
neighborhoods of these two motions intersect. In order to 
obtain a Hausdorff topology, such motions should-and 
will-be identified. All motions then become periodic. 

The set of outer turning points of radial motions is 

BOXR={(r,p,t)llrl>4Iml,p=0} (2.12) 

and the set of inner turning points is 

SXR={(r,p,t)llrl =4Iml,p=0}. (2.13 ) 

The situation is basically the same for the tightly-bound 
motions. The nonradial motions are ellipses which avoid the 
origin as well as S. A radial motion has an internal turning 
point at O<rl <4Iml, according to (2.11). All radial mo­
tions fall into S in finite time from the inside, with infinite 
velocity and zero momentum: Such a motion should be iden­
tified with the motion that leaves S in the opposite direction 
along the same trajectory. 

III. SOME MANIFESTLY o(4,2)-SYMMETRIC SYSTEMS 

A twistorl9
,2o can be represented by a pair of spinors 

za = (WA,17'A') in T = (C2 XC2
)\ {O}. (Here 17'A' plays the 

role of a generalized coordinate and wA plays that of a gener­
alized momentum.) The conjugate of za(a = 0,1,2,3) is 
Z: = (~, (W*)A ') = « 17'A' )*, (wA)*) (the asterisk means 
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complex conjugate). The space oftwistors is endowed with a 
Hermitian quadratic form of signature (2,2) given by 

zaZ:=aJA~+1TA,(aJ·)A', A=O,I;A'=O',I'. (3.1) 

To each real number s we associate a (real) seven-dimen­
sional manifold T., namely the level surface 

Q(za,Z:) = !ZaZ: = s. (3,2) 

Here T carries the (by construction) U(2,2) invariant one­
form 

() = - (i/2) (za dZ: - Z: dZ a) 

whose exterior derivative 

- d(} = i dZ a AdZ: 

(3.3 ) 

(3.4) 

is a symplectic form on T. The Poisson brackets are thus 
{za,z;} = - ;~tp. Therestrictionm. of( - d(}) to the lev­
el surface T s defines a one-dimensional integrable foliation 
and m. descends to M" the quotient ofT. by the characteris­
tic foliation of m,. In this way M. becomes a six-dimensional 
symplectic manifold. Explicitly, the characteristic curves of 
m~ (the Hamiltonian flow of Q) are circles, 

za ..... e-ipI2za, Z: ..... lp/2Z:, 0<p<417-, (3.5) 

which identifies Ms as T JU ( 1 ). 
The unitary group U (2,2) leaves invariant the quadrat­

ic form (3.1) and thus, also, the level surfaces T s' The action 
ofU(2,2) on T. is clearly transitive. The action of the diag­
onal U ( I) subgroup ofU (2,2) on T. coincides with the flow 
( 3.5). Therefore, it is only SU (2,2) that acts on the quotient. 
In this way we obtain a transitive, symplectic action of 
SU(2,2) on (M"ms )' Souriau's moment map16 therefore 
identifies (M., ms) with a coadjoint orbit of SU(2,2), en­
dowed with its canonical symplectic structure. Ms can also 
be viewed as a U (2,2) coadjoint orbit, where s is an element 
in the center of the Lie algebra. 

For s:;of 0 the Poincare subgroup ofSU (2,2) already acts 
transitively, so that Ms is actually sumplectomorphic to the 
Poincare orbit (g O,s, + ), the space of motions of a relativis­
tic, zero-mass, helicity-s, elementary particle. 

For s = 0 the action of the Poincare subgroup on Mo is 
no longer transitive and Mo is rather the space of motions of a 
helicity-zero, mass-zero particle in compactified Minkowski 
space SlXS3. Mo is obtained from the zero-mass Poincare 
orbit (g 0.0, + ) by adding those motions that lie along the 
generators of the light cone at infinity. 

As will be clear from the parametrization below, all 
zero-mass Poincare orbits are diffeomorphic to 
R3 X (lR3 \ {O}). This is thus the topology of Ms for s:;ofO. The 
topology of Mo is, in turn, 83 X (lR3\ {O}), Indeed, 

(3.6) 

where the (1'", are the Pauli matrices, determines, for any 1T A' 

eC2
\ {a}, a unique future-pointing light-like vector (R "') 

= (R,R) (R = IRI) in Minkowski space. Conversely, those 
1T's that solve Eq. (3.6) for a given R belong to a circle. This 
is clear from the following: 

(

COS «(}/2)e-i(tfJ+4»/2) 
1TA , =.J1f 

sin«(}/2)ei(-tfJ+4»/2 . 
(3.7) 

The vector R has the polar coordinates R, (), t/J. The map 
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1T A' ..... R is thus essentially the projection of the Hopf fibering 
S3 ..... S2; its (multivalued) inverse is the Kustaanheimo-Stie-
fel14 transformation. 

Choosing1TA, to a pair (P,R) inR3 X (R3 \{0}) we can 
associate a twistor za = (aJA, 1TA,) by setting 

(3.8) 

For any choice of 1TA , (i.e., of the phase ¢/)Zabelongs to Ts 
and the whole ofTs is obtained. Thus the pairs (P,R) para­
metrize those circles in Eq. (3.5) and thus the quotient 
manifold Ms. 

For s = 0, To = TZ U~, (Tg nT~ = 0), where Tg 
= {(aJA,1TA,)eTol1TA ,:;ofO} and T~ = {(aJA,1TA,)laJA :;ofO, 

1T A' = O}, The complex projective lines in PT meeting PT>", 
corresponds to points at infinity in (compactified and com­
plexified) Minkowski space. Therefore, the orbit Mo is de­
composed as 

Mo= &0,0,+ UM~, &0,0,+ =TglU(l}, 

M~ = ~",/U(1). (3.9) 

As anticipated by the notation, tJ 0,0, + is a zero-mass, zero­
helicity Poincare orbit because the Poincare subgroup of 
SU (2,2), leaves the constraint 1T A' :;of 0 invariant. Here M~ 
describes those motions that lie along the generators of the 
light cone at infinity. The decomposition (3.9) also shows 
that Mo is symplectomorphic to T +S3, the cotangent bundle 
of the three-sphere with its zero section deleted. Indeed, R3 is 
(by stereographic projection) 83 without its north pole; the 
Poincare orbit tJo,o,+ is lR3 x (R3\{0}) =T+(83\{N}) 
andM~ =T: (83

). 

The action ofsu(2,2) ::::::0(2,4) on T is generated by the 
matrices 

r06 =~(O 
2 (1'0 

i ((1'0 
r56="2 0 

(rLK = - rKL' K,L = 0, ... ,3; 5,6). (3,10) 

[Our convention for the metric on R2
,4 is gKL = diag(g,."" 

g55' g66) = ( + 1, - 1, - 1, - 1; - 1, + 1).] The matrices 
in (3.10) leave invariant the quadratic form (3.1) and the 
symplectic form (3.4), The compoftents of the moment map 
are J KL = Z: (r KL ) tpZ p. In dynamical group notations!5 
on each orbit we have the 15 generators 

!€ijk}jk ..... J = RXP + s(RJR), 

(3.lla) 

(3.llb) 

p 2 _1 s R 
Js/ ..... K = R---P(R·P) --J +r-

2 R 2R2 

= PXJ - (RJR)r ()o (3.llc) 
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p2+ 1 s R 
J'6 --+ U = R --- P(RoP) - - J + ~-

I 2 R 2R2 

= PXJ - (RlR)r4 , (3.11d) 

J56 --+D = - RoP, 

J;o --+ V = - RoP, 

p 2 _1 ~ 
J50 --+r4 = R ---+-. 

2 2R 

(3.11e) 

(3.11f) 

(3.11g) 

In particular, r 0' r 4' and D generate an 0 (2,1) subalgebra; 
those generators that commute with r 0 are J and K, which 
form an 0 ( 4) subalgebra-the "in variance algebra" of the 
Hamiltonian r o. The remaining o( 4,2) generators are some­
times called "noninvariance" generators. 

From (3.11) we see that 

R=U-K, P= -VIR; (3.12) 

thus from the 0(2,4) relations {JKL,JMN } =gKNJLM 
+gLMJKN -gKMJKL -gLNJKM we derive the symplectic 

form tlfs of t1 O,s, + : 

tlfs = dR; AdP; + (s12R 3)EijkR; dRj AdR k. (3.13) 

Now we construct a classical dynamical system which 
has a manifest SU (2,2) symmetry. Consider, in fact, the evo­
lution space 

viis =MsXlR= {R,P,T}, l:s =tlfs +dHAdT, 
(3.14) 

where tlfs is the symplectic form of the orbit Ms and the 
Hamiltonian is 

H(R,P) = ro(R,p). (3.15) 

Let us extend the 15 generators of o( 4,2) in (3.11) to 
vii s such that they remain conserved along the trajectories: 

H-=H=ro, 

J- =J, 

K-=K, 

U;; = Ua cos T + Va sin T, a = 1,2,3,5, 

(3.16a) 

(3.16b) 

(3.16c) 

(3.16d) 

V;; = - Ua sin T + Va cos T, a = 1,2,3,5, (3.16e) 

where we have introduced the "Bacry-Gyorgyi,,24 four-vec­
tors (Ua ) = (U,D) and (Va) = (V, r 4). 

Combining (3.12) with (3.16) yields an explicit inte­
gration of the equations of motion: 

R(n = U- cos T- V- sin T- K, 

p(n = - (U- sin T + V- cos nIR(n. (3.17) 

Equations (3.17) show that the orbits are ellipses, with peri­
od t::..T = 21T. The Runge-Lenz vector K points from the ori­
gin into the center ofthe ellipse. The orbit is the intersection 
of the cone RoJ = s, with the plane normal to the vector 

(3.18 ) 

The quotient of (vii., l:.) by the characteristic foliation of 
l:. is the space of "unphysical" motions. Since every motion 
is infinite and depends regularly on the initial conditions, 
this quotient is globally symplectomorphic to the T = 0 phase 
space, which is the SU(2,2) orbit (M.,tlf.). The projection 
1T:vIis --+Ms maps a point (Ro, Po, To) into the point at T = 0 
on the unique classical motion through (Ro, Po, To). 
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The group SU(2,2) acts on vii. = M. XR by acting on 
the first factor alone, without changing T. The center of 
SU(2,2) acts on the coadjoint orbit M. trivially. Therefore, 
the Lie algebra action (3. 16) integrates into a global sym­
plectic action ofthe adjoint group ofSU(2,2), which is the 
conformal group C 1+ (3,1). 

Notice that the "unphysical" energy function H = r 0 

satisfies H;;.lsl and equality is only achieved for 
R = IRI = lsi and P = O. A particle with the initial condi­
tions IR(O) I = lsi, P(O) = 0 is in equilibrium. 

Let us consider a motion with the initial conditions 
R(O) = Ro, P(O) = 0 at T= O. Since now 
U- = (RoIRo)r4-, V- = 0, - K- = (RoIRo)ro the mo­
tion oscillates on a line segment between the turning points 
ro ± r; according to (3.17): 

R(n = (RoIRo)(ro - r; cos n, 

p(n = - [U/IR(nl]sin T. (3.19) 

Notice that 

l:XlR = {O<R<lsl, P= 0,T}, resp., 

EXlR = {R> Isl,P= O,T} (3.20) 

are the sets of the inner, resp., outer turning points. 

IV. REGULARIZATION 

The classical flow of the Tauh-NUT evolution space is 
not complete: The radial motions leave it. Simply adding 
S X R would not solve the problem since from the points of 
S X R infinitely many motions start, all with zero momen­
tum. Therefore, we regularize by relating the Tauh-NUT 
problem to the regular "unphysical" dynamical system of 
Sec. III. Let us first study the lightly bound case. 

Our guiding principle is that the "hidden" 0 ( 4 ) symme­
try generators j and k of Tauh-NUT should go into the 
manifest 0(4) symmetry generators J and K of the "un­
physical" problem. This is achieved by setting s = q (#0) 
and definingf(r,p,t) = (R,p,n, where 

R = ,j(qI4m)2 - 2h r, P = p/,j(qI4m)2 - 2h, 

T= [,j(qI4m)2 - 2h 14mh ] 

X ( - por - «qI4m)2 - 2h)t) , (4.1 ) 

and h is the Tauh-NUT Hamiltonian (1.2). The first two of 
Eqs. (4.1) ensure that/intertwines the o( 4) generators and 
the last makes f canonical: 

f*l:s =f*(tlf. + dH Adn = fl + dh Adt = (T, 

(4.2) 

where 
H = 4m{[h - (qI4m)2]1,j(qI4m)2 - 2h}. (4.3) 

Expressing through the new variables Rand P shows that H 
is the generator ro in (3.11a), which we have chosen for the 
"unphysical" Hamiltonian. 

Now f(r,p,t) --+ (R,p,n maps the positive-energy 
Tauh-NUT evolution space If + into the "unphysical" evo­
lution space vii. = M. X R. The formal inverses are 
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where q = s and the energy transforms according to 

h= [~H2_?/(4m)2]( ±H-~H2_?). (4.5) 

In order to obtain a positive sign for h, we have to choose the 
upper signs. 

Clearly, / cannot be a symplectomorphism because 
(~ +,0') is not complete, while (..4' s' l:s) is complete. In 
fact,f = /1 ~ + is not onto-but this is what we need. Denote 
Ms \l: by M?, where l: is given in (3.20). 

Proposition: Consider the dense, open subset 
..4'? = (Ms \ l:) X R of the unphysical evolution space. Then 
(i)f( ~ +,0') .... (..4'?, l:s) is a (pre) symplectic bijection and 
(ii) the inverse (4.4) extends naturally into a continuous 
mapping..4's .... ~ + U (S XR). Here/-I carries the whole 
l: X JR into the singularity S X JR. 

Proof: Since/preserves directions, it is sufficient to work 
with the absolute values r = Irl, p = Ipl, R = IRI, and 
P = I P I· Also, since T depended on t linearly, we can-and 
will-drop the time variables when studying the global 
properties ofJ 

We first show that 1m/ does not contain those points 
{O<R<.lql,P= O}, i.e., the subset l:CMs' Indeed, P= Ore­
quiresp = O. Then, by (4.1),R = Iql(r/4Imi)1/2> Iql since 
r>4Iml. Thus Im/C ..4'0. In order to prove that 1m/ fills 
..4'0, it is convenient to introduce some more points (cf. Fig. 
1): 

A'=(r=oo,p=O), A=(R=oo,P=O), 

C=(R=O,P=oo), 

and we set BO = {(r>4Iml, p = O} [cf. (2.11») and B 1 

= {(r,p(r»}, where p(r) = (lql/~4Iml)~1/r + 4m/? 
HereB ° belongs to ~ +, butB 1 does not. As we have seen, the 
interior points of the region whose boundary is 

Taub - NUT 

p : 

& scott 

+-~ __________ ~~A' 
r=4lml o 

B 

c unphysical 

p 

A 

11=151 11 

FIG. 1. The canonical transformation/in (4.1) takes the lightly-bound 
TaulrNUT evolution space 'll + symplectically onto J{o = (M, '\ 1:) X R. 
The image of the entire 1: X R by the inverse /- I is the singularity S X R. 
Similarly, the tightly-bound evolution space 'll _ is carried into 
(M, '\E::) XR and now /-I(EXR) = S XR. The unbound part'll """It is 
symplectomorphic to the full J{. Only the absolute values are shown and 
the time variables are dropped. 
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{S}U{A '}UB 1 are carried by / into ..4'0 and /(A ') = A 
j(Bo) = E,j(B I) = c. 

Let a be an arbitrary non-negative number and let us 
consider the hyperbolas K~ = {r-p = a} and Ka = {R'P 
= a}. The Tauh-NUT evolution space is clearly the bound­

ary B ° plus the union of its intersections with the hyperbolas 
K~. In turn,..4'° is E plus the union of the hyperbolas £'0. 
Each hyperbola intersects the "upper boundary" Blat exact­
ly one point, which is sent into C. Furthermore, the hyperbo­
la K~ is carried into Ka since R' P = r-p. It follows that 
/(K~ n ~ +) = Ka. Adding the bottom lineBo whose im­
age is E, we conclude that the image of/is the entire ..4'0. 

Finally,fis injective: A point (R,P) in E is the image of 
(r = 41ml (R /S)2, p = 0) from BO; otherwise it lies on a 
unique hyperbola Ka and thus has a unique preimage in 
K~ n ~ +. This proves (i) of the proposition. 

To prove (ii) of the proposition, observe that (4.4) is 
naturally defined for any point of..4'. However, for a point in 
l:XJR, H=R/2+~/2R, so that H- (H2_~)1/2=R 
since R /2 - ~ /2R is negative for R <. lsi. From (4.4) we in­
fer that 

which is in the boundary S XR = {r = 4lml,p = O}XJRand 
does not belong to ~ +. The extension/- 1 is clearly many-to­
one. Q.E.D. 

Regularizing Im/C..4's is trivial: It is sufficient to add 
those turning points that we have excluded, i.e., l: X R [cf. 
(3.20»). For Tauh-NUT this amounts to gluing together 
the branches of the radial motions. When passing to the 
space of motions, this means identifying those points that 
thus far represent different (not infinite) motions and whose 
neighborhoods are not separated. This procedure yields a 
smooth, Hausdorff topology, namely that of Ms. To summa­
rize, we present the following theorem. 

Theorem: The map f (~ + ,0') .... (..4' s' l:s) regularizes 
the Tauh-NUT problem: It intertwines the time-indepen­
dent o( 4) symmetries. Here (.AI' +, tiJ), the space of regular­
ized lightly-bound Tauh-NUT motions, is symplectomor­
phic to the SU(2,2) orbit (Ms,ms ) and hence carries a 
symplectic action of the conformal group C 1+ (3,1). 

The results in Sec. II are consequences of what we have 
found in Sec. III and the properties of the canonical transfor­
mationJ For example, it follows from (4.1) and (3.17) that 
the trajectories are ellipses in the plane perpendicular to the 
vector n in (2.7), 

n = qk + 4m{[e - (q/4m)2]1~(/4m)2 - 2e}j, (4.6) 

which is (up to normalization) the image ofN in (3.18). 
The pullbacks of the 15 generators in (3.16) by / yield 

0(4,) symmetry generators of the Tauh-NUT system: They 
coincide with the classical counterparts of the quantum op­
erators written in Ref. 4. Without regularization, this would 
only yield an o( 4,2) algebra. 

The period of a Tauh-NUT motion could be obtained as 
the image under/of the "unphysical" period 21T. This would 
yield a "generalized third Kepler law." 

Essentially the same argument works for the tightly 
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bound motions. The restriction off to E _ is injective, but not 
onto: The inverse (4.4) (with the lower sign now) maps the 
E*XR={-R>lsl, P=O, TeR} into SXR, again in a 
many-to-one manner. The space of regularized negative-en­
ergy motions is thus once more the orbit M. and therefore 
carries a symplectic action of the conformal group 
C'+ (3,1). 

Let us now consider the MIC-Zwanziger system (1.3) 
and ( 1.4). In the bound motion region 0 < e < ri 12 we apply 
the transformation similar to the one used in the Kepler 
problem,17 namely 

R = r~(f - 2h(r,p), P = p/~(f - 2h(r,p), 

(4.7) 

T= [~(f - 2h(r,p) lri1 «ri - 2h(r,p»t + ... p). 

The transformation (4.7) maps the MIC-Zwanziger 
system into the "unphysical" one and the pullback by (4.7) 
ofthe "unphysical" presymplectic form 1:s is n + dh "dt, 
where h is the Hamiltonian (1.4). Therefore, Eqs. (4.7) are 
canonical. The energy transforms as 

H= ri/~(f - 2h. (4.8) 

Since q:;60 by assumption, (4.7) can be inverted: 

r1 = [H(R;P1)/ri]Rj> P; = [riIH(Rj>P1)]Pj> 

t= (H(R1,P;)/ri)2[H(R;.P;)T-R1P;]. (4.9) 

No regularization is needed in this case because the "MIC­
Zwanziger" system is itself regular: No motion reaches the 
center. This is clear from r = (H Ilql ) (R Ilql) >R Ilql. 

The point r = 1, P = 0 (the image of R = lsi, P = 0) is 
now a regular equilibrium point. It is just where VCr) 
= ric 1 - 1/r)2 takes its minimum. It has no physical role, 

however, because the "MIC-Zwanziger" approximation to 
test particle motion in a self-dual monopole field already 
breaks down for much larger distances. 

We conclude that for the MIC-Zwanziger system, (4.7) 
is a global symplectomorphism. The interpretation of the 
symmetry generators is analogous: For example, K corre­
sponds to the rescaled Runge-Lenz vector 

k = (1/~(f - 2h)(PXj - ri(rlr», (4.10) 

etc. The trajectories are ellipses in the plane perpendicular to 

n = qk + (ri/~(f - 2h)j. (4.11) 

This proves the C '+ (3,1) dynamical symmetry for the 
MIC-Zwanziger system, with generators given in (3.11), cf. 
Refs. 12 and 15. As a secondary result, we also obtain the 
equivalence between the regularized Tauh-NUT and MIC­
Zwanziger systems, cf. Ref. 25. 

V. UNBOUND MOTIONS 

Now we give a brief account of the unbound motions. 
We start with another "unphysical" system described by JI s 

= Ms X R and Us = fiJ. + dH" dT [thus far identical to 
(3.15)], but instead choose the Hamiltonian 
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H = r 4 = HR(P2 - 1) + s2IR}. (5.1) 

All motions of this system are infinite and thus the space 
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of motions JI./Ker Us is globally symplectomorphic to the 
T= 0 phase space, which is again (Ms,fiJs )' 

The generators (3.11) of the action of the conformal 
group are extended into JI s as 

r 4- = r 4, 

J- =J, 

U- =U, 

K- = K ch T + V sh T, 

D- =Dch T+ rosh T, 

V- = K sh T + V ch T, 

ro =Dsh T+ roch T. 

(5.2a) 

(5.2b) 

(5.2c) 

(5.2d) 

(5.2e) 

(5.20 

(5.2g) 

Combing with (3.12) we deduce thatthe trajectories are 

R(T) = U(T) - K(T) 

= U - K- ch T + V- sh T, (5.3 ) 

which are hyperbolas with the center at U and perpendicular 
to 

(5.4 ) 

For the initial condition R(O) = Ro, (0 < IRoI < 00 ), 

P(O) = 0, we obtain a semi-infinite radial motion 

R(T) = (RoIRo)(roch T- r,n, 

p(T)=(Ro) 1 thT, (5.5) 
R 1- (r;/ro) (1/ch T) 

whose (unique) turning point is at R(O) = Ro. The set of 
turning points is 

aXR = {(R,P,T)IO<R < oo,P = O}. (5.6) 

Now we turn to the "physical" systems. Let us first as­
sume that we are working with the m < 0 Tauh-NUT case 
and with the energy e> (qI4m)2/2, so that the motions are 
hyperbolas. As for the bound case, nonradial motions avoid 
the singular sphere S. All radial motions hit S in finite time, 
with infinite velocity and zero momentum. Such a motion 
should be identified with the one bouncing off at the same 
moment along the same phase-space trajectory. An unbound 
motion has a single turning point, which lies in S X R. 

Let us now relate these two systems by an appropriately 
modified version of (4.1 ),j(r,p,t) = (R,P,T), with 

R = ~2h - (qI4m)2 r, P = p/~2h - (qI4m)2, 

T= ~2h - (qI4m)2 (p.r _ (2h _ (qI4m»2t). (5.7) 
-4mh 

Again, (5.7) iscanonicalandf*(fiJs +dH"dT) =ufor 

H = 4m[h - (qI4m)2]1~2h - (qI4m)2 = r 4 • (5.8) 

The same argument as for the bound motions shows that 
f is injective, but not surjective: Im( f) = JI s " (a X R). 
The formal inverse of (5.7) carries aXR into {r = 41ml, 
p = O}XR. In this case, the regularization amounts to re­
storing the turning-point set a X R. The space of regularized, 
hyperbolic Tauh-NUT motions hence becomes globally 
symplectomorphic to (M., fiJ. ). Therefore, it carries an ac­
tion of the conformal group C '+ (3,1). This is in contrast 
with what occurs for the Kepler problem, where the scat­
tered motions only have a Lie algebra symmetry, which does 
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TABLE I. Regularization and group action in various cases. 

Bound Unbound 
Regularization Group action Regularization Group action 

Tauh-NUT 

Asymptotic 
BPS 

no bound motions 

yes 

no 

not integrate into a group action. 18 Those generators com­
muting with the Hamiltonian (5.1), namely J and U, form 
an o( 3, 1) subalgebra. It is now U (rather than K) that goes 
into the rescaled Runge-Lenz vector k under f. This is not a 
surprise since (5.7) could have been obtained by requiring 
(besides canonicity) thatthe time-independent 0 ( 3, 1) alge­
bras go into each other. 

The remaining cases are analogous: For m > 0, the origi­
nal Kaluza-Klein monopole situation, the metric is every­
where regular, including at the origin.26 All motions are hy­
perbolic and none reaches the center, but rather has a 
turning point [still given by (2.11)]. The transformation 
(5.7) yields a global symplectomorphism between the phase 
space No (which is now a global chart of the space of motions 
for q,cO) and Ms. Therefore, we have a global CI+ (3,1) 
conformal symmetry. 

For a test particle in the long-range self-dual back­
ground unbound motions arise for e>q2 12. No motion 
reaches the center and thus no regularization is necessary. 
Equation ( 4.12) (with a sign change under the root) is again 
an injective symplectic mapping: Its image is, however, only 
the positive-energy part H > 0 of viis. Therefore, there is only 
a Lie algebra action, which does not integrate into a group 
action because the group trajectories leave the positive-ener­
gy part. The situation is summarized in Table I. 

VI. OTHER o(2,4)-SYMMETRIC GEODESICS 

Curiously enough, th~ same type of 0 (2,4) symmetry is 
encountered for the geodesics of some other metrics. Let us 
first consider the metric obtained from the Tauh-NUT line 
element (1.1) by "rescaling": 

dsl = {dr + redO 2 + sin2 0 dt/i)} + (d1/J + cos 0 dt/J )2. 
(1- 1/r)2 

(6.1 ) 

Here a I a1/J is a Killing vector, the Kaluza-Klein analog of an 
internal symmetry. The associated conserved quantity 
q = (1 - 1/ r) 2 ( .p + cos O~) is again an electric charge. The 
geodesics of ( 6.1) satisfy 

d 2r; r; rjVk,.2 r; 
dt2 =a~+q€ijk 7+'1 "'1' (6.2) 

where v = r and a = q2/4m. However, this is exactly the 
equation of motion one obtains for a test particle in the 
asymptotic field of a self-dual monopole whose electric 
charge is q.s Observe that (6.2) is the equation of motion for 
the MIC-Zwanziger system (1.3) and (1.4) (with theCou­
lomb coefficient replaced by a); thus it admits a C 1+ (3,1) 
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no yes 

yes yes yes 

yes no no 

conformal dynamical symmetry with an its aforementioned 
consequences. 

The metric (6.1) has the Kaluza-Klein form 

= (gij + A;A/V A;lj 
g/l" A.IV 1/V ' 

J 

(6.3) 

where g ij = b ij (i, j = 1,2,3) is the flat Euclidean metric, A; is 
a Dirac monopole vector potential, and the "Brans-Dicke" 
scalar V = (1 - 1/r)2 is the square of the asymptotic Higgs 
field of a BPS monopole: It can therefore be considered as a 
curved-space model for a test particle in the long-range self­
dual monopole field. The metric (6.1) is singular at r = 1, 
yielding a singularity in the definition of the electric charge 
q. This is consistent with the behavior ofa test particle in the 
monopole field. (Both the "MIC-Zwanziger" approxima­
tion and the definition of the electric charge are only valid for 
r> 1.) 

Yet another example was found very recently by Gib­
bons and Ruback,27 who consider a closed string (a "wind­
er") in a five-dimensional static Kaluza-Klein space-time 
gAB [A,B = 0,1,2,3,5], 

(6.4) 

(goo = 1). The string motion is governed by the Nambu­
Goto action 

1 f s---
21ra' 

ax4axB

d Id 2 - detgAB --b u u, (6.5) auG au 
where u l = 0' is periodic with period 21r since the string is 
closed and u2 = 1'. Gibbons and Ruback27 assume that the 
string moves entirely in the internal space, winding m times 
around the internal circle: More precisely, they assume that 
r = mRKO',xa = xa (1'), whereRK is the radius of the inter­
nal circle at infinity. Substituting this ansatz into (6.5) and 
integrating over s reduces the Nambu-Goto action into that 
of a relativistic particle with rest mass m = mRK la': 

_ (mRK)f s-- --
a' 

_ h dxll dx" d1' 
/lV d1' d1' ' 

(6.6) 

where the new metric h/lv is h/lv = g/lJV. If, in particular, 
the original K-K metric is that of a Kaluza-Klein monopole 
V = 1 + R k /2r, the new metric is simply 

ar = - dt
2 

+ dr. (6.7) 
1 + Rk/2r 

The geodesics correspond to the Hamiltonian 
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h = ~(p2 + Jl,2)/V and phase space symplectic structure 
dr A dp, where p = p, dx/ dt. Gibbons and Ruback27 then 
point out that the geodesics of ( 6.7) lie in the plane perpen­
dicular to the conserved angular momentum j = rXp and 
are ellipses, parabolas, or hyperbolas depending on the ener­
gy square e2 being smaller, equal, or larger than the rest-mass 
square p,2. This is explained by the conservation of a 
"Runge-Lenz" vector 

a = pXj - (r/r)(e2R k /4). (6.S) 

Furthermore, j and k = a/~ (p,2 - h 2) generate a Kepler­
type (in contrast to the "MIC-Zwanziger-type") 
0(4)/0(3,1) dynamical symmetry. The energy levels 

e2 = p,2(Sn2/p,2R 'i) (~1 + p,2R 'i/4n2 - 1) (6.9) 

(n = 1,2, ... ) are n2 degenerate. 
Our method provides an insight into the above state­

ments. One inverts the energy relation 

n = (Rk/4)(e2/~p,2 - e2). (6.10) 

Define now a transformation (R,P,T) = [(r,p,t): 

R = ~p,2 _ h 2r, P = p/~p,2 - "p, 
_ 4 ~p,2 _ h 2 [p,2 _ h 2 • ] 

T-- 2 2 t+rp . 
Rk 2p, - h h 

(6.11 ) 

It is easy to see that ( 6.11 ) is canonical, 
dRAdP + dB AdT= drAdp + dhAdt,ifthenewHamil­
tonian is 

(6.12) 

Substituting h, expressed by R and P, into (6.12), we obtain 

B = r 0 = !R (P2 + 1), (6.13 ) 

which is the SU(2,2) generator (3.11a) for helicity s = 0, 
i.e., the Hamiltonian of the geodesic flow on S3 expressed in 
stereographic coordinates. 

We conclude that [ in (6.11 ) is an (injective) symplec­
tic mapping from the "reduced string system" into the mass­
zero helicity-zero SU(2,2) orbit t!J 0= T+S3, which is16

•
18 the 

space of regularized motions of the Kepler problem. In this 
case R and P are only local coordinates obtained by stereo­
graphic projection. Now f is not onto; those points not in 
1m ([) can be used to regularize the problem along the same 
lines as before. 

It follows that the geodesics of the metric (6.7) have an 
0(4,2) conformal symmetry, with the generators (3.11) 
(fors = 0). 

VII. CONCLUSION 

In this paper we have only studied the classical mechan­
ics. Quantum aspects are found in Refs. 1-4 and could (in 
principle) be obtained from impleqlenting the canonical 
transformation (4.1) at the quantum level. 

The complications arise because of the collisions, which 
require regularization. The quantum motions actually be­
have better than the classical ones: Intuitively, the Heisen­
berg uncertainty relations make the collisions irrelevant. Re­
markably, it is for the radial motions that the "Atiyah-
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Hitchin" and "Tauh-NUT" motions differ the most. I 
The Tauh-NUT approximation is only valid for large 

distances, when the exponential temis are small with respect 
to those in r- I

• In the "real" (Atiyah-Hitchin) case the 
relative electric charge may not be conserved; the trajector­
ies may not stay in a plane, etc. I

,28 However, numerical as 
well as theoretical calculations28 show that the system still 
admits bound motions; for large angular momentum the real 
spectrum is very close to the one in the Tauh-NUT limit. 

An isospinor test particle in the long-range field of a 
monopole5,11 has similar properties. In particular, for large 
angular momentum, the "real" bound motions peak far out­
side the monopole core and the spectrum quickly converges 
to the "MIC-Zwanziger" one.29 

Finally, notice that the evolution space formalism has 
been useful in the past in understanding the symmetries of 
the Dirac monopole.30 
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Holomorphic quantum mechanics are studied from the point of view of stochastic quantization 
in Minkowski space which involves the introduction of two stochastic fields, one in the 
external space and the other in the internal space. The equilibrium condition is given by Z2 
symmetry between the external and internal fields. In the nonequilibrium case, N = 2 Wess­
Zumino quantum fields are arrived at giving rise to supersymmetry. This helps to define the 
supercharge operator Q when the Hamiltonian is given by H = Q 2 and an index theorem is 
derived for an interacting case when the superpotential is given by V(t/J) = At/Jn, t/J being 
complex with n > 2. It is found that the vacuum is degenerate and is in conformity with the 
result obtained by Jaffe, Lesniewski, and Lewenstein [Ann. Phys. 178, 313 (1987)] in the two­
dimensional N = 2 Wess-Zumino quantum field model. 

I. INTRODUCTION 

Recently Jaffe, Lesniewski, and Lewenstein1 have con­
sidered the ground state structure of the two-dimensional 
N = 1 and N = 2 Wess-Zumino quantum field models and 
have pointed out that the N = 2 quantum mechanics has 
degenerate vacua. The space of vacuum states is found to be 
bosonic and its dimension is determined by the topological 
properties of the superpotential. The physical interpretation 
of N = 2 Wess-Zumino quantum mechanics has been dis­
cussed and the feasibility of realizing holomorphic quantum 
mechanics has been pointed out with special reference to a 
spin ! particle in an external SU (2) gauge field and in the 
study of nuclear matter interacting with a pion condensate. 
Here we shall show that holomorphic quantum mechanics is 
realized in stochastic field theory also when stochastic quan­
tization is achieved in Minkowski space, introducing a doub­
let of fields corresponding to the fields in the external and 
internal space. This can also be generalized to finite tempera­
ture when the formalism of thermo field dynamics is utilized 
identifying the internal field with the fictitious tilde field in­
troduced by Takahashi and Umezawa.2 We shall study here 
the supersymmetric properties of such fields when the equi­
librium condition of Z2 symmetry between the external and 
internal field is destroyed and shall show that we can unique­
ly define a supercharge for such a system. The index theorem 
for such a system representing holomorphic quantum me­
chanics is then discussed and it is found that the space of 
vacuum states has its dimension determined by the topologi­
cal properties of the superpotential in conformity with the 
results obtained by Jaffe, Lesniewski, and Lewenstein 1 in the 
two-dimensional Wess-Zumino quantum field model. 

In a recent paper, 3 it has been pointed out that stochastic 
quantization in Minkowski space as well as its generalization 
at finite temperature leading to the formalism ofthermofield 
dynamics necessitates the introduction of a doublet of sto­
chastic fields. This doublet can be interpreted as comprising 

two fields, one corresponding to the field in the external 
space and the other corresponding to the field in the internal 
space. This internal field is also necessary to have a relativis­
tic generalization of Nelson's formalism of stochastic quan­
tization and the quantization of a Fermi field.4 The equilibri­
um condition for such a doublet of stochastic fields is given 
by the Z2 symmetry corresponding to the time reversal sym­
metry of the two fields. The nonequilibrium condition gives 
rise to supersymmetric quantum mechanics. 

Here we shall point out that the doublet of stochastic 
fields may be taken to give rise to holmorphic quantum me­
chanics in four dimensions and the break down of Z2 symme­
try gives rise to the N = 2 Wess-Zumino quantum field 
model. Moreover it is found that the two-dimenSional result 
of Jaffe et al. regarding the degeneracy of the ground state 
except when the superpotential is quadratic is also valid here 
and the index;( Qt ) is found to be identical with the degree of 
aVo where V is a polynomial of degree n>2. 

In Sec. II we shall recapitulate the main features of sto­
chastic quantization in Minkowski space and its generaliza­
tion to finite temperature utilizing the formalism of thermo­
field dynamics. In Sec. III we shall formulate holomorphic 
quantum mechanics from stochastic field theory and shall 
derive supercharge for such a system. In Sec. IV we shall 
discuss the index theorem. 

II. STOCHASTIC QUANTIZATION IN MINKOWSKI 
SPACE 

Nelson's stochastic quantization procedure is based on 
the assumption that the configuration variable q(t) is pro­
moted to a Markov process q(t).s The process q(t) is deter­
mined by two conditions; the first is the hypothesis ofuniver­
sal Brownian motion and the second is the validity of the 
Euler-Lagrange equation. In a recent paper,4 it has been 
shown that in Nelson's formalism, the relativistic general­
ization as well as the quantization of a Fermi field is achieved 
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when an anisotropy in the internal space of a particle is intro­
duced and it is taken into account that there are universal 
Brownian motions both in the external and internal space. In 
this formalism, the configuration variables are denoted as 
Q(t,So), where So is the fourth component (real) ofthe in­
ternal four-vector Sp. which is considered to be the attached 
vector to the space-time point xp.- We assume that Q(t,So) is 
a separable function and can be denoted as 

Q(t,So) = q(t)q(So)' (1) 

The process Q(t,So) is assumed to satisfy the stochastic dif­
ferential equations, 

dQi (t,So) = bi(Q(t,So),t,So)dt + dWi (t), (2) 

dQi (t,So) = b ;(Q(t,So),t,So)dSo + dWi (So), (3) 

where bi(Q(t,So),t,So) and b ;(Q(t,So),t,So) correspond to 
certain velocity fields and dWi are independent Brownian 
motions. It is assumed that dWi (t)(dWi (So» does not de­
pend on Q(s,s') for s<t (s' <So) and the expectations have 
the following values at T = ° and T =t 0: 

(dwi(t»T=O =0, 

(dWi (t)dwj (t'» T=O = ("lm)8ij8(t - t ')dt dt', 

(dwi(So»T=O = 0, 

(4) 

(5) 

(6) 

(dWi (So)dwj (S ~» T= 0 = ("I'fIJ)8ij8(So - s ~ )dSo dS~, 
(7) 

(dwi(t»T".O = 0, (8) 

(dwi(r)dwj(t'»T".O = 8ij f iw.(t-t')dtdtI, (9) 
pm n=a 

(dWi (So» T".O = 0, (10) 

(dWi(So)dwj(s~»T"'O = 8~ i eiw.(so-so)dsodS~,(l1) 
p7T- n= -a 

with Wn = 21Tnlp". 
It is easily seen that in the limit 13 ..... a Eqs. (9) and (11) 

give Eqs. (5) and (7), respectively. TheformofEqs. (9) and 
( 11 ) is dictated by the KMS condition. To make the descrip­
tion time sy~metrical in both "external" and "internal" 
time we also write 

dQi (t,so) = b r(Q(t,So),t,so)dt + dwr (t) , (12) 

dQi(t,SO) =b'r(Q(t,So),t,so)dso +dwr(So), (13) 

where dw· has the same properties as dw except that 
dwr(t)(dwr(So» are independent of Q(s,s') with s>t 
(s'>So)' 

From the stochastic differential equations considered 
here, the following moments can be derived. 

(Qi(t,SO»T=O = (Qi(t,SO»>T".O =0, 

(Qi (t,SO)Qi (t ',S ~) )T=O 

_" "i1 -w(t-t') -W'(su-SO) -----uije e 
2mw 2'fIJw' 

(t>t',So>S~), 
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(14) 

(15) 

8 a iw.(t- t') 
=-2- L _e __ _ 

pm n= -a Wrur" 
1 a eiw.(so - SO) 

X ---;=n L 2~' /:J1T- n = - a W' n 
(16) 

with w,. = 21Tnlp". 
This follows from the fact that Qi (t,So) can be written in 

a separable way qi (t)qi (So) and we can utilize the results for 
the moments of qi (t) as derived by Moore6 

(qi(t»T=O = (qi(t»T".O =0, (17) 

(t>t'), (18) 

(19) 

These results can be extended to the variable qi (So) in an 
analogous way: 

(qi(SO»T=O = (qi(SO»T".O = 0, (20) 

( ( 1:) (1:') "i1 -w'(su- SO(1: 1:') qi ~o qj ~ 0 T= 0 = 2'fIJw' uije ~o > ~ 0 , 

(21 ) 

8 a iw.(t-t') 
(qi(So)qj(s~)h".o = B~ L e

'2 
~. (22) 

7T- n=-aW + n 

Let {ei (x)} denote the complete orthonormal set of eigen­
functions of the three-dimensional Laplacian - A: 

Aei(x) = - k:ei(x). (23) 

Also we denote { ej (S) } as the set of complete orthonormal 
set of eigenfunctions of the three-dimensional. Laplacian 
- A' in terms of the variables Si 

(
, a2 a2 a2 

) 

A = aS~ + as~ + aS~ 
so that 

A'ej(s) = -1I'jej (s)· (24) 

Now we can construct a stochastic field t/J which can be 
expressed as an orthonormal expansion in terms of 
qi(t),ei(x), qj(So), ej(s) and write 

t/J(x,t,s) = Lqi(t)ei(x)qj(So)ej(s). 
iJ 

(25) 

Now from the moments of qi (t) ,qj (So) we can determine the' 
moments of t/J(x,t,S), 

(t/J(x,t,s)h=o = (t/J(X,t,S»T=O =to, 
(t/J(x,t,S)t/J(x',t ',S'» 

= _1_ f d 3k eik(x - x')g(t - t') 
(21T)3 

(26) 

® _1_3 f d 311' em(, - ")g( 1: - 1:' ) (27) 
(21T) ~o ~ 0 , 

whereg(t - t') andg(So - S ~) are given by Eqs. (18) and 
(21) for T= OandbyEqs. (19) and (22) for T=tO. Substi­
tuting these relations, we find 
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(28) 

Here (A,B) denotes a Euclidean product and the units 
have been chosen to be fz = m = ff> = 1. In the case of T #0, 
we find 

(t/J(x,t,S)t/J(x',t ',S '» T#O 

=_I __ I_Jd 3ke1k(X-X') i e;w"(t-t') 
(21T)3{3m n= -a w2 + W~ 
X_l_3_1_Jd3Trekr(~-~') i iW"(So -sb) 

(21T) {3ff> n=-a WI2+~ 
(29) 

where ff> corresponds to the quantity in the internal space 
analogous to the mass of the system. 

Now from the relations (21) and (27) we note that for 
So = S b = 0 and integrating over the internal space variable 
S the correlation function just reduces to that of the scalar 
field in Euclidean space, 

(t/J(x,t)t/J(x',t'» T= 0 

(31) 

In a similar way for T #0, we find from (22) and (27) con­
sidering one particular mode n = 1, 

(t/J(x,t)t/J(x',t'» T= 0 

1 Jd 4kei(k,(X-X'» 
= -- 21T8(ko - WI ) 

(21T)4 (k,k) + m 2 

normalizing {3 = ff> = m = 1. 

o 
o 

(32) 

This is the Euclidean Markov field result which has 
been obtained from Nelson's real time formalism of Brow­
nian motion and in this sense gives rise to the equivalence of 
these two formalisms as advocated by Guerra and Ruggiro.7 

Now if we introduce an anisotropic feature of the inter­
nal space-time corresponding to the variable S,,' we can ob­
tain the fermionic propagator in Euclidean space-time. To 
this end, we introduce the anisotropy by having two opposite 
orientations of the internal variable S" (and hence of 
1T" = i818S,,) and take into account that each orientation 
denotes a separate field and the two opposite orientations 
depict two separate fields having two internal helicities cor­
responding to particle and antiparticle configurations. From 
Eq. (28), we note that it is effectively a correlation function 
in eight-dimensional space-time, four dimensional in the ex­
ternal space-time variable and four dimensional in the inter­
nal space-time variable. To make it an effective four-dimen­
sional expression in the external space-time variable we may 
take into account that k(x) is an implicit function of 1T(S). 

For simplicity and dimensional reasons we take the form 
k 2 = (k ',1T), m 2 = m'ff>, where (k ',1T) is the Euclidean 

product and each componen!. of k is given by k; = .JkT 1T;. So 
from the new field variable t/J(x,t,S) where this mapping is 
taken into account, we find from Eq. (31) the correlation 
function for T = 0, 

Now taking into account that i[iT and - i[iT corre­
spond to two different internal helicity states and denote two 
separate fields and particle and antiparticle states, for a sin­
gle particle state with a specific internal helicity, we should 

take - i[iT (or i[iT) as a vanishing term. Taking 

- i[iT = 0, we see that the expression (33) reduces to the 
form 

- - 1 J ei(k,(x - x'» 
(t/J(x,t,S)t/J(x',t',S'»T=O =--4 d 4k,(34) 

(21T) i..{k"'I + m 

where we have chosen the unit m = ff> = 1. 
Now we can choose a matrix Y"k" + m = /.; + m with 

two degenerate eigenvalues ± i{P + m, which can be di­
agonalized by a unitary matrix U: 

o U (35) 

o 
i..{k"'I + m 

o 
o 

- i..{k"'I + m 

o 

o ) 

-i;+m 
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Thus we just get the fermionic propagator in Euclidean 
space-time 

<~(x,t,s)~(x' ,t' ,s'» T= 0 

__ 1_ f d 4k ei(k(x - x') . (36) 
- (217")4 l + m 

This shows that when a direction vector giving rise to an 
internal helicity in an anisotropic microlocal space-time is 
taken into account, we can have the quantized fermionic 
field from a Brownian motion process. This result will be 
valid for T =10 also. Indeed, in a similar way we find from Eq. 
(3~) for a particular mode n = 1, 

<~(x,t,s)~(x',t ',s'» T=O 

(37) 

normalizing P = ",n = m = 1. 
From this analysis, it is noted that the statistics of the 

particle depend on the internal space-time variable Sl" That 
is, when S appears as a direction vector with a fixed orienta­
tion in th:structure of the particle so that it gives rise to two 
opposite internal helicities which correspond to particle and 
antiparticle states, we get a Fermi field. Indeed, the fermion 
number is associated with this internal helicity. Again when 
there is no anisotropy in the internal space so that there is no 
manifestation of S in the external space we get a boson. 
Now the effect of temperature should definitely affect the 
internal motion and as such it may happen that at high tem­
perature the anisotropic feature of the internal space will be 
destroyed and the fermion will be transformed into a boson. 
This is, a massive extended! body depicting a fermion can 
have such a phase transition. However, this does not mean 
that fermion number conservation will be violated as Lor­
entz invariance and the equilibrium condition will not allow 
such a process to occur. The only effect of such a phase tran­
sition will be that a thermal pair of opposite statistics will 
emerge as zero energy modes at the critical temperature pos­
sibly leading to a nonequilibrium state corresponding to a 
supersymmetric phase.8 Indeed the stochastic nonlocal field 
rfJ(xl"SI') which is assumed to satisfy the condition of sep­
arability rfJ(xl"SI') = rfJ(xl' )rfJ(SI') can be written as a ther­
mal doublet (:~;:~) as the thermal effect on SI' may be such 
that it may alter the statistics of the particle. However, 
though x and S represent two different spaces, yet as the 
external motion may be thought to be a manifestation of the 
internal motion, a mapping of x and S is possible. In that case 
x may be represented in the functional form x (S) and the 
simplest form of the mapping can be taken to be x = CS, 
where c is a suitable constant. In view of this, there should be 
a mapping of rfJ(x) and rfJ(S) also. We can assume that 
rfJ(S) =Al(x) = ~t (x), where A is a suitable parameter. 
Thus the thermal doublet (~l~~ ) can be written as (~~~~) ). 
This helps us to consider that there exists a conjugate Hil~rt 
space iI associated with the Hilbert space H ~uch that H is 
the set H with the scalar multiplication A,S -+AS, where AeG 
and SeH and with scalar product (S,7J) -+ ( S,7J) with S,7JeH 
and (S,7J) -+ (S,7J) is the scalar product of H. In effect If. is 
the Hilbert space associated with the external space and His 
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the conjugate Hilbert space associated with the internal 
space. 

Now we write the bosonic field function in terms of the 
thermal doublets 

In the case of fermions, we have to introduce the aniso­
tropic feature in the internal space so that it can generate two 
internal helicities, corresponding to particle and antiparti­
cle, and in view of this we can obtain the Dirac propagator 
when the external space-time variable xl' is considered to be 
a function of the internal space-time variable SI" But it may 
be remarked that we may do the opposite also, i.e., the inter­
nal space-time variable SI' may be taken to be a function of 
the external space-time variable xl" and we may obtain the 
Dirac propagator in the internal variable SI' and conjugate 
17" when an anisotropy is introduced in its attached vector 
xl'. That is, we can write Dirac functions r/J(x) and r/J(S) in 
Hilbert spaces H and iI, respectively, in a symmetric way. It 
may be noted that when at high temperature the anisotropy 
of the internal S space is destroyed, the spinorial characteris­
tic of the field r/J(x ) which is acquired through the anisotro-I' . 
py of the attached vector SI' will be changed to a bosomc one, 
but the spinorial characteristic of the conjugate field r/J(S I' ) 
which is acquired through the anisotropy of the attached 
vector x will not be altered and as such we will have a I' 
thermal doublet of opposite statistics. This indicates that at 
that critical temperature, we will have a nonequilibrium 
state corresponding to a supersymmetric phase and as such 
fermion number conservation will not be violated due to 
such a phase transition.9 This is similar to the features of Z2 
symmetry which arises in the finite temperature formalism 
of quantum field theory in Minkowski space as proposed by 
Niemi and Semenoff.8 Indeed, the field function in the inter­
nal space here corresponds to the ghost field introduced by 
these authors and the corresponding Z2 symmetry is mani­
fested in the anisotropic feature of the internal space leading 
to the generation of two opposite internal helicities. As ar­
gued by Niemi and Semenoff, the broken Z2 symmetry leads 
to a nonelquilibrium state. Our present formalism also leads 
to.a similar situation when at the critical temperature, the 
internal helicity is destroyed leading to a nonequilibrium 
state. Now introducing the mapping r/J(S) = A,7j,t(x) 

= iip(x) we can write the Fermi field r/J(x) in terms of the 
thermal doublets as follows. 
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This doubling of field may be suitably represented 
through the complexification of space-time variables. In­
deed, if we write the doublet as 

(42) 

it implies that the space-time coordinate is given by 
z = x + is' As we have constructed the stochastic fields 
from the stochastic variables q(t) and q(So) we can write for 
the configuration variable in complexified space-time 

q(zo) = q(t) + iq(So)' (43) 

From this we have the correlations at T = 0 

(q(zo» = (q(t» + i(q(So» = 0, (44) 

(q(zo)q(zo'» = (q( t + iSo)q( t' + is ~ » 

= (q(t)q(t'» - (q(So)q(s~» 

+ i[ (q(t)q(s ~» + (q(So)q(t'»]· 
(45) 

Now introducing the mapping Aq(t) = q(So), we find 

(q(zo)q(z~ » = (q(t)q(t'»[ I - A 2 + 2iA ]. (46) 

Noting that 

(q(t)q(t'» = (1i/.2mw)e- W(I- 1'), (47) 

we finally have 

(q(zo)q(z~» = (1i/2mw)e - W(I- I') [1 + A 2 - 2iA ]. 

(48) 

Now we can choose 

(1 - A 2)e- W(t-I') = cos w(t - t '), 

Ue- w(I-I') = sin w(t- t'), 
(49) 

which implies that A is a suitable function of the dimension­
less variable w (t - t') with the constraint 

(1 +A 2)e- w(t-I') = 1. (50) 

So we can write 

(q(zo)q(z~» = (1i/2mw)eiw(I-I'). (51) 

As we have constructed the stochastic fields from the 
configuration variables through the relations 
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¢J(x) = Lei (X)qi (t), 
i 

¢J(s) = Lei (s)qj (So), 
j 

(40) 

(41) 

(52) 

where ei (x) [ej (s)] are the set of orthonormal eigenfunc­
tions of the Laplacian 

- aei(x) = k;ei(x), 

- a'e/s) = 1Tjei (s). 
(53) 

We can now derive the two-point correlation using the map­
ping x = cs, k = (1!c)17', and Aq(t) = q(So) for the com­
plex field 

¢J(z) = ¢J(x) + i¢J(S) = ¢J(x) + iA¢Jt(x) 

= ¢JR (x) + i¢J/(x). 

Indeed, we find 
(¢J(z)¢J(z» = «¢JR (x) + i¢Jg(X»(QR (x') + i¢J/(x'») 

= (¢JR (X)¢JR (x'» - (¢J/(X)¢J/(X'» 

+ i[ (¢JR (X)¢JI (x'» + (¢JI (X)¢JR (x'»]. 
(54) 

Now using relation ¢J/(X) = A¢Jt(X), we find from Eq. (54) 

(q(z)¢J(z'» = (¢J(X)¢J'(X'»[ 1 - A 2 + 2iA ]. (55) 

At T = 0, (¢J(x )¢Jt (x'» is given by 

(¢J(x)¢Jt(x') ) 

= -1-fd3k eik(X-X')(q(t)q(t'» 
(217')3 

=_I_fd3keik(X-X')~-W(t-t')(Ii= m = 1). 
(217')3 2w 

(56) 
Now utilizing the relations (49) and (51), we can finally 
write from Eq. (55) 

(¢J(z)¢J(z') ) 

= _1_ f d 3k e,k(x - X')~iW(t-I') 
(217')3 2w 

=_'_ d 4k_e ___ _ . f ik(x-x) 

(217')4 k~ _ w2 + i€ 
(57) 

When we write ¢J(z) = ¢JR (x) + i¢J/(x) as the doublet, we 
find from Eqs. (54) and (57) 

sin w(t - t ')/2w ] 

- cos w(t - t ')/2w 
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Thus we get stochastic quantization in Minkowski space at T = o. This is identical with the result obtained in the path integral 
formulation at T = 0 excepting the matrix [~ _ 1 0]. The matrix corresponds to reflection invariance representing Z2 
symmetry, which is the criterion for equilibrium condition. When this Z2 symmetry is destroyed, we have nonequilibrium 
statistical mechanics and it corresponds to supersymmetric quantum mechanics.9 This is in conformity with the idea that the 
current velocity in the internal space is related to the osmotic velocity in the external space which helps us to interpret the 
Heisenberg uncertainty relation from the inherent stochastic nature of the internal space-time variable. 10 

This analysis can be generalized to the fermionic case also. Indeed writing 

t/J(z) =t/J(x) +it/J(t) =t/J(x) +iA.t/Jt(x) =t/JR(X) +it/Jl(X) 

and taking the doublet 

t/J(z) = (t/J(X») = (t/JR (X») 
t/J(t) t/Jl(X) 

we will have correlations at T = 0 

(59) 

These results can now be generalized to finite temperature using the formalism of thermo field dynamics when we identify 
t/J(t) = t/Jl(X) = ~t(x) and t/J(t) = t/JI(X) = iii/ex). 
From these we can write 

(T(t/J(X)t/Jt(y») = (O(,8)IT(:t~=D(t/Jt(Y)'~(Y»IO(,8» 
=J d

4
p e-Ip(X-ylV (IPI"B)(1/(P2- m2+ iO) 0 )vt(IPI"B) 

(217")4 B 0 _ 1/(p2 _ m2 _ iO) B 

(8(xo - Yo) [t/J(x),t/Jt(y)]) = (~ ~)i8(XO - yO)a(x - y) = - l{~ ~)aret (X - y), 

(Tt/J(x)~(y» = (0(,8) [ TC~t~=D(~(Y), - i¢(y)ro)] 10(,8» = i J (~~4e - iP(X-YlVF(p"B) 

(
1/(1 - m + iO) 0 ) t 

X 0 1/(1 _ m _ iO) V F(P"B), 

(8(xo - .f){t/J(x),~(y)}) = (~ ~)(irprp + m)i8(xo - yO)a(x - y) = - (~ ~);Sret (X - y). 

The matrices VB and VF are the coefficients of Bogoliubov transformations given by 

(
COSh8(IPI,,8) Sin8(lpl,,8») ( 1/~l-e pe(pl e-Pe(plI21 

VB(lpl,,B) = sinh 8(lpl,,8) cosh 8(lpl,,8) = rpe(Pll2lb _ e PE(pl ..------;;::;= 

V
F

( ,,8) = ( cosv( Ipl),,8) - E( pO) sin v( Ipl,,8») 
P E( Po) sin v( Ipl,,8) cos v( Ipl,,8) 

- E( pO)e-Pe(PlI21 

1/~1 + e- Pe( p) 

with £", = a", -a", 
E(p) = ~p2 + m2

, E( Po) = 8( Po) - 8( - Po). = ~(i/2)r)1p - m)t/J - ¢« - iI2)r/Jp - m)¢ 

(60) 

(61) 

(62) 

(63) 

(64) 

(65) 

(66) 

This suggests that in the case of free charged scalar field and 
free Dirac spinor field t/J, the total Lagrangians are given by 

=~(~ rpap-m)t/J. (68) 

£", = a", -li", 

= ap t/J+ap t/J - m2t/Jt t/J - ap~+ap~ + m2~2t/J2 

= apt/J+ (~ _~) apt/J - m2t/J+ (~ _~) t/J, (67) 
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It is noted that the vacuum is now temperature depen­
dent and satisfies the relation 

(H - H) 10( ,8» = 0 

and the total Hamiltonian is given by 

H=H-H. 
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III. STOCHASTIC FIELD THEORY, HOLOMORPHIC 
QUANTUM MECHANICS, AND SUPERSYMMETRY 

From our above analysis, we note that we can construct 
holomorphic quantum mechanics when for the configura­
tion variable we take the complexified space-time z", = x", 
+ i5",. In fact, we can now depict the fields 4>± (z) = 4>(x) 
± i4>(5) and can consider that 4> ± is holomorphic in z. Now 

defining the operators ' 

a=~(~-i~) a=~(~+i~) 
2ax a5' 2ax a5 

we can write for a free field, the Hamiltonian 

H = - 2aa + m24>-4>+ . (71) 

Identifying 4>(5) as ~+ (x) as discussed in the previous sec­
tion, we note that the Hamiltonian H corresponds to the 
system offree fields where the Lagrangian is given by L¢> in 

Eq. (67). Now if we identify 4>± (z) = '+ iJi av we can 
construct two operators Q + and Q _ such that 

(72) 

and the Hamiltonian H given by Eq. (71) can be expressed 
as 

H = Tr Q+Q_ (m = 1) , 

where 

(73) 

(74) 

Since Q+Q_ is the sum of two positive operators, it has no 
zero mode. Besides, we note that this maintains the equilibri­
um condition of the Z2 symmetry between the external and 
internal fields as the expression is invariant under the trans­
formations, 4>(x) - - 4>( 5), x-+ - 5· 

However, from expression (72), we note that we can 
construct another operator Q _ Q + which is given by 

( ° - i(a2V») 
Q-Q+ = Q+Q- + i(a2V)* ° . (75) 

This expression for Q _ Q + contains nondiagonal elements 
and the presence of the term a 2 Vbreaks the reflection invar­
iance 4>(x) -+ - 4>(5), x- - 5· Thus the system describes 
the nonequilibrium condition and corresponds to supersym­
metric quantum mechanics. Indeed, we can now define an 
operator Q such that 

Q= (0 Q_) 
Q+ ° (76) 

and we can construct the Hamiltonian Hs given by 

(77) 

Evidently, the system given by the Hamiltonian Hs breaks 
down the Z2 symmetry of reflection invariance of the exter­
nal and internal fields. In fact, due to the presence of the 
operator Q_Q+ in Hs , it possesses zero modes as has been 
explicitly shown by Jaffe et al. I Thus we can define the super­
charge Q such that the Hamiltonian is given by Hs = Q 2 
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when the stochastic field theory involving external and inter­
nal fields is described in terms of hoi om orphic quantum me­
chanics. 

Moreover, following the procedure of Jaffe et al., I we 
can show that this formalism of holomorphic quantum me­
chanics for stochastic field theory gives rise to N = 2 Wess­
Zumino quantum mechanics. In fact, we can also choose for 
the Hamiltonian Hs the following expression: 

HS=Q2= -aa+lavI2 

- ¢I"I a2v - ¢2"2(a 2V)*, (78) 

where 

"I = ~(Yo - iY3)' ¢1 = ~(Yl + iY2)' 
"2 = ~(YI - iY2)' ¢2 = !(Yo + iY3)' (79) 

with 

Yo = (0/ oT), Yj = (0. iUj ), j = 1,2,3. (80) 
oj -IUj 0· 

These fermionic degrees offreedom satisfy the following an­
ticommutation relations at equal time: 

{¢1'''2} = {¢2'''1} = 1, 

{,,;,,) = {¢;'¢j} = o. 
We can now define two conserved charges given by 

Ql = i¢la - i¢2(aV)*, 

Q2 = i¢a + i"l av, 
so that the supercharge Q is given by 

(81) 

(82) 

(83) 

The Lagrangian for such a system can be taken to bel 

L = 1·ij2 + H¢ltP2 + ¢2tPl) + ¢1"1 a2 v 
(84) 

where V= V(z) is a polynomial of degree n. The action 
f L dt is invariant under the following infinitesimal transfor­
mations: 

t3z = ¢IE, lTz = E"2' 8"1 = - (aV)*E, 
8¢1 = lzE, 8"2 + iZE, 8¢2 = (aV)E. 

(85) 

Thus we find that we can derive N = 2 Wess-Zumino 
quantum mechanics from stochastic fields in a complexified 
space-time. The supersymmetric quantum mechanics arises 
through the introduction of nondiagonal elements which 
breaks down the reflection invariance between the external 
and internal fields which is necessary for equilibrium condi­
tion. Also we note that through this formalism of holomor­
phic quantum mechanics we can derive a supercharge Q 
such that the supersymmetric Hamiltonian is given by 
H s = Q 2. This links up the inherent supersymmeric feature 
in the stochastic quantization procedure as we first pointed 
out by Parisi and Sourlas 11 with the conventional formalism 
of supersymmetric quantum mechanics. 

IV. STOCHASTIC FIELD THEORY AND INDEX 
THEOREM 

Jaffe et al. 1 have shown that the N = 2 Wess-Zumino 
quantum mechanics has degenerate vacua. The space of 
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vacuum states is bosonic and its dimension is determined by 
the topological properties of the superpotential. The same 
result can be derived from the stochastic field theoretical 
formalism using the formalism of thermofield dynamics. 

The index theorem for a free field theory has been de­
rived from the stochastic field theory using the formalism of 
thermofield dynamics in a recent paper.9 Here we shall gen­
eralize this result in the presence of a superpotential. In the 
free field case, we can define two Klein operators 

() = ( - 1)F,O = ( - 1)F, (86) 

where 0 = J()J, Jbeing an involution operator with the prop­
erty J 2 = 1. As discussed in Sec. II, the tilde function is asso­
ciated with the internal field and the total Hamiltonian of the 
system is given by 

if=H -if, 

where 

iI=JHJ. (87) 

In this formalism, the vacuum is temperature dependent and 
we have the relations 

if 10(13» = 0 
(A) = (O(/3)IA 10(11». (88) 

Now it is noted that for the Klein operators () and 0 we have 

() 10Un) = 0 10(/3» =1= 10(13», 
010(13» = (}OIO(P» = 10(13». (89) 

We can define an index for the ground state given by 

i(Q+) =Tr( -1)Fe - PH lp_a, (90) 

where F = F + F, if = H - iI. This can also written as 

(91) 

As we have mentioned in Sec. II, the thermodynamic 
equilibrium is maintained as long as Z2 symmetry (time re­
versal symmetry) is operative in non tilde and tilde objects 
corresponding to the external and internal space. That is, the 
orientation in the external space should be opposite to that in 
the internal space. However, this formalism of stochastic 
field theory suggests that there may exist a critical tempera­
ture Tc when the orientation of the internal space is changed 
leading to a nonequilibrium state. Indeed for the thermal 
doublet of a bosonic field </J (x) = (~m ) = (~~t~) ) it may so 
happen that the isotropic feature of the bosonic field 
</J(s) = ~t (x) is lost at this critical temperture and an inter­
nal helicity is generated for this field giving rise to an aniso­
tropic feature leading to the generation of a fermion. Thus 
beyond this temperature Tc we have the supersymmetric fea­
ture due to the breakdown of the Z2 symmetry which will 
then give rise to thermal doublets of different statistics which 
will appear as zero energy modes as suggested by Matsu­
moto et al. 12 

Now to find out the index theorem in the supersymme­
tric phase we note that the eqUilibrium condition demands 

(O(P)I()OIO(P» = 1 = ft5(F+hdF. (92) 

In the nonsupersymmetric case, for a bosonic thermal doub­
let F = F = O. However, for a supersymmetric phase, we 
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may have F = ± 1 depending on the orientation of the inter­
nal helicity developed leading to an anisotropy in the inter­
nal space. Thus we will have the index 

i( Q+) = (0(/3) 1810(13» p_a 

= ft5(F± 1)dF= 1. (93) 

However, in an interacting case with a superpotential given 
by 

n 

V(</J)!m</J2 + Iaj ¢/ 
j=3 

with complex </J, an =1=0 n;;;.3 as we have identified 
</J ± = += iY2 aVo we note that we will have (n - 1) images 
of such thermal doublets. So for an interacting case, with 
superpotential V( </J) = /l.</Jn we will have 

i(Q+) = (n-1)(O(P)I()OIO(/3»P_a 

= (n -1) ft5(F± l)dF= n -1 = degaV. 

this is identical with the result obtained by Jaffe et al. 1 in the 
two-dimensional N = 2 Wess-Zumino field model and we 
can conclude that the holomorphic quantum mechanics 
constructred from the stochastic field theory will also lead to 
a degenerate vacua in the interacing case when the superpo­
tential is given by V( </J) = /l.</Jn n > 2. 

v. DISCUSSION 

We have shown here that the relativistic generalization 
of Nelson's stochastic mechanics as well as stochastic quan­
tization in Minkowski space helps us to construct holomor­
phic quantum mechanics when in the nonequilibrium condi­
tion we can realize N = 2 Wess-Zumino quantum 
mechanics and supersymmetry. In the equilibrium condi­
tion, we get stochastic quantization in Minkowski space and 
we have Z2 symmetry between the external and internal 
fields which form a doublet. When this reflection invariance 
is broken, we get supersymmetric quantum mechanics 
which imply that supersymmetry gets broken in a multiply 
connected space. 

The inherent supersymmeric feature in stochastic quan­
tization leading to Euclidean quantum field theory from a 
Langevin equation incorporating a fictitious time was first 
pointed out by Parisi and Sourlas. 1I However, it was not 
clear whether this supersymmeric feature which involves in­
variance of the action under certain supersymmetric trans­
formations is equivalent to the conventional supersymme­
tric quantum mechanics which defines a supercharge Q such 
that the Hamiltonian is given by H = Q 2. Indeed in that case 
the action involves fermionic variables only through the de­
terminant which arises in the averaging procedure and hence 
the invariance of the action under supersymmetric transfor­
mation in this case does not imply the existence of the super­
charge Q as well as the existence of the grading operator r 
such that H = Q 2 and rQ + Qr = O. However, here we have 
pointed out that stochastic quantization in Minkowski space 
introduces two stochastic fields, one in the external space 
and the other in the internal space; in the nonequilibrium 
case we can construct holomorphic quantum mechanics out 
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of these two fields, which becomes equivalent to N = 2 
Wess-Zumino quantum mechanics and gives rise to the su­
percharge operator. 

Finally, it may be pointed out that this formalism helps 
us to study finite temperature field theory as well as finite 
temperature supersymmetry through the methodology of 
thermofield dynamics when we identify the tilde field with 
the stochastic field in the internal space. Indeed in a recent 
paper,9 we have pointed out that there exists a critical tem­
perature Tc below in which supersymmetry is broken and 
the zero energy mode is given by a thermal doublet of oppo­
site statistics and in the case of a free field theory the index 
i(Q+) =n+ -n_,wheren± =dimkernelQ± isfoundto 
be 1. It may take the value ~ also when the zero energy mode 
is given by a thermal doublet of the same fermionic statis­
tics.9 Here we have pointed out that in the interacting case 
when the potential is given by V( tP) = AtPn ,tP being a com­
plex scalar field, and n > 2, the vacuum is degenerate and the 
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index takes the value n - 1 = deg avo This is identical with 
the result obtained by Jaffe et al. in the two-dimensional 
Wess-Zumino quantum field model. 
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The nonlinear realizations of N-extended graded anti-de-Sittersupersymmetry with three 
. different ways of splitting into linearly and nonlinearly realized sectors of OSP (N,4) 
superalgebra are considered. Nonlinear transformation law's are derived for Goldstone 
fermions and Goldstone scalars that describe a spontaneously broken sector in extended anti­
de-Sitter supersymmetry. Cartan forms on the supercosets are derived and corresponding 
nonlinear Lagrangians for Goldstone fermions and scalars in anti-de-Sitter space are 
constructed. The contraction ofOSP (2N,4) supersymmetry to Poincare supersymmetry with 
central changes is discussed. 

I. INTRODUCTION 

A geometric description of spontaneously broken sym­
metries and supersymmetries may be achieved within the 
framework of nonlinear realizations. In the late sixties it was 
realized that the interactions of Goldstone fields can be geo­
metrized by introducing the framework of u models and 
nonlinear realizations of internal symmetries. 1,2 On the oth­
er hand, it is interesting to recall that the first field-theoretic 
example of supersymmetry3,4 was described by nonlinear re­
alizations on the supercoset parametrized by spin-! fields 
called Goldstone fermions. 

In Ref. 4 Volkov and Akulov considered the following 
supercoset: 

( 1.1) 

where SP N is the N-extended super-Poincare group and 
U (N) is the internal symmetry group. The supercoset K N is 
parametrized by the four space-time translations and 4N an­
ticommuting fermionic degrees offreedom describing super­
translations. These 4N fermionic degrees of freedom de­
scribe the fermionic Goldstone fields. On the supercoset 
( 1.1), which is a homogeneous space, the supergroup SP N is 
realized nonlinearly, only with its subgroup 0 (3,1) xU (N) 
realized in a linear way. Using standard procedures in non­
linear realizations theoryl.3,s Volkov and Akulov introduced 
Cartan forms on K N and by taking their fourfold outer prod­
uct they obtained the invariants under the transformations 
of the supergroup SP N' These invariants can be interpreted 
as the Lagrangians of the interacting Goldstone fields. Later 
the nonlinear realizations of N-extended Poincare super­
group SPN with! N(N - 1) central charges were also con­
sidered.6

,7 In Ref. 6 Ferrara did show that their coupling to 
N-extended supergravity provides the simultaneous occur­
ance of Higgs and super-Higgs effects. In this case with a 
maximal number of central charges the whole internal sym­
metry subgroup U(N) is spontaneously broken, and the su­
percoset under consideration has the following form: 

KN = SPN/0(3,l). ( 1.2) 

In all the cases discussed above the Goldstone fields are con­
ventional D = 4 Minkowski fermionic fields. 

In order to have a better analogy with nonlinear realiza-

tion ofinternal symmetry group, it is appropriate to consider 
anti-de-Sitter extended supersymmetry described by semi­
simple supergroup OSP(N,4). Zumino,8 by applying the 
standard theory of nonlinear realizations to supergroup 
OSP ( 1,4), derived the nonlinear transformation laws for the 
four-component Goldstone-Majorana spinor implemented 
by spontaneous breaking of N == 1 global supersymmetry in 
anti-de-Sitter space. In the anti-de-Sitter case the action for 
the Goldstone field contains the mass term proportional to 
the inverse of the anti-de-Sitter radius R. There exists also 
the formulation of anti-de-Sitter supersymmetry with super­
field realization on the superspace described by the superco­
set OSP( 1,4 )/SO(3,1 ).9,10 Keckl1 has constructed the cor­
responding superspace and has studied superfields, which 
were reduced to it~ irreducible parts. Further, Ivanov and 
Sorinlo did show explicitly how to construct OSP(1,4) in­
variants from superfields and used them for the construction 
of the nonlinear Lagrangian densities. Recently, Azcaraga 
and Lukierski l2 proposed a superfield extension of the Vol­
kov-Akulov method of constructing nonlinear realizations 
of extended Poincare supergroup. Their formulation de­
scribes partial supersymmetry breaking (N = 1 supersym­
metry remaining unbroken), but it was shown that the mod­
el contain ghosts. 

It has been shown that there is a connection between the 
superfield approach to the supersymmetry and nonlinear re­
alization of the Volkov-Akulov type. Ivanov and Kapustni­
kov in Ref. 13 and Sammuel and Wess in Ref. 14 gave the 
formulas that describe the transition from nonlinear realiza­
tions to the linear ones, with Gold~one fermions described 
by constrained linear Goldstone superfield. 

In this paper we provide a group theoretical framework 
for the model invariant under extended anti-de-Sitter super­
symmetry with spontaneously broken generators by consid­
ering nonlinear realizations of OSP (N,4) supergroup on the 
following supercosets: 

(a) OSP(N,4)/SO(3,1) XO(N); 
(b) OSP(N,4)/SO(3,1); 
(c) OSP(N,4)/SO(3,l) XU(N). 

We are reminded of the nonlinear transformation laws 
and deduce the nonlinear Lagrangians constructed from 
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Cartan forms. After the discussion of basic formulas of non­
linear realizations (Sec. II) we investigate the supercoset a 
(Sec. III). The formalism describes the generalization of the 
Zumino model8 to arbitrary N. Using Cartan forms we ob­
tain a nonlinear Lagrangian of N interacting Goldstone fer­
mions. In S·ec. IV the nonlinear realization on a product of 
symmetric supercosets is discussed. Such a formalism is ap­
plied to the second supercoset b, with the spontaneously 
broken sector described . by N Goldstone fermions and 
~ N(N - 1) scalar Goldstone fields. We propose the nonlin­
ear Lagrangian which describes the interactions of all these 
Goldstone fields in anti-de-Sitter space. The last supercoset c 
describes the nonlinear realization of the OSP (2N,4) super­
group. By contraction to the OSP(2N,4) superalgebra, pro­
posed by Lukierski and Rytel,15 one can obtain the nonlinear 
realization of a N-extended Poincare supergroup with 
~ N(N - 1) central charges, given by Ferrara in Ref. 6. In 
Sec. V we construct the nonlinear realization on supercoset c 
and perform the contraction to SP:V. 

II. BASIC FORMULAS DESCRIBING NONLINEAR 
REALIZATIONS ON COSET SPACES 

A. Global nonlinear realization on symmetric spaces 

Following Ref. 16 we consider the Lie algebra (superal-
"'-

gebra) G in the form 
"'- A A 

G=HfBS 

and 

(2.1 ) 

where Hl are the generators of subalgebra H called symmet­
ric subalgebra. We denote the group elements by 

A ."'-

s= exp s'S= exp sJ~, 
A A 

h = expJ.·H = expJ.lHj' (2.2) 

where sj and J.j are the Lie group parameters. By S we d~ 
note coordinates, parametrizing the coset, and subalgebra H 
generates the subgroup H. If H is a connected subgroup and 
if the relations (2.1) hold, then the coset G / H is an example 
of a symmetric space. 17 

Every element g of a Lie group G can be written in the 
form 

g=s'h, 

where s belongs to the coset and h belongs to H. 
We now consider the transformation of s under the ac­

tion of the group element g. We evaluate first the case in 
.A 

which go = hoEllo. Then go = exp J. 'Hj and we have 

S'=go$A(go-l) =ho$A(ho-l) =hoSho-1 
.A. .A .A .A 

= exp(J. 'Hj )exp(s' Sj )exp(J. 'Hj) = exps 1/ Sj' 

In this case the transformation is linear and has the form 

(2.3) 

where B J = J. kb ~l and b ~j are given by the relations (2~ 1.>. 
Consider now the case when goeS, so we have go = exp S~Sj' 
Then, becauseA(s) = s-t, we have 

1 .A. fA .A 

S' = go$A (go- ) = exp S ~Sj exp S Sj exp S ~Sj' 
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Using the Baker-Haussdorff formula we find 

exp 2s,j8j = exp [ 2S~8j + 2s'8 - ~ [[s'S,so'S ],s'S] 

+ higher commutators 

+ O(so8) 2 + ... ] 
A 

=exp2s'J~· 

So finally using the relations (2.1) we obtain 

2t5s i = 2s b - ~ c~b ims ms is b + higher-order terms. 
(2.4) 

We see that the transformation is nonlinear. 

B. Nonlinear realization on a homogenous space 
A 

In many cases of physical interests the algebra G has not 
the form given by (2.1) and hence the formula (2.4) are not 
valid. However in infinitesimal case under some assump­
tions it is possible to derive the formulas of nonlinear group 
action on a coset space. 

We assume now that G has the form 

(2.5) 

As in the previous case every element g of the group G can be 
represented uniquely in the following way7.16: 

A 

g = s·h = [exp s'S ]h; hEll. 

The action of the group element go on the coset is the follow­
ing: 

goeS'S = es,sh l. (2.6) 

Now h I is a function of go and S. As before, if go = hoEll we 
have 

h s,s - h s,sh - Ih - s,sh oe - oe 0 0 - e I' 
AA A 

The condition [H,s] CSimplies 
s,s _ h s,sh - I e - oe 0 

and the transformation law of S is linear. 
Let us consider the case in which goES, i.e., go = es·s. 

Equation (2.6), in general, is not solvable, but if go is 
infinitesimal then hi is also infinitesimal, and using the nota­
tion introduced in Appendix A, Eq. (2.6) can be written in 
the form 

..... A ..... A A 

rNI\So8- [(1-es'S )/(s'S)] l\t5s'S=hl-l, 

g = 1 + s'8; sb is infinitesimal. (2.7) 

On the right-ha~d side of the equation we have an element of 
the subalgebra H. This implies that the coefficients multiply­
ing the generators 8 i on the left-hand side ofEq. (2.7) must 
be equal to zero. In such a way we are able to find t5si and 
h - 1. The condition that the coefficients of generators 8 i 
must be equal to zero gives the following relation: 

t5s i = sb -! [c~b imSbSiS m + SiSbSmd~dim] 
+ higher-order terms. 

We see that if we put dim = 0 we obtain in the case of sym­
metric coset space the formula (2.4). 
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C. Cartan forms on the coset space 

Cartan form w is the Lie algebra valued form defined on 
the cosetS 

.... ..... '" A 

W = e-s,sdes's =WS + v'H, 

wherep/(si,ds i) and vj(s i,dsi) are the ordinary differen­
tial one-forms. The transformation law of w is easy to derive 
if go = ho = H. We get 

Wi = hoe- s,sh o-Ihodes,sh 0- 1 = hoWh 0- 1• (2.8) 

On the other hand, if go = eS;S one can check that 

or more explicitly 

wS = hy.t:Sh 1- \ 

(2.9) 

v'H = hlv'Hh I-I + hi dh I-I. (2.10) 

So we see that w, p/, and yi transform in both cases by the 
element of subgroup H, but in the second case hi depends 
nonlinearly on the coset coordinates S i and on the param­
eters of g. Because G acts on the form w by the transforma­
tion belonging to H, therefore every H-invariant constructed 
with p/ will be also invariant under entire group G. In these 
invariants the coordinates S i will transform linearly under 
action of subgroup H and nonlinearly under remaining 
group elements. If H is the Lorentz group such invariants 
can be used as nonlinear physical Lagrangina densities. This 
will be discussed in next paragraphs. 

III. NONLINEAR REALIZATION OF SUPERGROUP 
OSP (N,4) ON THE COSET OSP (N,4)/SO(3,1) XO(N) 

A. Algebraic considerations 

The superlattice OSP(N,4) has the form IS 

{Q~,Q~} = ~V(1""'f)a/JPa + m[~V(a"b'fr)a/JMab 
+ ('fr)a/J TV]; 

[Pa,Q~] = ~ im(YaYs)Q~; [Mab,Q~] = i(~abQi)a; 

[T"Q~] = iJ~(QUa; 
- i[ Mab,Mcd ] = 7JacMbd + 7JbdMac 

+ 7JadMcb + 7JbcMdQ; 

[Pa,Pb] = - im2Mab; 

- i[ Mab,Pc] = 7JacPb - 7JbcPa; 

[Tv,Tkd =~ik1jl +~jlTik -~i/1jk -8jlTi/; 

[Tv,Pa] = [Tv,Mab] = 0; m = lIR, 

(3.1) 

where ij = 1· .. N, and {3,a = 1· . ·4 (we use the four-com­
ponent Majorana formalism), so we have 4N real super­
charges Q~. Besides O"ab = 1 [Ya,Yb]' where a,b = 0,1,2,3 
and 1"" are the real Dirac matrices satisfying 

{Ya, Yb} = 27Jab; 7Jab = diag( - 1,1,1,1) 

and TV = - Tji = J?T' describe O(N) generators expand­
ed in the N X N matrix basis denoted by J ~ = - J ~ 
[r = 1·· 'N(N - 1 )/2]. The Lie algebra O(N) describe the 
internal symmetry group. Real supercharges extend the Lie 
algebra SO(3,2) XO(N) to superalgebra OSP(N,4). The 
extension is possible because the fundamental spinor repre-
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sentation of SO(3,2) Lie algebra is a real four-component 
Majorana spinor. One can introduce five 4 X 4 real matrices 
r A' which describe real spinor representation of the 
SO(3,2) Clifford algebra as follows: 

{r Atr B} = 27JAB' 

7JAB = diag( - 1,1,1,1, - 1); A,B = 0, ... ,4; 

and choose r A = (Ya,YS)' 
Zumino has derived the nonlinear realization for 

OSP(1,4) supergroup.s It is easy to see that SO(3,2) Lie 
algebra is a symmetric subalgebra ofOSP ( 1,4). On the other 
hand, SO(3,1) Lie algebra is a symmetric subalgebra of 
SO(3,2) Lie algebra [but is not symmetric subalgebra of 
OSP (1,4) !]. Thus according to the general scheme 2a, 
OSP(1,4)/SO(3,2) and SO(3,2)/SO(3,1) are symmetric 
spaces. This implies the following parametrization of the co­
sets: 

exp(OQ)exp( - ixapa), (3.2) 

where () is the Grassmann parameter describing fermionic 
coset OSP ( 1,4) ISO (3,2) and x a are the parameters describ­
ing the coset SO(3,2)1S0(3,l) (Ref. 8). We shall proceed 
similarly for general OSP(N,4) case. Now the reducible Lie 
algebra SO(3,2) XO(N) form the symmetric subalgebra of 
OSP (N,4 ). Generalizing the previous particular OSP ( 1,4) 
case we can write 

__ 0_SP_(:.,..N.....:...,4....:..)_ = OSP(N,4) X SO(3,2) . (3.3) 
SO(3,1) XO(N) SO(3,2) XO(N) SO(3,1) 

So the supercoset (3.3) is the product of two symmetric 
spaces and has the following parametrization: 

exp(OiQi)exp( - ixapa). (3.4) 

Now we can apply the general scheme from Sec. II B. 

B. Nonlinear realization for arbitrary N 

Following Sec. II B we shall study only infinitesimal 
transformations. Because the considered coset is the product 
of two cosets, the supergroup OSP(N,4) acts in the follow­
ing way: 

goEOSP(N,4); h1ESO(3,2) XO(N); 

11ESO(3,1)xO(N) =L. 

(3.5) 

(3.6) 

First let us study the case when the group element go belongs 
to subgroup L. So we have 

go = 10 = 1 +! iyabMab +!A VTv' 

where yab and A v are infinitesimal parameters. The formula 
(2.7) gives 

li'iQi I liiQil - I 
e = oe 0 

(3.7) 
- ix,apo 1 - iXaPal - I 

e = oe 0 

The transformation law of () i and x a is linear 

(},i = () i_A kl (J) (T')im«() ) _ 1 yab(O" () i) 
a a ,. kl m a:2 ab a 

X,d = expB iyabMab ]~Xc. 
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Next case is given by go = ho = exp( - it"Pa ),t"is infinitesi­
mal. TheSO(3,2) XO(N) Lie algebra is symmetric subalge­
bra ofOSP(N,4) superalgebra, so we have 

e8"Q' = hoe
8,Q'h 0- I 

and this implies 

(J ~I = (J ~ +! mSa (r"r(J I) a' 

The next step gives 

(3.8) 

hoe - ix"Pa = e - ixaPa/1 (t",xa). (3.9) 

Here we should deal with the nonlinear realization of 
SO(3,2) group on the coset SO(3,2)/SO(3,1). This exam­
ple of nonlinear realization is treated in Ref. 8. The transfor­
mation law of xa under the action of group element 
ho = exp - is" Pa is nonlinear and inhomogenous 

xa = t" + (~ coth~ - 1) (t" - x bsbxalx2) . 
(3.10) 

Now we shall consider the case go = exp aIQ I. We should 
useEqs. (3.5) and (3.6). Equation (3.6) has the same form 
as (3.9), but now ho depends on Grassmann parameters (JI 
and a l

• Therefore xa has the same form given by (3.10), but 
now t" is the function of (J ~ and a~. If a l are infinitesimal 
then using (3.5) one can write 

-8,Q' QI8'Q, 8,Qi£ 8,Qi e a l e - e ue 

= - is(lJ l,al)Pa + ! iv"b( (J l,al)Mab 

+).ij«(JI,al)Tij =h,(al,(JI). (3.11) 

As it was mentioned in Sec. II B we can obtain from this 
equation the transformation law of (J I and the parameters 
t"( (J I,al), v"b( (J I,al) , and). iI( (J I,ai ). 

The result is the following (see Appendix B): 

I I k=4N+I (_I)k+'22k 01 
{j(J = a + L ,B2k_ID2k, (3.12) 

k= I (2k). 

where B2k _ I are the Bernoulli numbers and 

01 (.) k [ 3D I -(J I(J + 2 -(J I(J 0 m 
02k = 1m - o~ I mO~ 

o· - / + O;k-2(J fJ/], (3.13) 

where g~ = a l
• This the recurrent formula. We have also 

t" = 01 r"r1J~ ; V ab = mOlo"b1J I; ). ij = mO 11J t (3.14) 

and 

I _ k=4N+ I [2(2"-' - 1) B 
1JI - k~O (2k)! 2k 

_ (- 1) k + 122k B ] 0 I 

(2k)! 2k-1 O~' 
(3.15 ) 

In fact the sums in (3.12) and (3.15) are not infinite. The 
term g;k when 2k>4N + 1 will vanish identically due to the 
anticommutating properties of the spinor components (see 
also Appendix B). For example, in the (OSP 1,4) case we 
have only gi and g~. Ifwe shall makes now the use of (3.14) 
and (3.10) we get the transformation law of xa under action 
of go = exp alQ I. 
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C. Cartan form on the supereos.t OSP(N,4)/SO(3,1) 
XO(N) 

According to the general scheme in Sec. III C, the Car­
tan form is given by the formula 

ixaPa -8f'J'd ( 8iQ' -ix"Pa ) {J)=e e e e 

= {J)IQ i - if.LaPa + ! iv"bMab + pijTij' 

where (J) I' f.L a, v"b, and {jij are the forms that depends on xa, (J I, 
dxa, dfJ i. Using the method given in Appendix B we can find 
the components of Cartan form (J). The result is the follow­
ing: 

(iji = ch! ~fJ2 - (lIR)sh! ~Xa1J2ra rs, 

f.La = t" + (ch ~ _ 1) (t" + xb:~xa) 

+ __ 2_sh~tabxb 
~ 

+ [dxa + e:= -1) ( dxa + Xbd;b
Xb

)] , 

pij=mOirh, 

Vab = ~ m2
x

2 
sh ~ xa~ 

x2 

m2 

- 2 - ch ~ tcax x b 
x2 c , 

where 

t" = iO/r"r1J;; tab = imOlo"b1J;; 

k=4N+ I 1 O' 

1Ji= k~O (2k+l)!O;!!; 

k=4N+ I 1 O' 

1J; = - k~O (2k + 2)! O;!!; 

g ~k is defined by (3.13) and now g ~ = d(J i. 
- The generators Pa belong to the coset OSP(N,4)1 

SO(3,1) XO(N) and therefore the transformation law for 
the one-form f.La has the form 

f.L,apa = f.LaPa' 

where ESO(3,1) XO(N) and it is defined by the relation 

h - ix"Pa - ix'apa( (J i a I) Ie = e ,x ,a 

and h I is determined by relations (3.14). 
The forms f.La transform only under SO (3,1) part of L, 

because of [Tij'Pa] = O. We deal here with the local 
SO(3,1) transformations, because L, = LI«(Ji,xa,al) de­
pends on the parameters x a that we interpret as the space­
time coordinates in anti-de-Sitter space.8 We shall interpret 
fJ i as the spinor fields (J I(Xa ), with the following transforma­
tion law: 

afJ i = {j(J i + {jxa a a (J i. 

Following Zumin08 we define 

f.L0f.Llf.L2f.L3 = - a2.!L' dxo dx'dr d~. 

It is easy to check that 

f.L'0f.L,If.L'2f.L'3 = det (L I )f.L0f.L 1f.L2f.L3, 
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where ,u,a = (ll)a b,ub and i1ESO(3, 1). We see thatthe prod­
uct ,u0,ul,u2,u3 is invariant under the SO(3,1) group and 
therefore is invariant under the entire OSP(N,4) super­
group. 

The first terms of,ua are the following: 

,ua = dx2 + 1- iOjr"r d() j + imOjo"b d() j Xb 
2 

1 - r ~b 2 - r .-. - - m().~,a d()'() ()b - - m()·~,a d()' ()'(). 4! ,f 4!,f , 

+ 1. mOjr"r()kdOk()j + O(m2). 
4! 

This gives the following action density: 

.!£' = - ~ det({): + 1- iOjr"r ab() i + imOjo"C{)a() jxc 
a 2 

m- • .5 r;,' 2 - • .5 In' - 4! ()jr", a6() () '()I - 4! m()jr", a6() () '()I 

+ 3m O.~,a • .5() ka 0 () j + O(m2») . 4! ,f' 6 k 

The first few terms are the following: 

1 1.- • .5 . • -. b . 
.!£' = - 2 - -npjr", aa'll - lmt/lo" ab t/lxa 

a 2 

+ ; ~jr" r ab tfI~jf/J1 - ~! m~jr"r aa tfltf!f/JI 

3m • .5.1.1< -. 2 + Tlf/Jjr", 'I' aaf/Jdl- oem ), 

where tf! are correctly normalized Goldstone fermion fields 
tf! = (lla)()j, [aJ = 1/r. Using the Lee-Gursey transfor­
mation18,19 

and setting y,a = r"r we obtain finally 

+ m X y' all j;Bt + 2m X y'all III ill 
4! ' I 4!' I 

- 3m XIl ky' all Il j _1- a.y' all jm~,ax 
k!' E 4' f' a 

The Lagrangian density describes interacting Goldstone fer­
mions in anti-de-Sitter space. The mass term is proportional 
to m = 1/ R, where R is the anti-de-Sitter radius. The La­
grangian L = - 1/ a2 S .!£' dx is nonlinear and has global 
OSP(N,4) supersymmetry. In a particular OSP(l,4) case 
all formulas describing the transformation laws and the 
components of Cartan form have the simplest form given by 
Zumino.8 Our Lagrangian density differs in principle from 
the Zumino one only by the summation over index j, and 
extends the results of Refs. 3 and 4 for N-extended Poincare 
supergroup to the case of nonvanishing anti-de-Sitter radius 
R. 
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IV. NONLINEAR REALIZATION ON PRODUCT OF 
SYMMETRIC SUPERCOSETS APPLIED TO THE 
SUPERCOSET OSP(N,4)/SO(3,1) 

A. Algebraic considerations 

The superalgebra OSP(N,4) contains the generators 
Qi, TV, Pa, Mab , where i, = L.N, a, b = 0 ... 3. Using the 
commutation relation (3.1) one can check that the genera­
tors Q I and TV, where ij = L.N - I, belong to the symmet­
ric subalgebra OSP(N:""I,4) and QN, TNi, i= L.N-I, 
are generators of the supercoset OSP (N,4)/OSP (N - 1,4). 
Using (3.1) we have 

{ N '} JIl' Q a,Q P = m( YoYs)aJJ T '. 

Expanding TV in matrix basis J ~ and defining 

TNk=J~kTr= Tk; J~r= I = _J~N; 
we obtain 

[Tk,QN] =iQk; [Tk,Qi] = _{)~QN; 

[QN,Mab] =iUabQ N; [Pa,QN] =i!mYaYsQN; 

{Q~,Qn = (r"Y»aJJPQ + m(o"bY>r)aJJMab' 

Commutation relations for Qi, TV are the same as in (3.1) 
but now ij = L.N - 1. We see therefore that using notation 
from Sec. II A, 

we get the relation (2.1), with the supercoset OSP(N,4)1 
OSPN-4/0SP(N - 1,4) as a symmetric space. Thesuperco­
set OSP(N,4)/SO(3,1) can be represented as the following 
product of symmetric supercosets 

K = OSP(N,4) = OSP(N,4) X OSP(N - 1,4) 
SO(:t,1) OSP(N - 1,4) OSP(N - 2,4) 

X'" X OSP(2,4) X OSP(1,4) X SO(3,2) 
OSP(1,4) SO(3,2) SO(3,1) 

=KN><;KN_ 1 X"'K1 XKo' 

At the end of this product we have the supercoset 

OSP(1,4) X SO(3,2) 
SO(3,2) SO(3,1) 

considered by Zumino.8 Supercoset OSP(K,4)1 
OSP(K - 1,4) can be parametrized in the following way 
(l<k<N): 

Kk =exp«()kQk+skiT~); i= I"'k-I 

(without summation over k !). 

B. Nonlinear realization on the product of symmetric 
supercosets 

Let us consider the action of an arbitrary element 
g(p ) eOsP(N,4 ) (p denotes parameters of g) on the super­
coset K. According to the general scheme from Sec. II C we 
have (also see Ref. 20) 
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g(p)KN = KNgN_ 1 (p,(}N'SNI), 

gN-1KN_ 1 = K N- 1gN_ 2 (p,(}N,(}N-I,SNI,SN-II), (4.1) 

ixQp ix:ap ... 
goe- "=e- "l(p,(}',slJ,xa), ij= I···N, 

wheregk belongs to OSP(K,4) andlbelongstoSO(3,1) but 
depends on p and the parameters of entire coset. Thus the 
right transformation on K is represented by the left local 
SO(3,1) transformation 1= l(p,xa,(j ,tJ), ij = 1·· ·N. In 
Sec. III C it was shown that the components of the Cartan 
form (d, 

(d = K -I dK = wlQ I + (do TO - i(dapa + ~ i(dabMab , 

transform under the action of an arbitrary element 
geOSP(N,4) by an element leSO(3,1) which depends on 
parameters p of g and on parameters of the supercoset, i.e., 
/ = l(p,xa,(} I,S 0), 

(d' = l(d/-I + I dl- I. (4.2) 

Therefore any expression constructed wit!t Wi, (dii, (da, (dab 
which is invariant under local SO( 3, 1) transformations, will 
also be invariant globally under the entire supergroup 
OSP (N,4). The first equation in (4.1) describes the nonlin­
ear realization of OSP(N,4) on the coset OSP(N,4)/ 
OSP(N - 1,4), the second one, describes the nonlinear real­
ization of OSP(N-I,4) on the supercoset OSP(N-I,4)/ 
OSP(N-2,4), and so on. We see that to find the nonlinear 
realization of OSP(N,4) on the supercoset OSP(N,4)/ 
SO (3,1) it is necessary to use N times, step by step, the non­
linear realization of OSP (K,4) on the coset OSP (K,4 ) / 
OSO(K - 1,4) I<.K<.N, accordingly with formula (4.1). 
The formulas for nonlinear realization of OSP (K,4) are the 
following. (All expressions not defined here are given 
in Appendix D.) If goeOSP(K,4) , i.e., 
g = 1 + a-1Qi +A. ijTo - is"Pa + ~pabMab' 
ij = 1 ... k - 1 and go is infinitesimal then 

~O k = islal + ~ ms"O kra rs - !pabO kUab' 

~s kl = - ma l(} k + A. ijs f, 
and the transformation is linear. On the other hand, if 
go = akQ k + A. klT~;A. kl,ak are infinitesimal, we get 

00 ( l)n+122n 
~Ok = a k + ~ - B Y (ak,A. ki) 

n~1 (2n)! 2n n , 

00 ( 1) n + 122n 
~Ski=A.ki+ L - B2nZ~i(ak,A.kl). 

n= 1 (2n)! 

The element gk _ 1 has the following form: 

gk-I =piQi + VABMAB +pik-1Tik _ 1 

whereA,B=0···4, ij= I···K -1, and 

- i = 00 (1 + ( - 1) n + 2)22n - 2 B 
/3 n~4 (2n)! 2n-l 

X:t (ak,A. ki), 

AB 00 (1 + ( - 1)n-2)22n - 2 
V = n~1 (2n)! B2n _ 1 

XJ~B(ak,A. ki), 
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C.Cartanform 
The components of the Cartan form (d are the following: 

(dkQk = ch(! mx)<A1 + C1)Qk - (1/x)(~mx) 

xxa<A1 + C1)rarsQ, 

(dkiTki = (B~ + D~ ) Tki ; i = I···K - 1, 

where AI, Ci , B~, D ~ are defined by the recurrent formulas 

and 

AI = <AI + 1 + CI + I 

-I - - I 
- [m/(1 +XI>]() (A I+ 1+ CI+ I)()' 

CI = -i[B}+1 +D}+I +(Bf+1 +Df+I)Slp] 

X [1/(1 +XI)]OI, 

B~ = [m/(l +xl>]OI(AI+ I + CI+ .>s~, 

sl = 1, i> I~B~ =0, 

D~TI+ Ii = D~+ I TI+ Ii 

and 

+ [1/(1 +xl )] [- (Bl+ I +Dl+ I ) 

+ (Bf+1 +Df+t>sfTlp 

+ (Bf+1 +Df+1 )slpTI + 1i 

- (Bl+ I +Dl+1)xITI+ w 

XI = im OI(}1 + sf Sip' P = 1·· ·1- 1. 

For I> k we set 

Ck+1 =0; D~+I =0; 

A k+ 1 =Ek+ 1 +Hk+ 1 +Ok+l; 

B~+I =E~+I +F~+I +G~+ .. 
where 

EI_ 1 =EI _ 1 (EI +HI + 01); 

HI_I = HI_I (EtB + GtB + HtB); 
- - - -k k - k kl 
GI _ 1 = GI _ I (EI +EI +FI +HI + G k + G k ); 

El_I =El_I (EI + G~+H~+F~); 
i,k= 1···K -1; 

F~_I =Ft'<G~I+El +F~ +FO; 

F~~ I = Ft ,<Gjn + Fjn); 

i,k = 1··· k - 2, m,n = 1·· . k - 2. 

We use these recurrent formulas up to I = K - 1 and finally 
we put 

Ek = Ek (uP); Hk = Hk (UAb); 

Fk =Fk(Ukl ); Gk = Gk(Uk,Ukl ). 

The remaining components are the following: 
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1 1 (J)ABMAB = - 2 ch(mx) (xCxatabMbc +-
x mx 

Xsh(mx) ~xatb4Mab' 
x 

(J)a = 2tabxb sh(mx) + t b4(8b + ch(mx) - 1) 
mx 

where 

tAB = EtB + HtB + GtB, 

Et!!., =Et!!.dEf+Ff+G~ +H~), 

Ht!!., = Ht!!., (EtB + HtB + GtB), 

Gt!!., = Gtf(EZ + HZ + GZ + FZr + EZr + GZr
). 

Finally we put 

EtB = EtB(Ur
); HtB(Ur

); 

Explicit forms of above formulas are given in Appendix D. 
As it was mentioned above the supergroup OPS(N,4) acts 
on the components (J)a and (J)ij of the Cartan form by a trans­
formation belonging to SO(3,1) subgroup [see formula 
( 4.2) ]. We shall construct, using these components of (J), the 
SO( 3, 1) invariants, which will be also OSP(N,4) invariants. 
More precisely, the forms (J)a transform as follows: 

(J),apa = 1,(J)aPal,-'; I,ESO(3,1), 

and because we have [Mab,T/j] = 0, (J)/j are the Lorentz sca­
lars 

Let us write the first few terms of (J)a and (J)/j: 

(J)a = dxa - !O iy"r d(Ji - imOiU'b d(J i Xb 

+ 1(si2 + 2imx)Oiy"r d(Ji 

+ !O'y"r (J2 + ... , 
(J)/j = ds/j + s mi ds i". + S mj ds ~ + m(J i d(Jj 

+ 2im2 d(J k (J i(Jj(Jk + .... 

The forms (J)/j can be written 

= _~_+smi_~_+smj~+ ... ( 
af: /j af: mj af: i ) 

ax!-' ax" ax" 

where e; are the vierbeins defined by the relation 
a a b g,.v = e,.eav = "'abe,.ev' 

g,.v are the metrios in anti-de-Sitter space, and "'ab are in 
Minkowski space. 

We define the scalar product 

«(J)a,(J)b) = "'ab' 
Using (4.3) we get 
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(4.3) 

(J)I) (J).. = _~_ + f: mtaf: + f: mJ __ + ... ( .. ) (af:/j . j .aS~ ) 
, I) ax!-' ~ ~ m ~ ax!-' 

i' af: i' af:m 
= as v 2i... gPv + as v Smi _~_j gPv + .... 

ax!-' ax v ax" ax v 
(4.4) 

The formula (4.4) defines a Lorentz scalar. We see that the 
following action: 

L = f ",0",'",2",3(1 + «(J)/j,(J)/j» 

=fd4x(_~- as,/j as/j gPV 
a2 ax!-' axV 

- ~ i~ ir·ak - im.L1. i + ... ) + .. , 2 I I , 

where s,/j= (1/a)s/j and ~i= (1/a) 

X (1 + !my"xa + ... )(J~, is Lorentz invariant and there­
fore OSP(N,4) invariant.21 

This is a nonlinear action describing N-Goldstone fer­
mions interacting with N(N - 1 )/2 Goldstone scalar fields 
s/j(x) in anti-de-Sitter space. The action is globally 
OSP(N,4) supersymmetric. If we take the OSP(K,4) sub­
groupK <N then all fields (J i(X) and s/j(x), where I> K will 
transform linearly under OSP(K,4) and remaining fields 
with index I<X in a nonlinear way. 

D. Nonlinear realization of OSP(2,4) supergroup on the 
supereoset OSP(2,4)/OSP(1,4) 

The supergroup OSP(2,4) can be parametrized in the 
following way: 

exp (02Q2 + snexp(O'Q ')exp - ixaPalo, 

where 10 is an element of SO(3,1) group. The supercoset 
parametrized by the exponential 

exp(02Q2 + sn (4.5) 

is a symmetric space. The transformation laws ofthe param­
eters (J 2 and S belonging to the supercoset (4.5) are the fol­
lowing: 

(i) goEOSP(1,4), 

i.e., go = 1 + a'Q' - ;saPa + !iv"bMab 

and go is infinitesimal then 

80 2 = ira' + !ms"02y"r - !v"b02uab , 

8s = - m"ii'(J2. 

M. Mozrzymas 

(4.6) 

227 



                                                                                                                                    

Both parameters transform in a linear way. 
(ii) g = 1 + crQ 2 + AT, f} 2,A. are infinitesimal then 

'" ( 1)n+122n 
88 2 =a2 + ~ -/I. B Y 

n~1 (2n)! 2n -I n' 

'" (_1)n+122n 
8S=A + n~1 (2n)! Bn_Izn, 

where 

Yn = {s2n(i2 + FmS2u - 2[ - S(n - 1)2 + !(n - 2)28 2f}2(.f 

+ n + !(n -1)8 2r,4f}2(i2p4] - m2s2u-4[](2n - 4)( - S(n - 1)2 + !(n _ 2)2(8 2f}2)2a2 

_AS 2n - 18 2 + im(n _1)s 2U- 30(2n - 3)A8 28 28 2}, 

Zn = {ims2k-182a2 + men - 1)s2u- 30(2n - 3)8 2f} 28 2a 2 

_ imAs 2n - 38 2f}2 _ m2A(n _ 1)s 2u-4[](2n _ 4)(8 2f}2)2}. 

The function 0 (k) is defined in the following way: 

O(k) = {I, if k>:O, 
0, if k<O. 

The Cartan form on the coset OSP(2,4)/SO(3,1) parametrized by the exponentials 

exp(8 2Q2 + snexp(8 I Q)exp( - ixaPa) 

take the form 

(J)a = dxa + (Sh~ _ 1)(dxa _ x
b 

dXb X
a
) + 2t abXb sh~ 

mx x2 mx 

+ I' [8~ - (ch~ _ 1) (8~ _ xb:~xa)] , 

(J)ab = _ ~ ch~xa dxb + ~ ch~tabxcxb _ sh(mx) (m) xasb, 
~ ~ X 

(J) = z( 1 - !im8 1f} 1+ lm2(8 1f} 1)2 - m8 1 Y) + im28 I rolf} I, 

-2 h ( 1. ) -p 1 h ( 1 ) a-p (J) = C 2: mx 2 + ~ s 2: mx x 2ra rs, 

where 

and 

~ =!( 1 + im8 1f) I) (8 lyayS df) I) + xf}2yayS df}2 + Af} lyaySf} 2 

+ B8 1yayS df}2 - (1 + iim8 1f) lyaySV), 

tab = m(1 + im8 1f} 1)8 1o"b df} 1+ mx8 2o"b df}2 + mA8 l o"bf}2 + mB8 1o"b df} I 

- m( 1 + !m8 If} 1)8 Io"bv, 

A = X( - 2imf} I df}2 _ 4m8 1 df} 28 If} I), 

B = X(2imf} 2 df} 1+ 4m8 2f} 18 If} I), 

x= f 1 [S2k-2kimS2k-20[2k-2]], 
k=O (2k + 2)! 

- '" 1 -
V= k~O (2k+2)! Vk 

= f 1 [iS2k+ I d8 2 + S2k ds 82 

k=O (2k + 2)! 

+ 3mS2k-IO(2k - 1)k8 2 df} 28 2 

+ 2ms2k-IO(2k - l)k8 2f}2 d8 2 

228 J. Math. Phys., Vol. 31, No.1, January 1990 M. Mozrzymas 228 



                                                                                                                                    

+ im2s- 2k - 30(2k - 3)(k - 1)2(! - 5) (1J2f}2)2df} 2 

- mks-2k-20(2k - 2)dS- lj2f}2f} 2], 

00 1 
Z=dS-+ k~1 (2k+ 1) Zk, 

- 2 00 1 -
Y=df} + k~1 (2k+ 1) Yk· 

Here Yk and Zk are given by (4.7) provided that we put a2 = df}2 and finally 

P2 = Y +...!.. im7J I y7J I+...!.. m27J Iy7J If} 17J 1+ iZ7J 1_ ...!..zm7J If} 17J I, 
2 u! 3! 

P = d7J 1+ ...!..im7J I df} If} 1+ ...!..im7J If} I d7J I_...!.. m2(7J If} 1)2 df} I + V 
I 3 3 4! 

_ im7J IV7J 1+ im7J l f} fy _ ~m(7J If} 1)2y +X(2im7J I df}2 7J2 _ 2im7J 1f}2 df}2 
4! 

_ 4m27J If} 17J2f} I df}2 + 4m27J If} 17J I df}2 ( 2). 

V. NONLINEAR REALIZATION OF OSP (2N,4) 
SUPERGROUP ON THE COSET OSP (2N,4)! 
SO (3,1)XU(N) 

A. Algebraic considerations 

Following Lukierski and Rytel15 we introduce for OSP 
(2N,4) the following pair of N-component Majorana spinor: 

Q I± -...!..(QI ±rQI+ N ). i=I"'N a-
2 

a Sa, . 

The internal symmetry algebra 0 (2N) has the symmetric 
subalgebra U (N). The generators of this subalgebra are Ali 
and Si, so any elment of the group U(N) can be written as 

exp(oi}A Ii + tijSli), i,j = 1 ... N; 

and the coset O(2N)IU(N) can be described as 

, exp(uliXi} + vii yij), ij = 1 ... N, 

where JCi and yiJ are the generators of the coset [see Ap­
pendix C-nonlinear realization of 0 (2N)]. 

The commutation relations for internal symmetry sec­
tor O(2N), i.e., for Ali' Sli' Xli' Yli are given in Appendix 
C. Anticommutation relations for Q I ± are the following ls: 

{Q~+,Q~+} 
r;,IJ AP [AP X Ii Ii] = u rrafJPc + m rap + (rors)afJY , (5.1) 

{Q~+,Q~-} 

= m8Ii(a"b'fr)apMab + m['fafJA Ii + ('fr)afJSi)], 

(5.2) 
{Q~-,Q~-} 

= 8ij(ya'f)afJPa + m [~pXli - ('fr)afJ ylJ]. (5.3) 

The covariance relations for supercharges are as follows: 

[Mab,QI±] = ia"bQI±; [Pa,Q I±] = i!m(rars) QI±; 
(5.4a) 

[A"QI±] =iJ~QJ±; [Sv,QI±] =iJ~Qi±; 

where AI} = A,J~. Additionally we have 
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(5.4b) 

[X"QI±] =J~QH; [Y"QI±] =J~rQH. (5.5) 

The OSP (2N,4) superalgebra admits Z4 grading,ls.22 with 
the following four sectors: 

Lo LI L2 L3 

Mab Q~+ Pa Q~-

Aii FXiJ 

Sii yii 

which satisfy the grading relation 

[Lm,L,,] CLm+", n + m mod 4. 

This gives the possibility of performing the following rescal­
inglS: 

We see that the relations (5.1), (5.3), and (5.4) are un­
changed, but the relations (5.2) and (5.5) are rescaled, and 
we get 

[Xr,QI±]_"'!"; [Yr,QI±]_"'!", (5.6) 
r r 

[ .+ .] 1 [ 1 Q' ;QJ- --;:-; Pa,Pb] -"1' 
For the internal symmetry group we obtain 

[Xii,xk/] _ ~ U(N); [Xii,yk/] - ~ U(N); 

[yii,yk/] _...!.. U(N). r 

(5.7) 

(5.8) 

From (5.7) we see that in the contraction limit r-+ 00 sectors 
(! + and (! - decouple, so there remain only three sectors 
Lo,L I,L2. The relation (5.8) implies that yti and,XIi become 
Abelian generators, and describes central charges, because 
they commute with all generators of superalgebra. 

The generators Pa , in the contraction limit also became 
Abelian. So setting r-+ 00 we obtain N-extended Poincare 
superalgebra, with N(N - 1) central charges. IS Group 
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U (N) is now the internal symmetry group. The entire group 
U(N) appears as unbroken symmetry only when central 
charges vanish. When central charges are present, the inter­
nal symmetry group must be broken to its subgroup com­
muting with central charges. In our case the number of cen­
tral charges N(N - 1) does not admit internal symmetry 
group U(N). So taking the limit? ..... 00 we shall set also a/j 
and 1') equal to zero. Such a reduction of internal symmetry 
group was considered in Refs. 23 and 24. 

B. Nonlinear realization of OSP (2N,4) 

Now we use the rescaled commutation relations to ob­
tain nonlinear realization ofthe OSP (2N,4) supergroup on 
the supercoset OSP(2N,4)/SO(3,1) xU(N).We use the 
following parametrization of the supercoset: 

exp(O /QI+ + 0 I-QI- )exp(u/jXii + v/jy/j)exp( - iX'Pa ). 

The parameters (J + I and 0 - I transform under the action of 
the group elementgoESO(3,2) xO(2N), i.e., 

go= 1 + u/jX/j + v/jy/j + a/jA /j + t/jS/j 

- is"Pa + lpabMab , 

as follows 

- + 2 - k- 2. - k • .5 . - k+ . - k 
8(J 1 = - Ukl(J - - lVkl(J, + 2lakl (J + 2ltkl (J 

r r 

1 - b-+ - ms"(J 1- Ya Ys - !pa (J 1- (Tab' 
r 

The transformations are linear. 
The nonlinear transformations are obtained if 

gc = 1 + a/ Q 1+ + al- Q 1_ , and a l± are infinitesimal. In 
such a case 

00 

80/ =a/ + L 
,,=1 

( 1)"+122,, 
- B 0.+ (2,,) 

(2n)! 2,,-1 I , 
(5.9) 

00 ( 1)"+ 122" 
~(J- - L - B -(J .- (2,,), u 1- = a l- = 2 I I 

,,= I (2n)! n-
(5.10) 

where 

-(J + (2,,) 1 a -(J + ab -(J + 
1 = - mq2,,_1 1 YaYt - W(2n_l) 1 (Tab 

2r 
_k _k 

- 2i(a(2n_ \) )ab(J + - 2;(t2,,_ I hl(J + 

1 - k 2; -. 
- - 2;(u2" -I hl(J - + - (V(2n_ \) hl(J -r, 

r r 
(5.11 ) 
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and 

n" = _ [0'+ ...... .50.+ (2" - 2) + 0 '+ ...... .50 - (2,,- 2)] 
'1(2,,- \) r' I r' 1 , 

w':b = 1... m [0 '+ifbO + (2" - 2) + Olifb(J ~2" - 2)] (211 - \) I " r 

(u ) - Im[«(J-+r(J+(2,,-2) (J-+ • .5(J+(2"-2» 211 /j - - '2 1 S j .--' -)' 1 

+ «(J-- • .5(J-(2,,-2) .. )] 
I') -1++), (5.12) 

V -lm[«(J- +(J +(2,,-1) -(J +(J +(211-2» 
(2" - I) - '2 1 j -) 1 

- (0
1
- (J j- (2n-2) - 0)- (J / (211-2»], 

(a2,,_I)/j = ;r m[ (0 l-r(J/ (2,,-2) - 0 j-r(J / (2,,-2» 

- (0 /rO)- (2,,-2) - i++j)], 

( t ) .. = 1... m[ (0 .+(J - (2,,-2) + 0 +(J - (2,,-2» 
2" - I IJ 2r I) ) 1 

_ (0 I-(J/ (2,,-2) + 0)-0/ (2,,-2»], 

(J- + (0) - a- + and (J- - (0) - a- -
i - i' I - i· 

The action of the element go on the supercoset 
exp a/ Q + I + al- Q -I defines the element 
h I ESO(3,2) xO(2N) (see Sec. II B), via the formula 

h _n"P + abAI + /jv + /jy I - 'I. a W l"~ab U A/j q /j 

E S il iI~ + /j I + a'n/j' 

where 

~b = - L B2k _ I ut;~k - I" 
k=1 

/j ~ B /j 
U = - "'" 2k- I U(2k-I)' 

k=1 

/j ~ B /j 
a = - "'" 2k- I a(2k-l" 

k=1 

/j ~ /j 
t = - "'" B2k _ It (2k _ I) • 

k=1 

This gives 

Using the results of Appendix C we obtain 

00 ( 1)" + 122" 
8u/j=p/j+ ~ - B fl/j 

k~1 (2n)! 2,,-1 2", 

00 ( 1)"+ 122" 
8v/j=q/j+ ~ - B fjU 

k~1 (2u)! 2,,-1 2", 

where fl~" and v~" are defined in Appendix C. 

C.Cartanform 

(5.13) 

(5.14) 

(5.15) 

The Cartan form for the coset OSP(2N,4)/ 
SO(3,1) XU(N) is the following: 

M. Mozrzymas 230 



                                                                                                                                    

7.=' - --, lj.J! .p xd(e"IQ+-8 , Q)e(uu" ,+V(P')e- bc • 

/j -'+Q - _Q'- /jX = (J)"A/j ± (J)i i + (J),_ + (J)x /j 

+ (J)~YII - i(J)"P" + !(J)"bM"b + (J)~ ~II' 
Using the same methods as in previous cases we obtain 
-.+ (J)i 

= Ch(;r mx )[t .+ k exp( - akl + tk/ ) - ! Sh(;r mx)] 

X [t .+ k exp( - akl + tki )r" rsx"] , 

WI-

= Ch(;r mx )[t - k exp( - akl + tk/ ) - ! Sh(;r mx)] 

X [t - k exp( - akl + tkl )r"rx" ], 

where 

and 

- - 2i - • 1 (2i)2 • €/ =A I'+ +-A -Dk6 +- - A +B'kDml 
r 2! r 

+ ~ (2i)3A ': Dk mBm kDkl 
3! r 

+ ~(2i)4A "+Bk D liB PD + ... 
, m m "pi , 

n. r 

tl- =X I- +(~)X'+Bkl+ ~!X,:(~rDkmBml 

+ ~(2i)3A ': Bk mDm liB S, 
31 r 

Bkl = Ukl + Vklr; Dkl = Ukl - Vklr, 

X / = f 1 0 .+ (2k). 
k=O (2k+ 1)! I , 

, _ _ ~ 1 0- - (2k) 
AI - ~ I' 

k=O (2k + 1) 

where 0/ (2k) and 0 1- (2k) were defined in (5.11). For k = 0 
we have 

0/ (0) = dO / and 0 1- (0) = dO 1- • 

The forms (J)~ and (J)~ are the following: 

r •• i1 = (J) til + (J)2ii. (J) til = (J)i1 + (J)2i1 
"'x x x , y y y 

and we have 

(J)tiI= f _1_(J)i1(k)' (J)!i1= f -(J)k\ ~(k), 
x k=o(k!) x, k=O(.) 

where 

(J)~(k) = - 2(t~(J):{k_l) - a~(J):{k.+ I); (J)~(O) = ~UiI, 
iI 2( i if + ti kl ). iI ~ iI (J)y(k) = ak(J)y(k _ I) k(J)y(k _ I) , (J)y(O) = uV , 

~UiI and ~ViI are defined as follows: 
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II ao 1 A/j 
~v = L -- V(2k) 

k=O (2k)! 
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Finally, 

~ 1 UI}("2k I) and 0'('"'0) = dO'+ 
k~O (2k + 2)! .+ 

.. Lao 1 .. n'l- vI} 
- k=O (2k + 2)! (2k.+ I) 

and O~O) = dO; 

The quantities Vf2k.+ I) and Uf2k.+ I) were defined in (5.12). 
We shall define also 

211_ ~ _1_ II . 
(J)x - k~O (k!) (J)x(k» 

but now 

(J)2/j _ ~ _1_ (J)/j 
y - k~O (k!) y(k) 

II - m fij and (J)II - n'/j (J)x(O) - y(O) - , 

where 
ao 

m'/j= L -~:"--Uf2k)' 
k=O (2k + I)! 

n'lI = f 1 V?2k) and vfo) = dvlI, 
k=O (2k + 1) 

with u/j and v/j describing the parameters of the coset 
O(2N)IU(N). The remaining components of the Cartan 
form (J) are the following: 

(J)" = q'" + (Ch( ~x) _ 1)( q,a + Xb~2bX") 

+ ~ sh (mx)W'''bXb ' 
mx r 

(J)ab = (: )Sh( ~x )X"q'b _ 2( :: )Ch( ~x )w,eaXeXb, 

where 

ao 1 _I _, 

w,a = L W(~k.+ I) and 0 = dO +, 
k=O (2k + 2) 

q(2k.+ I) and W(~k.+ I) are defined in (5.12). 
The forms (J)a depend on 0', dO', xa, dx" only. Then, 

similarly as in Sec. III we can construct purely fermionic 
nonlinear Lagrangian density .Y defined as follows: 

(J)O(J)I(J)2(J)3 = - a2'y dxo dxl dx2 dr, [a] = 1/x2. 

Using correctly normalized Goldstone fermion field 
VI = (1/ a) if and using the Lee-Gursey transformation 
given in Sec. III we can write the first few terms of .Y 

UJ 1 1 " - a'1 -; ,_, - 1 -; 
-Z. = - Q2 - "2 IA i r' A - ITTWI.; A 

-~(X ·'+r·aA'+ -imXI..iil 2 I I I 

D. The contraction limit 

If we take the contraction limit r- 00 in formulas from 

Sees. V B and V C, and ifwe interpret u/j , v/j, 0 i = 0 '+ as the 
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fields in anti-de-Sitter space with coordinates x" , we obtain 
the following transformation laws: 

uij = - ~m[th,sa'- OJra;] - ~O;t'ralaauij, 

vij = - ~m[Oia' - Ojai] - ~(Jit'raiaavij, 

8(J i = a; - ~OJt'ra' aa (J i, 8xa = - !Oit'rai. 

Similarly in the contraction limit the Cartan form became 

lii = lii = dO I; (JJa = dxa + Oit'r d(J i, 

(JJ~ = dvij -1m [Oi d(Jj - OJ d(J I], 

(JJ~ = duij + 1m[Oir d(Jj - 01r d(Ji]. 

Identical formulas were obtained earlier by Ferrara.6 
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APPENDIX A 

Following Zumino8 we define the operation A 

XAY= [X,Y] 

X 2AY= [X,[X,Y]] ... , 

where X, Yare arbitrary generators belonging to Lie algebra. 
For every function/(x) the expression 

/(x) Ay 

can be derived by expanding the function/(x) as a power 
series in X. One can easily check the following formulas8

: 

~Ye-x=~AY, 

~8e-x= [(l-eY/X]A8X, 

where 8 is an arbitrary variation. 

APPENDIXB 

(Al) 

(A2) 

Using the notation introduced in Appendix A, Eq. 
(3.11) can be written in the form8 

(Bl) 

Anticommutation relationsJor spinor generators (! can be 
written in the form of commutation relations if we use the 
Majorana spinor parameters (f. We get 

{ -(J Q i (J'Q rt -(J ~ABi(J'M + -(J 1 (J'lT i 'i I = m i~ AB m I ij' 

where A,B = 0,1,2,3,4 and 

mOil:AB(J'IMAB = mOit'r(J'iPa + mOicT'b(J'iMab , 

Mab = (lIm)Pa· 

We have also 

[MAB,OiQ i] = iOIl:ABQI. 

It can be written as 

[ Mab ,0 iQ;] = iO iq ab Q;o 

[Pa,O;Qi] = imOirarbQi. 

Using these commutation relations we can find that 
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(B2) 

(OiQ i)2k AakQk_Qi, 

(8iQ
i)2k + I AakQk-MAB + TijESO(3,2) XO(N). 

On the right-hand side of Eq. (B 1) we have only generators 
Mab , Pa , and Tij' so we must set equal to zero in left-hand 
side the part with even powers of OiQ i, because even powers 
are proportional to (! . This condition gives 

80iQi = OiQi coth(OIQi) AOiQi 

00 ( 1) k + 122k 
= ~ - B (0.Qi)2kAa Qi 

k~1 (2k)1 2k-l, I' 

(B3) 

where B 2k _ 1 are Bernoulli numbers. Using (B2) we can 
also find the element haESO(3,2) XO(N), 

h = l-ch(OiQ
i
) Aa.Qi 

I shOjQI ' 

00 [2(22k _ 1) ( _ l)k + 122k ] 
= k.?1 (2k)! B2k - (2k)! B2k _ 1 

X (OjQi)2k + I A OjQj. (B4) 

Because of anticommuting property of spinor compo­
nents any power of 01 Q i, i = l' .. N, higher then 4N vanishes 
identically. Therefore power series (B3) and (B4) are not 
infinite. Using the commutation relation (B2) we find 

(0IQj)2 AaiQi = im[3ak(J'ok + 20j(Jlak + al(JkOk ]Qj' 

generally 

(OjQj)2k AajQj = g~kQj, 

where 

g~k = (im)k [ - 3gj~)_2(Jj(Jj + 20 i(Jlg;k_2 
o· -I 

+o~k-2(J (Jd· 

We find also 

«(JQ j)2k+IA Qi -(J~ABojM -(JojT 
1 a i =m I~ Ok AB +m 10k ij' 

where 

• 00 [2(22k - l _l) (_l)k+122k ] 
g~ = k.?1 (2k)! B2k - (2k)! B2k _ 1 g~k' 
Therefore we can write 

- _j 00 (_I)k+122k Oi 
8(Jj =a + L ,B2k-lo2k, 

k= I (2k). 
- ABO' -.0' 

hi = m(Jil: o~MAB + m(J o~Tij' 

APPENDIXC 

The commutation relations for generators 1'1 of internal 
symmetry group O(2N) are given in (3.1). We definels

•
24 

Aij = !(Tij + TN+jN +1); Sij = !(TN +ij - TIN +j); 

Xij =!(Tij - TN+iN +j ); Yij =!(TN+ij + TjN +1), 

where i,j = 1'" N. In this notatibn and in rescaling given in 
Sec. V, the commutation relations for O(2N) are the follow­
ing: 

[Aij,Ykd =!(8jk Yjk +8jk ljl-8i/ljk -8jk Yi/), 

[Sij'Ykl ] = !(8;kXjl - 8j/Xjk - 8i/~k + 8jkXI/), 
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[Sij,xk/] = !(l5jl Yik -l5jk Yj/ -15j/ Yjl + 15j/ Yjk)' 

[Aij,xkd =!(l5ikX jl +15j1Xik -15j/~k -l5jkXj/), 

l5uj/ = 2( - t ikVkl + aikuk/ ), 

I5vj/ = - 2(tikUkl + aikvk/). 

[Yij' Ykd = (1I2r)(l5ikAjl + I5j1Aik -15j/Ajk -l5jkAj/), 

[Sij,Sk/] = !(l5ikAjl + I5jlAik + I5j/Ajk + I5jk Aj/), 

On the other hand, if go = 1 + pijXij + qijYij and go is infini­
tesimal we get 

[Aij.A k/ ] = ~(l5ikAjl + I5j1A ik -15j/Ajk -l5jkAj/), 

[Xij,xk/] = (1I2r) (l5ikAjl + I5jlA ik -15j/Ajk -I5JkAj/), 

[Aij,Sk/] = ~( -l5jkSik + I5j/Sjk + l5ikSjl -l5jkSj/), 

[Xij,Ykd = (l/2r)( -l5jlSik + 15j/~k -l5ikSjI + I5jkSj/)' 

The generators Aij and sj give us the real representation of 
the subalgebra U (N). This is the symmetric subalgebra, and 
therefore the coset O(2N)!U(N) is a symmetric space. We 
use the following parametrization of the group 0 (2N): 

exp(uijXij + vijyij)exp(aijA ij + tijSij). 

The first exponent describes the coset O( 2N)!U (N) and the 
second the subgroup U (N). The nonlinear action of O( 2N) 
group on the coset O(2N)!U(N) is the following. 

If goU(N) and go = 1 + aijA ij + tijSij, go is infinitesi­
mal then 

APPENDIXD 

a ( 1)" + 122" l5uj/ = pj/ + ~ - B uj/ 
"~I (2u)1 2,,-1 (2,,>, 

( - 1)"+ 122
" B A ,'1 I5vj/ = (/ + ~ ....:..----=---"~I (2u)1 2,,-1 V(2,,>, 

where 

and 

Aj/ 2( i kl + it kl ) U(2,,) = - Uk a(2,,_\) Vk (2,,-1) , 
A'I . kl . kl 
v;" = 2(ukt (2,,-1) - vka(2u_ \), 

j/ 2 ( i Akl i Akl ) 
a(2" + \) = - v2 UkU(2u) + Vk V(2,,) , 

t j/ - 2 ( i A kl i Akl ) 
(2,,+ I) -"2" Uk U(2,,) - Vk V(2,,) , 

v 

with U~/O) = pj/ and V~/O) = qj/. 

We give here explicit forms of expressions used in Sec. IV. The expressions used in Sec. IV B are the following: 

Y" (ak,A ki) = {(SikS 7)Ujjk + ~im(siks~)u-I[(5u + !(u _ 1){jkOkak 

+ (u + ~(u - 1)Okr A 0 kjjkp4 ] - ( - SlkS~)"-2§l (u - 2)m2( - s(u - 1)2 + ~(u _ 2)2)(OkO k)2jjk 

+ (SikA, 7 + i(u - l)mOkO~(slks~)U-2g(u - 2)SlkA, ~Ok}, 

Z~i(ak,A ki) = {(slks7)U-limOkakski - (u - l)m2(slks k)"-2g (u - 2) 

XOkOkakski - im(siks~)"-2g (u - 2)OkOkS lkA, ~Ski 

+ [( - SlkS~)"-1 - imuOkO k( - SlkS~)U-2 - (n - 2)2m2(OkOk)2( - SlkS~)"-2(U - 2)] 

XSlk(A, ~Ski - s~A, ki) - (u - 1)m2(OkOk)2slkA, ~(SlkS~)U-3g (u - 2)Sk,}, 

7~ (ak,A ki) = {i(slks~)"sikak + 3um(slks~)u-lsikO kOka~ 
- 2um2s ik(SlkS~)U-IOkO kjjk + Sik( _ S + l)im2(u _ 1)2(S ikS ~)"-2 

xg (u - 2)(OkOk)2ak - i(SlkS~)U-ISlkA, ~SikOk 

_ mu(slks ~)U-2g (n _ 2)SlkA, ~SlkO kO kO k}, 

J:B(ak,A ki) = {(slks~)umOkl;ABak + 2im2u(slks~)"-1 
XOkOkOkl;ABak}, 

and 

R~m(ak,Aki) ={B( -slks~)"-imuOkOk( -SlkS~)"-1 

+ ~(u _1)2( - imOkOk)2( - SlkS~)"-2g (u - 2)] (SikA, mk - smkA, j/)}. 

In Sec. IV C the following expressions were used: 

E;(uk)QI + Elk (Ui)Qk 

233 

= UiQi + f _1_ [(s;~u)"-ls1s;UpQi +im(3u+ 1)(s;su),,-2g(u-2>] 
k= I (2u)1 

xs1S;UpO'oIQi + 2imu(s;su)U-3g (u - 3)s1s:010'UpQI 

+ m2(s;su),,-3g (u - 3)s;sn~(u _1)2 - 5(u - 2)2]OIO'UkQ; 
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+ f 1 [- i(S}Ski)US~UiQk - 3um(SkiS~)U-1 
u=o (2u - I)! 

XS~OkUiOk(}k + 2um(S~Ski)U-IS~Ok(}JjIOk 

+ 1: im2(s~Ski)U-2g (u _ 2)S~(Ok(}k)2UiQk] , 

wherep,l,i= 1"'k-l, 

Pp(uu/)Q = ~ _1_ [ _ 2i _ <"oil;- ),,-Il;- UmP() + 2m(u _I)Ok(}k( _ l;-il;- .)u-20 (u _ 2)l;- Ump(}/]Q. 
1 P ~ (2 )1 ~ 1~1I ~km k ~ 1~/1 0 ~/m P 

u=1 U. 

Here alsop = 1···k - 1, 

pmi(Uu/)T - f 1 [ - 2(S}SII)" + 2imuO I(}I(S}SII)U-1 
1 mi - u=o (2u+ I)! 

+ 2m2«(}I(} 1)2(U - 1)2(S}SII)U-2g (u - 2) ]Siu:Tmi m,i = l...k - 1, 

H}(UAB)QI + H~(UAB)Qk = U' f _1_1 [(S:S/i)U-1 + 2im(u - 1)(S:Sli)U-2g (u - 2)01(}/] 
u= I (2u). 

XS}Okl:,ABd(}k(}Il:,ABQi+U' f (2 11)1 [-i(S}SII)"] 
11=0 + . 

+ 2muO k() k(S }Sii) u- 10 kl:,AB d(} k () kl:,ABQk 

and also 

ejk (Uk Uk/ ) = Uk + ~ _1_ Y (Uk Uk/ ) 
k , ~ (2)1 u , , 

u=1 U. 

G m"(uk U k/ ) = ~ 1 R mll(uk U k/ ) m,n < k 
k' ~ (2 1)1 II , , 11=0 n + . 

GtB(U\Uk/ ) = f 1 J~B(U\Uk/). 
u=o (2u + I)! 

The remaining expressions are the following: 

234 

EAB(U.) = ~ _1_ [ _ im( l;-il;- . )u-I + 2m2( l;- i l;- . )u-20 (u _ 2)0 I(}/] l;-i() kl:,ABu 
1 I ~ (2 )1 ~ 1~/1 ~ 1~/1 0 ~ I I I' 

11= I U. 

HAB(UAB) = UAB + U' { ~ _1_ [2im( l;-il;-. )u-I + um2( l;-il;- .)u-20 (u - 2)(}!f}!.] 1 ~ (2 )1 ~ I~,l ~ 1~/1 0 
u= I U. 

X (d() 1 + I() I(} Il:,AB(} 1 + I _ () 1 + I(} I(} Il:,AB d(} I) }, where i = l...k - 1. 

We must define now the expressions u, UAB, u i, u i\ Uk: 

uk=d(}k+ f 1 yu(d(}\ds ik ), 
u= I (2u - I) 

ui = f 1 I~(d(}\dsik), 
11=1 (2n+2)! 

ukuTk,,=dskuTku + f 1 Z:k(d(}\dsDTuk ' 
k=1 (2k+ I)! 

uul= ~ 1 Rul(d(}kds lk ) nl<k 
m~o (2m + 2)! m , , , , 

UAB=U·(}kl:,ABd(}k= L 1 J~B(d(}k,dSik). 
u=o (2u + I)! 
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Cayley-Klein parameters and evolution of two- and three-level systems 
and squeezed states 
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ENEA. Dip. TIR. u.s. Fisica Applicata. eRE Frascati. c.P. 65-00044-Frascati. Rome. Italy 

(Received 1 March 1989; accepted for publication 9 August 1989) 

In this paper the time behavior of quantum states ruled by Hamiltonians linear in the SU (2), 
SU(1,I), and SU(3) generators in terms of the Cayley-Klein parameters, originally 
introduced in classical mechanics is analyzed. Also pointed out is the link between the Cayley.:... 
Klein parameters and the Wei-Norman ordering functions, exploited in the context of the 
Schrooinger representation. 

I. INTRODUCTION 

Optics and quantum optics have largely benefited from 
group theoretic methods. 1.2 Just to quote a few examples we 
recal~ that SU (n) is now a widespread mathematical tool to 
treat the evolution of n-level systems interacting with intense 
em fields. 3 

On the other hand, the SU ( 1,1) group has been exploit­
ed both in quantum and classical optics to analyze, for in­
stance, the evolution of squeezed states4 or the propagation 
of Gaussian beams in selfoc fibers.5,6 Finally, Lie algebraic 
methods have provided a useful mathematical framework to 
construct numerical codes for the design of the magnetic 
optics for transport channels in particle accelerators.7 The 
interest that has risen up around these techniques, already 
exploited with astonishing success in atomic, nuclear, and 
particle spectroscopy,8 is therefore fully justified. 

Within the above mathematical context, specific diffi­
culties have been encountered and solution techniques have 
been discovered, or rediscovered. This is indeed the case of 
the ordering theorems of the Wei-Norman (WN) type,9 
which playa significant role in the analysis of the time be­
havior of quantum states ruled by Hamiltonians linear com­
bination of the generators of Lie groups, as SU (2), SU ( 1,1 ) 
or SU ( 3 ). 10 Although forgotten for many years, this tech­
nique became increasingly popular, owing to the renewed 
interest in the algebraic treatment of problems in optics. 

The WN theorems may be viewed, from a historical per­
spective, as the completion of the program originally under­
taken by Magnus II and Ferl2 of developing, whenever possi­
ble, a systematic and rigorous treatment of time-ordering 
problems as opposed to the perturbative Feynman-Dyson 
technique l3 (also see Refs. 2 and 14 for further comments). 

According to the WN technique, the evolution operator 
relevant to a Hamiltonian linear combination of Lie group 
generators can be written as an ordered product of exponen­
tials, whose arguments are the product of a time-dependent 
function and a generator of the group. It can be shown that 
the time-dependent functions appearing in the exponentials, 
namely, the characteristic functions of the ordering proce­
dure, are related to the coefficients of the linear combination 
in the Hamiltonian by a nonlinear system of first-order dif­
ferential equations.2,9 For groups of particular physical in­
terest the WN characteristic equations have been further ela­
borated and, by introducing appropriate functions, cast in 
the form of generalized Bloch equations. 10,15 

The newly introduced functions deserve a particular 
comment. In fact, according to whether one is dealing with 
SU (2), SU ( 1,1 ), or SU ( 3) Hamiltonians, they obey a set of 
equations identical to that of two or three coupled harmonic 
oscillators, respectively. It is also worth stressing that all the 
physical quantities are directly linked to these functions, 
whose meaning we will try to further clarify within the con­
text of the present paper, where a different method to treat 
ordering problems is proposed, when the above quoted three 
groups are involved. Taking advantage from the spinorial 
representation of the group generators 16,17 we will show that 
the characteristic functions of the ordering procedure can be 
identified with the Cayley-Klein (CK) parameters l8 intro­
duced in classical mechanics to treat rotation problems. As a 
consequence, the WN equations can be deduced from those 
defining the time dependence of the CK parameters. The 
remarkable practical advantage of the method we present in 
the paper lies on its simplicity and on the consequent possi­
bility of avoiding the amazing amount of calculations im­
plicit in other proposed methods, employing, e.g., the Cay­
ley-Hamilton theorem. 19 

II. THE SU(2) AND SU(1,1) CASE 

Let us consider, as first example, the Hamiltonian 
A A ,. A 

H = w(t)J3 + O*(t)J + + O(t)J _ (Ii = 1), (2.1) 

with the operator 13, 1 ± obeying the rules of commutation 
ofSU(2) 

(2.2) 

The Hamiltonian (2.1) may describe, e.g., the interaction of 
a chirped classical em field with a two-level atomic system. 
Introducing the spinorial representation of the 1 operators 
[the fact that we restrict ourselves to the lowest dimension­
ality representation of the group by no means affects the 
generality of our results (also see Ref. 16)], 

~ 1 (1 0) ~ (0 1) ~ (0 0) 
J3 = 2' 0 _ l' J + = 0 0' J - = 1 0 ' 

(2.3) 

we can rewrite the Hamiltonian (2.1) in the form of a 2 X 2 
Hermitian matrix as 

if = (W(t)/2 
O(t) 

O*(t) ) 
- w(t)/2 . 

(2.4) 
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Denoting with 

~=(::), (2.5) 

the wave fuoction representing the system, one immediately 
gets the following system of coupled equations: 

,-q, + = !CtJ(t)~ + + O*(t)~ _ , 

,-q, _ = - !CtJ(t)~ _ + O(t)~ + . 
(2.6) 

The components ~ _ and ~ + can be understood from the 
physical point of view as the probability amplitudes for the 
system of being in the lowest or excited state, respectively. 
Since Eq. (2.6) represents a rotation ofthe vector ~ in the 
complex space, we can write its solution using the CK ma­
trix18 as 

(~ +) = (H* G)(~ + (0») 
~_ -G* H ~_(O) , 

where H(O) = 1, G(O) = 0, and 

IHI2+ IGI2= 1. 

(2.7) 

(2.8) 

Inserting (2.7) into Eq. (2.6) we immediately find that the 
CK parameters Hand G obey the following system of first­
order differential equations: 

iiI = - (CtJ/2)H + OG, iG = (CtJ/2)G + O*H. 
(2.9) 

The above equations resemble the ordering equations de­
rived in Ref. 16 and, in fact, within the present framework, 
the CK matrix in (2.7) can be regarded as ,the matrix repre­
sentation of the time-evolution operator U relevant to the 
Hamiltonian (2.4), or equivalently (2.1). In order to point 
out the connection with the ordering method of Ref. 9, let us 
write the evolution operator as the WN ordered product 

U(t) = e2h(t)j'ek(t)j+e- f (t)j- , (2.10) 

which, using the spinorial representation (2.3), can be cast 
in the simple matrix form16 

U(t) = ((1 -/g)e
h 

ge
h

). (2.11) 
_/e- h e- h 

A 

As a consequence ofthe unitarity of U we readily obtain the 
relations I 

(2.12) 

Therefore, comparing (2.11) with the CK matrix (2.7), it is 
easy to recognize the CK parameters Hand Gas 

H=e- h, G=geh, F=/e-h=G*, (2.13) 

which are the characteristic functions of the ordering proce­
dure introduced in Ref. 10. 

The above relations, together with (2.9), yield the sys­
tem of differential equations specifying the WN functions 
(h,g!,), namely, 

h = - i(CtJ/2)h + iOge2h , 

g = - i(CtJ/2)g - iO*e- 2h - hg, (2.14 ) 

i= iOe2h . 

It is worth noticing that the CK parameters, rather than 
the WN functions, specify measurable physical quantities 
relevant to the system under study. In fact, it can be easily 
shown that the evolution of the Bloch vector as well as the 
wave function is entirely specified by Hand G. 

The evolution of the pseudospin of the system can be 
immediately obtained, noticing that 

(i3 ) = (~li31~) = HI~ + 12 _ I~ _12] , 
(i+) = (~li+I~) = 'II'!.. ~ _ , 
(i_) = (~li_I~) =~!.. ~ + . 

Furthermore, introducing the Bloch vector s, 

where 

(2.15) 

(2.16) 

i1=Hi++i_], i2=(l/2i)[i+-i_1. (2.17) 

it is readily seen that it changes with time according to 

s(t) = R (t,to) s (to) (2.18) 

with s(to) denoting the Bloch vector at the initial time to' 
The 3 X 3 matrix R(t), which, as noticed elsewhere,16 is a 
generalization of the Rabi matrix,20 can be written in terms 
of the CK parameters as 

IIm(H*2 + G 2) 
Re(H*2 + G 2) 

- 211m (HG) 

- 2Re(H*G») 
2IIm(H*G) . 
IHI2_IGI2 

(2.19) 

The vector (2.16) describes the evolution of the expectation 
values of the angular momentum-type operators J, but no 
information can be inferred on the relevant fluctuations. To 
this aim, it is convenient to introduce the tensor 

Fij = (i/)) - (il)(~)' i,j= 1,2,3, (2.20) 

which for i = j yields the variance of the Bloch vector com­
ponents. The time behavior of the fluctuation tensor can be 
easily calculated in terms of the Hand G functions; the ex­
plicit expression are omitted for the sake of conciseness. 

As a further support of the importance of the CK pa­
rameters, with respect to the WN functions, let us briefly 
discuss the evolution of the wave function. 

237 J. Math. Phys., Vol. 31, No.1, January 1990 

Labeling with IJ,m) a generic angular momentum state, 
we can express ~ ( t) as 

J 

~(t) = L Cm(t)IJ,m). (2.21) 
m= -J 

The time-dependent coefficients Cm depend on both the ini­
tial value of the wavefunction and the "scattering matrix" 
S(t,to), whose elements defined as 

Sm.n = (J,nIUIJ,m) , 

are related to C m (t), according to 
J 

Cm (t) = L Sm.n (t,tO)Cn (to) . 
n= -J 

G. Dattoli and A. Torre 
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The matrix elements Sm,n' whose explicit expression can be 
inferred from (2.22) and (2.10) asl5 

S (t,t) = > < H - (n + m) [(J + n )(J n )]112 
m,n 0 J+ n J - n 

< > 

. [sgn(m - n) IG I r> - n< 'exp{ix(m - n)}' 

X 2FI ( - J - n < ,J - n < + 1; 

n> - n< + 1;IG 12) , (2.24) 

with X = arg(G), n< = min(m,n), n> = max(m,n), and 
2FI hypergeometric function, are fully defined by the func­
tions Hand G. 

With regard to the time dependence of the CK param­
eters, let us stress that Hand G satisfy the same second-order 
differential equation, easily inferred from the system (2.9) 
asl5 

• 2 • .. O. [lnl2 m . W . m 0] 0 y--y+ u +--1-+1-- y= o 4 2 20 ' 
(2.25a) 

with initial conditions 

H(O) = 1, H(O) = i(m/2) , 

G(O) = 0, 6(0) = iO(O) . 
(2.25b) 

Equation (2.24), as it stands, cannot be solved exactly for 
any time dependence of m and O. Bambini and Berman21 

found a class of solitary pulses that allow the solution of 
(2.24) in terms of hypergeometric functions. Later on the 
method of Ref. 21 was generalized to chirped pulses. 15,22 

In this paper, for the sake of completeness, we discuss 
the case of time-decaying pulses, which leads to exact solu­
tions of (2.24) in terms of Bessel functions. 

Assuming for 0 the time dependence 

O(t) = Ooe-at (2.26) 

and using the Liouville transformation 

y = e- (l/2)at t5(t) , (2.27) 

we can tum (2.25a) in the following harmonic oscillator­
type equation for t5: 

;5+ [0~e-2at_!(a+im)2]t5=0. (2.28) 

Redefining the variable according to 

x =e- at , (2.29) 

(2.28) reduces to a Bessel-type equation 

2d
2

- d - [O~ 2 1( .m)2]-x-t5+x-t5+ -x -- 1+1- t5=0. 
dx2 dx a 2 4 a 

(2.30) 
Consequently, the function H can be written as 

H = e- (a/2)t[aJv( ~o e- at ) + bYv( ~o e- at )] , 

(2.31) 
the constants a and b being evaluated from the initial condi­
tions (2.25b), so that we finally obtain 

H - 1T' n - at [ ( 0 0 - at 0 0 ) --uoe qv -e ,-
2a a a 

+ a (00 -at 0 0 )] -vp -e -
n v " Uo a a 

(2.32) 

v =!(1 + i(m/a» 
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where the functions pv and qv are defined as23 

pv(a,b) =Jv(a)Yv(b) -Jv(b)Yv(a) , 

qv(a,b) =Jv(a)Y~(b) -J~(b)Yv(a). 

A similar expression can be obtained for G, namely, 

G - -(a/2)t1T'Oo[ a .] (00 -at 0 0 ) -e --~-Ipv-e ,-. 
2a200 a a 

(2.33 ) 

(2.34) 

At this point we can find a very simple result concerning the 
long-time behavior of a two-level system driven by a time­
decaying pulse. Assuming, e.g., that initially the only non­
zero component of the Bloch vector is the third one, we can 
prove, according to (2.17) and (2.18), that the population 
inversion behaves like 

(J3 ) ex: IH 12 - IG 12 = 1 - 21G 12 . (2.35) 

Finally, using the expression of Jv and Yv for small argu­
ments,23 we obtain the asymptotic behavior of (J3 ) or equiv­
alently ofthe cross section ofthe process, namely, 

<j3)-I- 1T'
0

0 (1 +~)·IJv(00)12. 
a cosh ( 1T'm/2a ) 40~ a 

(2.36) 

It is important to emphasize that the crucial parameter of the 
scaling (2.36) is OO! a, which is the total area of the pulse 
integrated in time. 

We will finally spend a few words to comment on the 
SU ( 1,1) case. The Hamiltonian we consider is now 

(2.37.) 

where k3' k ± are the generators of the SU (1,1) group obey­
ing the rules of commutation, 

(2.38) 

The operator (2.37) is a model Hamiltonian for parametric 
amplification in a nonlinear medium and furthermore, as 
noticed elsewhere,4 is the most general SU (1,1) coherence 
preserving Hamiltonian. 

The group SU ( 1,1) consists of the set of all two-dimen­
sional pseudounitary unimodular matrices that leave invar­
iant the quadratic form 

IZl12 - IZ212 . (2.39) 

To keep the discussion as close as possible to the SU (2) case, 
we therefore use the non-Hermitian realization of the 
SU(1,I) algebra, 16 i.e., 

k
A

3 
= ~(1 0) A (0 - 1) A (0 0) 

2 0 - 1 ' k+ = 0 0 ' k_ = 1 0 . 
(2.40) 

In this case the Hamiltonian (2.37) writes in the following 
2 X 2 non-Hermitian form [this apparently surprising fact 
has been discussed in Ref. 16, where the non-Hermitian rep­
resentation (~4;!?) is }l~d. The operator H is "Hermitian" 
according to HM = MH + with M being the metric matrix 
A 1 0 
M= (0 _I )] 

- O*(t») 
- !m(t) . 

(2.41) 

It is now easy to prove that the SU ( 1,1) CK matrix is 

G. Dattoli and A. Torre 238 



                                                                                                                                    

v 

FIG. 1. The interaction of a three-level system with three intense em fields. 

A _ ( H* G\ 
u- -G* ~ j' 

where H(O) == 1, G(O) = 0, and 

IH 12 -IG 12 = 1 . 

(2.42) 

(2.43) 

Correspondingly, the time behavior of Hand G is specified 
by 

iiI = - (w/2)H - OG, 

iG = + (w/2)G + O*H. (2.44) 

The derivation of the WN equations is also straightforward 
along the lines previously outlined, and will not be discussed 
for the sake of conciseness. For further comments the reader 
is addressed to Ref. 16. 

III. SU(3)-TYPE HAMILTONIANS 

The most general Hamiltonian, allowing SU (3) cou­
pling, is 
A A A A A A "" 

H=WrT3 + O}T+ + OrT_ +WU U3 + 0tU+ + OuU_ 
A A A 

+ WVV3 + O~V+ + OvV_, (3.1 ) 

where the nonsingular time-dependent functions w's and O's 
are real and complex, respectively. From a physical point of 
view, the operator (3.1) describes the interaction of a three­
level system with three intense electromagnetic (em) fields 
according to the scheme of Fig. 1. (For the case of three-level 
atomic or molecular systems one coupling is forbidden ac­
cording to the Laporte rule. We discuss, however, the case of 
three nonvanishing couplings in order to treat a more gen­
eral situation, which can be encountered in the treatment of 
three coupled harmonic oscillators. ) 

The Hamiltonian (3.1) exhibits an SU(2) ®SU(2) 
® SU(2) group structure rather than SU(3), which can be 
immediately recovered defining the "hypercharge" operator 

(3.2) 
AAA 

Representing the (T, U, V) operators in terms of the Gell-
Mann and Ne'eman matrices ass I 

1'3 = 1/~ ~ 1 ~) , 
2\0 0 0 

1 

o 
o 

1'_ =(~ ~ ~), 
000 

U3 = 1 (~~ ~), 
2\0 0 -1 

U_ =(~ ~ ~), 
100 

J\ = 1 (~~ ~), 
2\0 0 -1 

o 
o 
o 

v-~G ~I D· (3.3 ) 

the Hamiltonian (3.1) can be written in the following 3 X 3 
matrix form: 

01, ) 
-O~ . 

- !(wu + wv ) -Ov 
(3.4) 

Now we proceed in analogy to the SU (2) case and introduce 
the following column vector for the system wave function: 

(

'I' u») 
'fI = ('I'd) , 

('I'. ) 

(3.5) 

where 'I' a represents the probability amplitUde for the sys­
tem of being in one of the levels of Fig. 1. From the Schro.. 
dinger equation we obtain 

l-q,u = !(wu + wr)'I'u + O}'IId + 01,'1', , 

l-q,d = Or'l'u - !(wr - WV)'I'd - O~'I'" (3.6) 

,-q" = Ou'l'u - Ov'l'd - !(wu + wv)'I'.· 

As before, the CK matrix allows the solution to the system 
(3.6) in the form. (At the initial time the only nonvanishing 
terms in the CK matrix are the diagonal elements, all set 
equal to unity.) 

(

'I'u) (A B ~'I'u(O») 
'I'd = D E F 'lid (0) . 

'1', G H I '11.(0) 

(3.7) 

Inserting (3.7) into Eqs. (3.6) we find the important result 
that the column elements in the SU (3) CK matrix (A,D,G), 
(R,E,H), and (C,F,l) obey the same system of first-order 
differential equations 

0* r 
01, Xm) 
-O~ n. 

- !(wu + w v ) p 

(3.8) 
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The CK parameters in (3.7) are the auxiliary functions in­
troduced by the authors in Ref. 10 to treat SU ( 3) time-or­
dering problems and the result (3.8) was obtained after a 
tedious large amount of algebra. 

To better clarify this point we write the evolution opera­
tor a la Wei-Norman, thus obtaining 

A A """ A 

U= UTUUUY , (3.9) 
A 

where each U is given by 

(3.10) 
A 

Therefore, using the representation (3.3), we can express U 
as a 3 X 3 matrix with elements 

UIJ = (1 + GTFT)(I + GuFu)/HTHU' 

Ul2 = (GT/Hy)(1 + GyFy) 

- (GuFy/HT)(1 + GTFT) , 

U13 = (GuHy/HT)(1 + GTFT) - GTGy , 

U21 = (FT/Hu)(1 + GuFu) , 

U22 = (HT/Hy)(1 + GyFy) -FTGuFy, 

U23 =FTGuHy -HTGy , 

U31 =Fu , 

U32 = HuFy , 

U33 = HuHy , 

where 

(3.11) 

H -ha G ha F I" -ha (312) 
a = e , a =gae , a =Jae . . 

Comparing (3.11) to (3.7) we immediately obtain the rela­
tion between CK parameters and WN ordering functions. In 
analogy to the procedure of the previous section we could 
deduce from (3.8) the WN ordering equations; this is 
straightforward but rather tedious; the interested reader is 
therefore addressed to Ref. 17, where those equations have 
been obtained within a different context. 

Again, we stress that there is no need for the knowledge 
of the functions (3.12). Indeed, as in theSU(2) case, theCK 
parameters have relevance from the physical point of view. 
Furthermore, introducing the eight-dimensional vector s, 
whose components are defined according to 

A A A A 

SI = ('I1I(T+ + T_)/21'11), S2 = ('I1I(T+ - T_)/2il'l1) , 
A A A 

S3 = ('I1IT3 1'11), S4 = ('I1I(U+ + U_)/21'11) , 
A A A A-

Ss = ('111 ( U + - U _ )/2il '11) , S6 = ('111 (V + + V _ )/21'11) , 

S7= ('I1I<'V+ - V_)/2il'l1), S8= ('I1I(U3 + V3)/~I'I1), 
(3.13) 

we can write the time evolution of the generalized Bloch 
vector S in the form 

(3.14) 
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where Rail are the elements of an 8 X 8 matrix, which is thx 
direct generalization of (2.18). Needless to say, the matrix R 
can be expressed in terms of the CK parameters and its ex­
plicit expression is reported in Ref. 17. 

It is also important to emphasize that a number of con­
servation laws follow directly from the unitarity of the CK 
matrix and from Eq. (3.8), namely, 

IA 12+ IBI2+ ICI2= I, IGI2+ IHI2+ 1112= I, 

IA 12+ IDI2+ IGI2= 1, ICI2+ IFI2+ 1112= I, 

IDI2+ IEI2+ IFI2= 1, IBI2+ IEI2+ IHI2= I. 
(3.15 ) 

The above laws of conservation are in some sense "intrin­
sic," since they are contained implicitly in the ordering pro­
cedure. They acquire physical meaning in the context of the 
particular problem under study. As a final comment, we no­
tice that the procedure we have developed is independent of 
the particular SU ( 3) representation one chooses. The Gell­
Mann and Ne'eman representation is only one of the possi­
bilitit}S, but, e.g., the Morris realization24 could be straight­
forwardly used as well. 
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By reconsidering the linear· equation which describes in the hodograph plane the motion ofa 
relativistic fluid, a significant difference with respect to the analogous equation obtained ill the 
classical fluid dynamic theory is found; while the latter satisfies a condition which greatl~- . 
simplifies the determination of the Riemann function (required for the integration), the former 
does not fulfill in general a similar condition except when adopting specific pressure laws. 
Implications and properties of the relativistic system in these extreme cases are discussed. 

I. INTRODUCTION 

The hodograph transformation in combination with the 
Riemann method of integration of a linear hyperbolic equa­
tion has been used to obtain explicit solutions to the equa­
tions describing the motion of a classical perfect fluid as well 
as to many other systems of physical interest. 

This technique, in the form which we refer to, has been 
developed, on the basis of previous works, by Jeffrey, I who 
has shown that it can be applied to all 2 X 2 "reducible" qua­
silinear hyperbolic systems, i.e., to systems which in general 
have the form 

(1) 

where Uis a two-component vector, and A is a 2X2 matrix. 
The term "reducible" means that the independent vari­

ables x and 1 do not appear in the entries of the matrix A, so 
we have simply A = A ( U). The system ( 1 ) is supposed to be 
totally hyperbolic, i.e., the matrix A possesses a pair of dis­
tinct real eigenvalues J.t and v, and in correspondence with 
each eigenvalue, left and right eigenvectors that will be indi­
cated by I(A) and rIA) (for A. = J.t,vandJ.t > v). The eigenvec­
tors I (/J) ,I (v) and r(/J) , r( v) are linearly independent and sat­
isfy the equations 

I (/J)A =J.tl(/J), I (v)A = vI (v), 

Ar(/J) = J.tr(/J), Ar( v) = vr( v), 

together with the orthogonality conditions 

I (/J)r(v) = I (V)r(/J) = 0, I (/J)r(/J) :;60, I (v)r(v) :;60. 

Following Refs. 1 and 2 we left-multiply the system (1) 
by I(/J) and 1(1'), and then we obtain 

I (/J)(Ut +J.tUx ) =0 and I(V)(Ut +vUx ) =0, 
(2) 

which may be written as 

I (/J) dU -0 d 1(1') dU_ O -- an -- , 
du dr 

(3) 

where d 1 du and d 1 dr denote the derivatives along the char­
acteristics dxl dl = J.t and dxl dl = v. 

The expressions for the Riemann invariants are then 

f q(/J)/(/J) dU= r(r) and f q(V)/(V)dU=s(u), 

(4) 

where q(/J) and q( v) are two integrant factors. From (4) it 
follows that 

I(/J) =_I_V rand 1(1') =_I_V s 
(/J) U (v) U' q q 

(V u = a~l ' a~J ' 
then, Eqs. (2) become 

Vur(Ut +J.tU,,) =0 and Vus(Ut +vU,,) =0, 

which give, by the chain rule, 

r t + J.tr" = 0 and St + vs" = O. (5) 

Now if it is possible, under the usual conditions, to inter­
change the roles of dependent and independent variables, we 
can get 

x = x(r,s) and 1 = I(r,s), 

with x and 1 satisfying the two linear equations 

x, = vI, (6a) 

and 

x. = J.tl •. (6b) 

By differentiating (6a) with respect to s and (6b) with re­
spect to r, and equating the cross derivatives, one gets the 
following second-order equation for I: 

Irs - [v./(J.t - v)] I, + [J.t,/(J.t - v)] I. = o. (7) 

This equation can be solved, at least in principle, by standard 
methods. 

Up to this point, we have given an account of the tech­
nique expounded in Refs. 1 and 2. What we are going to do 
now is apply the Jeffrey method to the system of equations 
describing the motion of a perfect fluid in special relativity. 
We will firstly make such a system fit the general form (1), 
whereupon we shall specialize (7) in the case of a relativistic 
fluid. We shall show finally that the integration of (7) in 
such a case presents significant differences with respect to 
the nonrelativistic fluid. 

II. THE RELATIVISTIC FLUID 

A perfect relativistic fluid is described by the energy­
momentum tensor 

TQb = (w + p)uQub + ptt'b, 
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where wand p are, respectively, the total energy density and 
the pressure measured in a frame in which the fluid is at rest, 
ua is the four-velocity (uaua = - 1), and g<>b is the metric 
tensor. 

The conservation laws for the matter and for the energy­
momentum are written 

(Sa) 

and 

Va Tab = 0, (8b) 

where p is the proper matter density. We shall confine our 
interest in what follows to the one-dimensional motion in a 
Minkowski space. Then we shall introduce the inertial co­
ordinates (x,y,z,t) and the relative velocity v so that 

ua:=y(v){c,v,O,O}, y(u) = (1- U2/c2)-1/2, 

while Va denotes the usual partial derivative. Furthermore 
we assume that the flow is isentropic, and then (8b) reduces 
to the sole equation of conservation of momentum and the 
Gibbs relation writes de = - pep) d( lip), with e the den­
sity of internal energy. 

With these hypotheses the system (8) in matricial form 
is 

dOUt + dlUx = 0, 

where 

( 
y-2(V) pvc-2) 

dO= (cY(V»-2Vp; pi ' 

I ( vy-2(V) p ) 
d = y-2(V)p; pjv' 

(9) 

Note that U T = (p,v),f = I + i/c2 is the so-called "index" 
of the fluid,4 and i is the specific enthalpy. 

If we multiply (9) by the matrix (do)-I we get a sys­
tem in the form (1) with A = ( dO) -Idl given by 

(

V 

r(a)(1 - aVlc4) 
A-

- a2/p 

y4(v)(l_a2v2/c4) 

p ) (1 - a2v2/c4
) 

r(a)(l~a2v2/c4) , 
( 10) 

where a2 = p;IJ The zeros of the determinant det(A - AI) 
are 

v+a v-a 
AI =p, = and ,12 = V= ,(11) 

1 + avlc2 1- av/c2 

p, and v are the expressions for the Doppler-shifted velocities 
of sound in a fluid moving with velocity v, while 
a(p) = c(P~) 1/2 = (p;lj) 1/2 is the relativistic sound speed 
in a reference frame in which the fluid is at rest.4 

The set ofleft and right orthonormal eigenvectors span­
ning the space (p,v) are then 

/(1') = (alp,r(v», l(v) = (- alp,r(v», (12) 

r(I')=J.-( pia ), r(V)=J.-(-Pla). (13) 
2 y-2(V) 2 y-2(V) 

One easily recognizes in (12) and (13) the structure rel­
evant to the system in which the Riemann invariants are 
additively separable.2 In fact, if we take in ( 4) 
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q{l') = q(V) = 1, the expressions for the Riemann invariants 
are 

r=carctgh(vlc) + J a~) dp, 

s = c arctgh(vlc) - J a~) dp, 

(14) 

which coincide with those deduced by A. H. Taub.3 The 
form of a(p) depends on a suitable choice of the state equa­
tion. Once the functionp = pcp) has been given, the prob­
lem reduces to integrate Eq. (7). In several applications of 
Jeffrey's method2

•
5

,6 it has been shown that the determina­
tion of the Riemann function is simplified if 

oh = [p"/(,u - v)] dr + [v./( v - p,)]ds (15) 

is an exact differential; in such a case one has 

a ( P,,) a ( Vs ) 
as p,-v = ar v-p, . 

(16) 

In the above cited works5
•
6 the fact has been pointed out that 

many systems of physical interest satisfy this condition. In 
particular, in the case of the classical gas dynamics, the rela­
tion ( 16) holds without restrictions on the form of the equa­
tion of state p = pcp). So as a first approach, we wish to 
know if this circumstance is still valid in our case. 

III. THE CONDITION FOR M BEING AN EXACT 
DIFFERENTIAL 

It is convenient for our purposes to write the relation 
(16) in the form 

R = v,s + P"s + (p"P,s - v, Vs )/( v - p,) = 0. 

By setting 

a(p) = rea) 1!.... a;, 
a 

simple calculations give 

R = (1/c2)(,u2 - v){(pla)a; 

+ (1/c2)(1 - a2)(p, - v)}. 

(17) 

(18) 

(19) 

This expression vanishes when a = ± 1, i.e., if the function 
a(p) satisfies the following equation: 

r(a)1!....a' + 1 = 0. a P 
(20) 

Thus at variance with the nonrelativistic case (when 
c ..... 00, R ..... 0) , here the condition for oh being an exact differ­
ential is not in general verified, except when the pressure law 
is such that (20) holds. In order to see what this condition 
implies, we calculate the gradient of the eigenvalues p, and v, 
namely 

VuP, = y-2(p,)(r(a)a;, r(v», (21) 

Vuv= y-2(V)( - r(a)a;, rev»~. (22) 

By combining these results with (13) to form the products 
(VuA) 'r(k) (k,A. = p"v), one obtains 

(V up,) 'r(l') = ~p,; = ([ 1 + a(p) ]l2)y-2(p,), (23) 

(Vuv)'r(V) =! v; = ([1 + a(p)]l2)y-2(v), (24) 
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(Vul-') 'r(V) = !I-'; = ([ 1 - a(p) ]I2)y-2 (I-') , (25) 

(Vuv)'r(P) =! v; = ([1 - a(p) ]I2)y-2(V). (26) 

The condition a = - 1 yields (V ul-') 'r(p) = (V uV) 

'r(V) = 0 and corresponds to a system which after P. Lax is 
said to be completely "exceptional." As pointed out in Ref. 
2, in this case, because of the orthogonality property of vec­
tors (12) and (13), one has I(v) aV ul-' and 1 (p)aV uV. From 
(25) and (26) one also gets r(I-')(Vul-') 'r(v) 

= r(v)(Vuv)'r(P) = 1, which precisely yield 

I(V)=r(I-')Vul-' and I(P)=r(v)Vuv. 

By using these relations in system (2) one obtains two equa­
tions in diagonal form2

: 

v t + I-'Vx = 0 along the characteristics 

I-'t + Vl-'x = 0 along the characteristics 

dx 
Tt=I-', 

dx 
-=V. 
dt 

As far as the Riemann invariants are concerned, for 
a = - 1 they take the simple form 

r = f r( v)V uV dU = c arctgh( vic), 
(27) 

s = f r(I-')V ul-' dU = c arctgh(l-'/c) 

and, by putting (J(u) = c arctgh(ulc), we get the relations 

r = (J(v) = (J(v) - (J(a), S = (J(I-') = (J(v) + (J(a), 

i.e., rand s are nothing more than the hyperbolic representa­
tion of the sound speeds v and 1-'. 

The hodograph system writes 

xp = I-'tp and Xv = vtv' 

by eliminating X one sees that for any exceptional system the 
equation for t has the canonical form2 

tpv = o. (28) 

When a = lone has (Vul-') 'r(v) = (Vuv) 'r(p) = 0 
and r(I-')(V ul-') 'r(p) = r( v)(V uV) 'rV = 1, which implies 

I(p) = r(I-')Vul-' and I(V) = r(v)Vuv, 

with these eigenvectors the system (2) splits into two invis­
cid Burgers equations: 

dx 
I-'t + I-'I-'x = 0 along the characteristics Tt = 1-', 

v t + VVx = 0 along the characteristics 

while rand s are given by 

r = f r (I-') V ul-' d U = c arctgh( ~ ) , 

s= f r(V)Vuvdu=carctgh(;) , 

with 

dx 
-=v, 
dt 

(29) 

(30) 

r=(J(I-') = (J(v) + (J(a), s=(J(v) = (J(v) -(J(a). 

Once more the Riemann invariants are equal to the angles 
that in the complex plane represent the two eigenvalues, but 
in an interchanged way with respect to (27). We wish to 
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mention that Eqs. (29) are known in classical context as the 
"Staniukovich system" and have been used in the theory of 
detonation.7 

When a = 1 the hodograph system takes the form 

xp = vtp and Xv = I-'tv. 

The condition for the compatibility of these equations leads 
to a degenerate form of the Euler-Poisson-Darboux equa­
tion 

tv - tp + (I-' - v)tpv = 0, 

which can be written as 

Xpv = 0 

with X = (I-' - v)t. 

(31) 

IV. DISCUSSION ON THE PRESSURE LAWS 
CORRESPONDING TO a= ± 1 AND CONCLUSIONS 

Bearing in mind that a = (p;/j) 112, a simple integration 
ofEq. (20) gives the pressure law p = pep). This has already 
been discussed in both cases a = ± 1 in Ref. 8. In relativity 
an important role is played by the barotropic fluids which 
are characterized by an equation of state relating the pres­
sure to the total energy density w = p (c + e). It is a trivial 
matter to write Eqs. (20) in terms of w instead of p, so we 
have 

(w+p)p:;'w +2p~(1-p~) =0 for a= -1 (32) 

and 

(w+p)p:;'w -2p~(1-p~) =0 for a= 1, (33) 

whose solutions, in order to be consistent with the relativistic 
causality, must satisfy the inequality 

p~ ~ 1, (34) 

while the further condition 

(35) 

is required for the shock to be compressive. The latter in­
equality can be however violated in several nuclear matter 
fluids.9 

Equation (32) is well known in the theory of relativistic 
discontinuity waves9

; its general solution reads10 

p = B -A 2/(W + B 1c2) (A and B constants), 

which does not satisfy (35). The only solution of (32) com­
patible with (34) and (35) is the pressure law characterizing 
the incompressible relativistic fluid, i.e., 

p = w + const. 

Equation (33) admits the parametric solution [satisfy­
ingboth (34) and (35)]: 

p(x) = k(sinh X - x), w(x) = k(sinh x + x), 

and the trivial one, too: 

p= w+ const. 

So when the fluid is incompressible (p = w + const) 
one has 1-', = v, = 1-'. = v. = 0, then I-' and vdo not depend 
either on ror s. In this case in fact a = c, I-' = c, and v = - c, 
and (5) reduces to two linear and uncoupled equations, 
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rt + crx = 0 and St - CSx = O. 

Now we wish to correct an error which makes some 
formulae of this paper inconsistent with those of my pre­
vious one.8 The correct forms ofEqs. ( 1 b) and ( 11 ) in Ref. 8 
are 

at ±avt + (v±a)(ax ±avx ) =0, 

Aat ± Vt + [(v ± a)/O ± av/el) ](Aax ± vx ) = 0, 

i.e., the sign behind the fraction is + (in Ref. 8 it erroneous­
ly is ± ). This leads to some equations which are incorrect, 
as far as a sign is concerned, but does not affect in any way 
the substance of the paper. 

In conclusion, the main result of the present work is to 
point out a significant difference between the classical and 
the relativistic gas dynamics in Minkowski space, as far as 
the integrability of the equation in the hodograph plane is 
concerned; the property of 8h in (15) being an exact differ­
ential is not in general shared by the relativistic fluid. It h. 
recovered only for fluids obeying certain pressure laws. In 
these cases, the equation in the hodograph plane assumes the 
canonical form of the linear homogeneous wave equation, so 
the problem is integrable in an elementary way. This circum­
stance might be exploited to test numerical codes. 
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This paper deals with the analysis of the initial value problem in all space Rd, d>2, for the 
discrete Boltzmann equation with multiple collisions. After a preliminary analysis of the 
mathematical modeling of the evolution equations, global existence and asymptotic behavior 
are proven using suitable stability criteria. Some applications verify the analysis for specific 
models. 

I. INTRODUCTION 

The discrete Boltzmann equation is a mathematical 
model in the discrete kinetic theory of gases, 1 which defines 
the time-space evolution of a system of gas particles with a 
finite number of velocities V;, i = 1, ... ,n. 

As known, 1 this model has the structure of a system of 
semilinear partial differential equations of hyperbolic type 
that defines the evolution of the number densities 
N; = N; (t,x), where t is time and x is space, joined to the 
velocities V;. 

Classically, the study ofthe initial value problem in all 
space essentially consists of the analysis of the existence, 
uniqueness, and asymptotic behavior of the solutions to the 
discrete Boltzmatm equation with given initial conditions 
N;o = N; (O,x) in all space. 

It is well known, after the results of Tartar,2 Beale/ 
Bony,4 Cabannes and Kawashima,s and Toscani,6 that the 
initial value problem in one space dimension has always a 
global solution for bounded initial conditions. Then one may 
derive information on the asymptotic behavior of the solu­
tions under suitable assumptions on the initial data. 

On the other hand, global existence and uniqueness in 
more than one space dimension can be proven only under 
suitable smallness assumptions of the initial data. In other 
words, the distance between the initial conditions and either 
the zero solution or the Maxwell solution must usually be 
small. 

Several papers provide mathematical results on the ini­
tial value problem in discrete kinetic theory for initial data 
close to vacuum in more than one space dimension, whereas 
the mathematical theory for initial conditions near equilibri­
um has 1:leen essentially developed through other papers. 7,8 

In addition to the papers that have already been cited, 
the reader is addressed to the review paper by PIatkowski 
and Illner9 for the mathematical aspects of discrete kinetic 
theory and to Ref. 10 for the more general theory of the 
initial value problem referred to as the full Boltzmann equa­
tion. 

All papers that have been cited above essentially deal 
with mathematical models derived on the basis of simple 
binary collisions. On the other hand, very little is known 
about the analogous results for models that may include 

multiple collisions. These collisions, in particular, may 
hopefully provide a more accurate description of nondiluted 
gases. 

Therefore, it seems interesting that the development of a 
mathematical theory for the analysis of the initial value 
problem for the discrete Boltzmann equation with multiple 
collisions is suitable to show, in particular, the influence of 
multiple collisions upon existence and stability results. 

It will be shown, indeed, that models with multiple colli­
sions have better, in a sense to be specified afterward, stabil­
ity properties than the corresponding models with binary 
collisions only, referring to the Cauchy problem with initial 
conditions near equilibrium. 

More details on the content of this paper are as follows: 
Sec. II provides the general framework for the mathematical 
modeling of kinetic equations with multiple collisions as well 
.as the general definitions of the equilibrium Maxwellian 
state. Section III deals with the analysis of the initial value 
problem for the discrete Boltzmann equation with multiple 
collisions: A global existence and stability result is proven 
for an initial data close to equilibrium. Finally, Sec. IV con­
tains some applications: Two discrete velocity models are 
proposed according to the analysis developed in Sec. II and 
their stability properties are verified on the basis of the analy­
sis developed in Sec. III. 

II. THE DISCRETE BOLTZMANN EQUATION WITH 
MULTIPLE COLLISIONS 

As already mentioned, discrete velocity models in kinet­
ic theory define the time-space evolution of the number den­
sities N; = N;(t,x):[O,T] x ad ..... R+, d>2, ofa gas particle 
system with a finite number of velocities V;, iel = {i, ... ,n}. 

If one considers simple binary collisions between parti­
cles with velocities (v;,vj )++(Vh,Vk), the discrete kinetic 
theoryl leads, in the case of simple collision preserving mo­
mentum and energy, to equations of the type 

(a a +v;oVll)N; = i ')' (AfkNhNk _AZkN;~), 
t j= 1 (tt) 

(2.1 ) 
where the transition rates A Zk are non-negative constants 
joined to the transition probability densities aZk in a fashion 
that 
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A tk = S IVJ - Vj latk, '} aZk = 1, (2.2) 
(tt) 

where S is the cross-sectional area of the gas particles. 
Classically, the transition probability densities a~k satis­

fy the indistinguishability and reversibility properties 
hk kh hk kh aij = aij = aji = aJj , 
hk_ ij 

aij - ahk' 

(2.3a) 

(2.3b) 

Moreover, the same properties are fulfilled, owing to Eq. 
(2.2), by the transition rates. 

Using these properties, Eq. (2.1) can also be written in 
the following form: 

(i. + v.oV )N = I') A ~.k(NhNk - NN). (2.1') at '''. I '2 ft:t. IJ I J 

Consider now triple collisions between triplets of parti­
cles with velocities (vj,vl'vi )++(vg,Vh,Vk)' and analogously 
for higher-order multiple collisions. Then, the evolution 
equation takes the form 

(~ + vjoV" )Nj =Jj[N] = pt2 J}p)[N], (2.4) 

where the term J}2) is the one already shown in Eq. (2.1) 
and the additional terms have to be computed on the basis of 
pertinent physical assumptions. In particular, the math­
ematical theory should provide models which indicate that 
for a rarefied gas, multiple collisions are less probable than 
binary collisions. The said probability may become of the 
same order only for a dense gas. 

Keeping this in mind and to avoid being too formal, let 
us limit our attention to triple collisions. Then, also taking 
into account the analysis of Refs. 11 and 12, the following 
assumptions are here proposed. 

(i) Collisions preserve momentum and energy; 

(2.5) 

(2.6) 

(ii) The gas particles are not distinguishable and un­
dergo reversible collisions; 

...Jlhk _ ...Jlhk _ •.. ...Jlhk _ _ Ilkh _ ... _ akhg 
U7}1 -Uilj - U1.J1 -Uijl - - Ijl' 

...Jlhk ijl 
U7}1 = aghk · 

(2.7) 

(iii) The transition rates A are related, for symmetric 
collisions, to the transition probability densities by the rela­
tion 

A ~1k = (2Iv'1T)S3/2(S/3)( IVI - vJ I + IVj - vtl 

+ IVj - v/I)~1k, (2.8) 

which express the probability that a particle, say i,j, or I is in 
the action volume of the other two colliding particles. All 
three possible encounters being equally probable. 

Remark 2.1: The indistinguishability and reversibility 
properties of the terms a is transferred, by Eq. (2.8), to the 
termsA. 

Taking into account this property as well as all previous 
statements, the evolution equations for the densities NI , 

when both binary and triple collisions are considered, can be 
written as 
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(i. + v.oV )N = 1 ') A ~.k(NhNk - NN) at '" I '2ft:t. IJ I J 

+..!.. '} A ~1k(NgNhNk 
3! jf;tk 

- NjNjNe ), (2.9) 

where the terms A Zk and A ~7k are given by (2.2) and (2.8), 
respectively. 

Remark 2.2: The modelization (i)-(iii) provides a re­
sult formally analogous to the one of Ref. 11 as far as the 
permutability of the indexes of the terms A is concerned. 
However, it introduces, as in Ref. 12, the concept that multi­
ple collisions are less probable than binary collisions. 

In order to point out the difference of collision frequen­
cy between binary and multiple collisions, it is convenient 
writing Eqs. (2.9) in a dimensionless form obtained normal­
izing time, space, velocity, and density with respect to suit­
able reference quantities, say tc,lc,lc/tc' and Nc and also nor­
malizing the cross-sectional area with respect to 02, where u 
is the radius of the particles, 11'02 = S. This yields the dimen­
sionless equation 

(i.+vjoV,,)NI =..!..(J?)[N] +,.,J?)[N]), (2.10) at E 

where E and ,., are dimensionless constants 

liE = o2lcNc' ,., = ulNc' (2.11 ) 

and where J}2) and J?) are the operators indicated in Eq. 
(2.9) referred to the new dimensionless variables. 

Remark 2.3: Here, E is proportional to the Knudsen 
number referred to Ic' i.e., EO: Kn, and,., has physical mean­
ing if of a smaller order with respect to the unity. 

The analysis proposed to model the evolution equations 
when triple collisions are considered can be straightforward­
ly extended to model an evolution equation in the case of 
multiple collisions. Some additional notations are useful for 
this purpose. Accordingly, let us first write the term A, cor­
responding to encounters with a number p of particles, as 
P 

A p = A ~::::~:; a = {a., ... ,ap}, {3 = {f3., ... ,{3p}ElP, 

(2.12) 

whereIP = I X··· Xl withp terms. 
Consequently, the general expression of the collision op­

erator J~,>, aiEl, defined in Eq. (2.4), takes the form 

J~)[N] =..!.. L '} A p( fI Np• - fI Na.), (2.13) 
pI ar ~ q=. q=. 

where ar = {a., ... ,aj_. ,aj+. , ... ,ap}ElP-. and where 

A p = 2 L IVa, - VajIS(~~/2),.,(P-2)~p. 
pep - 1) a,;'aj v'1T 

(2.14) 

The general expression of the corresponding evolution 
equation can finally be written in a dimensionless form as 

(:t +vloVx)NI = !pt2,.,(P-2)J~P)[N]' (2,15) 

where J}p) are given by Eq. (2.13) and are referred to as the 
new dimensionless variables. 

N. Bellomo and S. Kawashima 246 



                                                                                                                                    

Remark 2.4: The indistinguishability and reversibility 
properties. referred for every p>2 to the terms A. can also 
formally be written as 

A ;(a) = A p = A :(P)' 'tIOESp• 'tIa,fJeJP. (2.16a) 

Ap =A~. 'tIa,/3eJP. (2.16b) 

where sp is the permutation group over {1 ..... p} and 

u(a) = {aU(1) ..... aU(p). OESp• aelP. (2.17) 

The notations of Remark 2.4 will be used in the analysis 
developed in what follows. 

The definitions of collision invariants and Maxwellian 
state can now be given. 

Definition 1: A vector ~a" is defined "collision invar­
iant" iffor each p = 2 ..... P the following equality holds: 

Ap(~,;a'-q~,;P.)=o, 'tIa,fJeJP. (2.18) 

The space of collision invariants is denoted by JI. 
Definition 2: A vector function N>O, NeR", is a Max­

wellian if, for each p = 2, ... ,P, the following equality holds: 

A p( IT Na • - IT NP.) = 0, 'tIa,/3eJP. 
q=' q=' 

(2.19) 

It is now a matter of straightforward calculations, also 
after Ref. 1 so that the proof is not repeated, proving the 
following propositions. 

Proposition 2.1: For a vector ;eR", the following rela-
tions are equivalent: 

(i)~; 

(ii) for eachp:(;,J<P)[N]) = O,'tINeR"; 
(iii) (;,J [N) = 0, 'tI NeR". 
Proposition 2.2: For a vector NeR", with N> 0, the fol-

lowing relations are equivalent; 
(i) N is a Maxwellian; 
(ii) log N eJI; 
(iii) for each p = 2, ... ,P: J (p) [N) = 0; 
(iv) J[N) = 0. 
Here, J and N denote, in the statements of Propositions 

2.1-2, the vectors with components JI and NI , respectively. 
Analogous definitions and properties are given in Ref. 11. 

III. STABILITY CONDITIONS AND GLOBAL EXISTENCE 
NEAR EQUILIBRIUM 

Global existence and asymptotic behavior for the solu­
tions to the initial value problem for initial conditions close 
to equilibrium have been studied in Refs. 7 and 8 for discrete 
velocity models with binary collisions only. This section will 
develop the analysis for general discrete velocity models 
with multiple collisions. 

The line developed throughout this section is the follow­
ing: We first derive an evolution equation for the perturba­
tion of the Maxwellian state, then a global existence theorem 
is proven under suitable stability conditions, and finally, 
some detailed criteria are provided in order to verify the 
stability of specific models. 

Keeping this in mind and putting N = {N" ... ,N,,}T, 
J[N) = {J,[N), ... ,J" [N)}T, thenEq. (2.15) canberewrit­
ten in the vector form 
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aN + ± lIaN =J[N) = ±J(P)[N], (3.1) 
at j=' aXj p=2 

where in Eq. (3.1) the dimensionless constants, say E, 'TI, ... , 
have been put (as well as in the equations which follow), for 
simplicity, equal to one. Moreover, 

(3.2) 

where thejth components of the vectors xeRd and VjeR d 

have been denoted by Xj and vij' 

We deal with the initial value problem referred to Eq. 
(3.1) in all space ad when the initial conditions are close to a 
constant Maxwellian M = {M" ... ,M,,}T > ° chosen arbi­
trarily. Letting N = N(t,x) be the solution of such a prob­
lem, it is convenient, as usual, to express N as a perturbation 
of M, by means of a suitable vector functionf = f( t,x), and 
derive an evolution equation for f Thus let 

N = M + AM/. AM = diag{M" ... ,M,,}, (3.3) 

then, substituting (3.3) into (3.1) and recalling that 
J[ M] = 0, yields 

where, with obvious meaning of symbols, J[N] has been de­
composed into the linear and nonlinear terms - L Mi and 
TM[f], respectively. That is, J[M+AMfl = -LMf 
+ TM[f]· 

The term L M will be called, in what follows, the linear­
ized collision operator. Recalling that J is the sum of the J (p) 

terms, one has, based on the fact that L M is linear, the follow­
ing: 

p 

LMf= L L ~)f (3.5) 
p=2 

In addition, using (2.13), an explicit expression of each 
L ~1 can be provided. In details the ajth component of 
L ~)f is, for any ajel, the following: 

1/,2 L '5" A p( IT Ma. + IT M P.) 
p. ar ~ q=' q=' 

X(~/a. - q~/P.). (3.6) 

where the double summation is taken over all arel P - , and 
fJeIP. 

Remark 3.1: The fact that Mis a Maxwellian and conse­
quently it satisfies the equality A PIIqMa. = A pIIqMp., for 
any a, fJeI P, has been used in deriving Eq. (3.6). 

By virtue of (3.6), it is simple to prove the following. 
Lemma: L M is an n X n real symmetric matrix with con­

stant entries. Moreover, LM is non-negative definite and its 
null space ff(LM ) coincides with the space JI of the colli­
sion invariants. 

Proof: Let f and g be arbitrary vectors in R". Simple 
calculations, using (3.6), give, besides constants put equal to 
one, the following: 
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for each p = 2, .. . ,P. 
The right-hand side of (3.7) is symmetric with respect 

to f and g. Therefore, we get 

(L <J;>J,g) = (L <J;>gJ); 

on the other hand, as an elementary property of the inner 
product ofJRn

, we have 

(L <J;>gJ) = (f,L <J;>g), 

then 

(L <J;>j,g) = (f,L <J;>g). 

This shows that each L <J;> is real symmetric and hence the 
same is true also for L M • Moreover, putting f = g in Eq. 
(3.7), shows that (L <J;>J,f) >0, which means thateachL <J;> 
is non-negative. Therefore, also, L M is non-negative. In addi­
tion, LMf = 0 holds if and only if L <J;>f = 0 for each 
p = 2, ... ,P. This property, referred to in (3.7) withf = g is 
equivalent to the following one: 

P ( P P) for each p = 2, ... ,P: A p L fa. - L fp. = 0, 
q= 1 q= 1 

Va,/3eJP. 

This means that feJI. Then we have proved that 
ff (L M) = vii. The proof of the Lemma is then complete. • 

Remark 3.2: The multiple-collision linearized operator 
LM satisfies the same properties of the corresponding opera­
tor in the case of binary collisions. This equivalence was stat­
ed, without proof, in Ref. 11. 

According to Remark 3.2, the same techniques applied 
in Ref. 7 can now be straightforwardly applied in the multi­
collisional case in order to provide global existence results 
for the solutions to Eq. (3.1) for initial data in a neighbor­
hood of a Maxwellian. 

In general, global existence does not hold for all discrete 
velocity models, but only for models that satisfy suitable sta­
bility conditions, which assure the energy decay of the solu­
tions to the linearized problem. 

Keeping this in mind, we recall the stability conditions 
formulated in Ref. 13 as an improved version of the condi­
tions previously given in Ref. 7. Then let 
6) = {wI,,,,,Wd}ESd- 1 and let 

d 

V(6) = L Vjwj = diag(v1°6), ... ,vn °6), (3.8) 
j= 1 

then the two equivalent stability conditions, which follow, 
can be stated: 

Stability condition 3.1: Let ~ and let v( 6)¢ = A¢ for 
6)~ - 1 and AEJR, then ¢ = O. 

Stability condition 3.2: There exists a matrix K(6) 
smoothly depending upon 6)~ - 1 with the following prop­
erties: 
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(i) K( - 6) = - K(6) for 6)~-I; 
(ii) K(6) is, for each 6)esJ-I, a real skew-symmetric 

matrix; 
(iii) the symmetric part of the matrix K(6) 

V( 6) + L M is positive definite for any ~ - I. 

Under Stability condition 3.1, which is equivalent to 3.2 
(according to Theorem 1.1 of Ref. 13, see also Sec. 4.3 of 
Ref. 4), global existence of the solution to the initial value 
problem for initial conditions near equilibrium can be prov­
en according to the following theorem. 

Theorem: Let d>2. Assume that stability condition 3.1 
holds and consider the initial value problem defined by Eq. 
(3.4) with initial dataf(O,x) =fo(X),XERd. 

(a) Global existence and stability. Suppose that 
foElfs(JRd) for s> [d 12] + 1 such thatthenormoffo, Ilfolls is 
sufficiently small. Then, the initial value problem has a 
unique global solutionf = f (t,x) which satisfies the follow­
ing: 

jEBO([O,oo );HS(Rd»nB 1([0,00 );Hs-1(JRd», 

aJEL 2([0,00 );HS-1(Rd», 
(3.9) 

with obvious meaning of symbols. In addition, the following 
estimate, 

(3.10) 

holds for any t>O, where c is a constant. Moreover f (t,x) 
converges to zero uniformly in xEJRd as t ..... 00 . 

(b) Quantitative asymptotic behavior. Suppose, in addi­
tion, thatfoElfS(Rd)nLP(Rd) for s>[dI2] + 1, l<p<2 
and that the norm Ilfolls,p is sufficiently small, then the solu­
tion obtained according to step (a) satisfies the following 
inequality: 

Ilf(t)lls<C(l + t) -rllfolls,p, (3.11 ) 

for any t>O, where Cis a constant and r = (d 12) (lIp - 1/ 
2). 

Proof Considering that the statement of the theorem 
refers first to global existence and stability and then to quan­
titative asymptotic behavior, then also the proof, which fol­
lows the same logic line as in Ref. 7, is in two steps. 

Step 1: Global existence is proven applying the classical 
fixed point theorem. Consider then the Banach space X S de­
fined as 

XS = (fEB °([0, 00 );HS(Rd»;aJeL 2([0,00); 

XHS-1(Rd »}, 

equipped with the norm 111'111 s: 

11lf111~=supllf(t)II~+ioo lIaJ(t)II~_1 dt. (3.12) 
1;;.0 ° 

For a given function geX s, let us consider the linearized 
equatio"l 

af d j af 
AM-+ L VAM-+LMf=TM[g], (3.13) at j= 1 aXj 

with initialconditionsf (O,x) = fo(x), xERd. This linearized 
problem has a unique solution: 
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feCO([O,CX) ),HS(Rd»nC1([0,CX) );HS-l(Rd». 
An estimate on the solution will now be derived in order to 
show thatfeXs. To this aim, we take the Fourier transform 
of (3.13) with respect to the variable x, obtaining 

AM a/ + UlslV(ro)AM )/= TM[g], (3.14) at 
where/(t,s) is the Fourier image off (t,x) , and ro = Sflsl. 
Since Stability condition 3.1 is equivalent to condition 3.2, 
we can find a matrix K ( ro) characterized by the properties 
defined in the said condition. Then, E[}] can be defined, 
with the aid of such a matrix, as 

(3.15 ) 

where a > 0 is a constant, per) is a function of r>O such that 
per) =rl(1 +r),and ( ... ) istheinnerproductofC n

• 

It can now be easily verified that if a> 0 is chosen suffi­
ciently small, then repeating calculations technically analo­
gous to the ones contained in the proof of Proposition 4.1 of 
Ref. 7, one has 

elfl2<E If] <elfl 2 (3.16) 

and 

aE If] + ep(lsl)lfI2<ClTM[gW, at 
per) = r/(l + r), (3.17) 

and e and Care positive constants. In particular, inequalities 
(3.16) and (3.17) can be derived on the basis of properties 
(ii), (iii) of K(ro), on the ones of LM stated in the lemma as 
well as the fact that T M [g] is orthogonal to vR. If now 
(3.17) is multiplied by (1 + Isl2Yand the integration over t 
and seRd is executed, then also using (3.16) together with 
Plancharel's theorem, one can prove the following estimate: 

Ilf(t) II; + l' lIaJ(r)II;_ldr<C~llfoll; 
(3.18) 

where Co> 1 and C are constants and t>O. 
On the other hand, by virtue of Nirenberg's inequality, 

one has for some constant C and using the fact d>2 (the 
estimate, in fact, is not true for d = 1), 

II TMgIIs<cCt: Ilgl~)lIglislIaxglis-I' 
Then one obtains 

(3.19) 

The estimate (3.18) combined with (3.19) shows that if 
geXs then also feXs. In addition, the same inequalities 
[(3.18) and (3.19)] show thatthemappingg.-+f defined by 
(3.13) has an invariant subset weX S defined by the closure 

W = (feXs;lllfllls<2CollfoIIJ, (3.20) 

where Co is the constant already defined in (3.18), provided 
that the norm of fa is sufficiently small. Moreover, if the 
norm of fa is sufficiently small, the mapping ~f is a con­
tractive mapping with respect to the norm 111'llls' Conse-
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quently, a unique fixed point of such a mapping exists in W 
and is the solution of the initial value problem. This proves 
the first step of the theorem's proof. 

Step 2: The solution f of (3.4) satisfies (3.16) and 
(3.17) withf = g, therefore we have 

If(t,sW<C exp( - ep( Isl)t)Vo(sW 

+ C f exp( - ep( Isl)(t - r» 

X IT M [I] (r,S) 12 dr, (3.21 ) 

where e and C are positive constants. By straightforward 
calculations, (3.21) yields 

Ilf(t)II;<C(1 + t)- 2Yllfoll;,p + C 1'(1 + t- r) -d/2 

X II TMf(r) 11;,1 dr, (3.22) 

where C is a constant and r = (d 12) (1/p - 1/2). On the 
other hand, for some constant C one has 

IITMflls,1 <cCt: Ilfll:c)ilfll;. 

Substituting this estimate into (3.22), yields the estimate 
(3.11) required by the statement ofthe theorem, if Ilfoll •. p is 
sufficiently small. The proof of the theorem is completed. • 

Remark 3.3: The method employed in the theorem is 
not valid for d = 1. Nevertheless, it seems simply a technical 
problem deriving a mathematical result analogous to the one 
proved above still in the line followed in Ref. 7. Nevertheless, 
this aspect is not developed in this paper. 

The application of the theorem to the analysis of the 
intial value problem near equilibrium referred to specific 
models requires the analysis of the space vR of collision in­
variants and the verification of Stability condition 3.1. Nev­
ertheless, it is reasonable to expect that several specific mod­
els with multiple collisions are characterized by only 
classical collision invariants defined by mass, momentum, 
and energy: 

t/J(O) = (1, ... ,1)T; 

U) T t/J = (vIJ, .. ·,vnJ ) , 1 <..i<d; (3.23 ) 

t/J(d+l) = (~, ... ,~)T. 

When this situation is verified, simple stability criteria can be 
provided in order to verify technically Stability condition 
3.1. The first one is essentially the same as the one proposed 
by Cercignani in Ref. 15 referred to models with binary colli­
sions only, and can be formulated as the following. 

Criterion 3.1 (Ref. 15): Let d>2 and consider a d-di­
mensional model such that 

dim vR = d + 2, vR = span{t//O),t/JU), 1 <..i<d,t//d+ I)}. 
(3.24) 

Then the model satisfies Stability conditions 3.1 if the fol­
lowing (d 2 + 5d + 2)/2 vectors are linearly independent: 

t/J(O),t/JU), 1 <..i<d; v't/J(k) , 1 <..i<k<d; 
(3.25) 

v't/J(d + I), 1 <..i<d. 
Remark 3.4: Criterion 3.1 requires that the number n of 

velocities in the model satisfies the condition 
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n>(d 2 + 5d + 2)/2 and that the model involves different 
velocity moduli. 

When the discrete model is a relatively simpler one and 
involves only one velocity modulus, the collision invariants 
t/J(O) and t/J(d + I) are not linearly independent. In this case, a 
similar criterion can be formulated 

Criterion 3.2: Let d>2 and consider ad-dimensional 
model with one only velocity modulus and such that 

dim1=d + 1, 1=span{t/J(O),t/J(j),I~<d} (3.26) 

then such a model satisfies Stability condition 3.1 if the fol­
lowing (d 2 + 3d)/2 vectors are linearly independent: 

t/J(O),t/J(j),I~<d,vit/J(k), 1~<k<d, 

vit/J(j), 1~<d - 1. 
(3.27) 

Proof: Let tfJeJI and let V( m)t/J = At/J for meS d - 1 and AeR. 
The relation tfJeJI means, according to (3.26), that 

d 

t/J = aot/J(O) + L ajt/J(j), (3.28) 
j=1 

for some real constants a o and al' 1 <j<d. Ifthis expression 
is substituted into V(m)t/J = At/J, then a simple calculation 
that uses (3.8) as well as the relations 

V}t/J(O) = t/J(j), 1~<d; 

Vjt/J(k) = Vkt/J(j), 1~,k<d; 

d 
L VjrfJi = t/J(d+ I) = v2t/J(O); 
j= 1 

where v is the modulus of the velocities Vj' shows that 

d 

admdv2t/J(O) + L aofJJjt/J(j) + LL (akm) + ajmk} Vj 
j= 1 

d-I 

Xt/J(k) + L (ajmj - admd) Vjt/J(j) 
j= 1 

d 

= aolt/J(O) + LajAt/J(j) . 
j= 1 

Considering now that the vectors listed in (3.27) are 
assumed to be linearly independent, we can conclude that 

admdv2 = aoA., aofJJj = ajA, 1<j<d, 

akmj + ajmk = 0, 1~<k<d, 

ajmj = admd' 1~<d - 1 . 

These relations show that ao = 0 and aj = 0, 1 ~<d, which 
imply, according to (3.28), that t/J = O. This shows that the 
model which has been taken into account satisfies Stability 
condition 3.1. The proof is then complete. • 

IV. APPLICATION 

As an application of the theory developed in the preced­
ing sections, we shall consider here two specific models and 
verify, for these models, the stability criteria developed in 
Sec. III. It is interesting, indeed, verifying if the stability 
conditions are fulfilled by model with multiple collisions 
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when the same conditions are not verified for the corre­
sponding model with binary collisions only. 

In details, we shall consider here a plane regular discrete 
velocity model such that all velocities have the same modu­
lus but six directions in the plane and a second model with 12 
velocities in the plane, six with a modulus and six with a 
different one. 

A.Model1 

Consider the following six-velocity discretization: 

i = 1, ... ,6: VI = cej , el = cos(17'16 + 11'(i - 1 )/3)m, 

+ sin(11'/6 + 11'(i - 1 )/3~; 
(4.1 ) 

if one restricts the attention to the so-called "nontrivial" 
collisions, namely, collisions which modify the fluxes, that 
is, 

(Vj,Vj)¥(Vg,Vh), (vjJvi'v/)¥(vg,Vh,Vk), (4.2) 

It is simple to verify that condition (4.2) holds true, in the 
case of both of binary and triple collision, when the resultant 
momentum before and after the collision i8' equal to zero. 

In detail, the nontrivial collisions consistent with the 
velocity discretization (4.1) are the following. 

(a) Binary head-on collisions with equally probable 
scattering in all radial directions: 

(b) Triple collisions between particles forming an equi­
lateral triangle with equally probable scattering into three 
equally angularly spaced directions: 

(Nj,Nj+2,Nj+4}-(Nh,Nh+2,Nh+4)' h = 1, ... ,6. 

The application of the method developed in Sec. II pro­
vides the following model equation: 

where all quantities have been normalized as indicated in 
Eqs. (2.lO) and (2.ll). 

Remark 4.1: If all velocities in the plane are considered, 
say v(O) = c(cos Oml + sin O(2)' instead of six velocities 
only, then one obtains the so-called semidiscrete Boltzmann 
equation with triple (symmetrical) collisions. Such a model 
was proposed by Cabannes 16 and studied in Refs. 17 and 18 
in the case of binary collisions only. 

This equation defines the time-space evolution of the 
density N = N(t,x;O) by means of the integrodifferential 
equation 
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(:t + V(O)·Vx )N(t,X;O) 

= ..!.{2cS (fT(N(t,x;f/J)N(t,x;f/J + 17') _ N(t,x;O)N(t,x;O + 1T»)df/J + 71 ~6/1T CS·S 3/2 
E 17' Jo (217') 

X ffT (N(t,x;f/J)N(t,X;f/J+ 2;)N(t,X;f/J+ 4;)-N(t,X;O)N(t,x;O+ 2;)N(t,x;O+ ~) df/J)}. (4.4) 

B.Model2 

Model 1 is characterized by only one velocity modulus. 
This implies that only two ftuid-dynamic parameters can be 
regarded as independent variable or, in other words, the tem­
perature is not an independent variable. 

On the other hand, using the same direction discretiza­
tion, as in modell, it is possible to obtain a 12 velocity model 
with 2 velocity moduli by means of the following discretiza­
tion: 

i = 1, ... ,6:x; = ceo v; = 2ce; . (4.5) 

If each set of velocities is joined to the densities N; and 
M;, respectively, the following nontrivial collisions are con­
sistent with such a discretization. 

(a) Binary collisions between Nand M particles, sepa­
rately, as in (a) of model 1. 

(!....+ce .• V)N. at I x I 

(b) Binary collisions mixing Nand M particles: 

(N;oM;+2 )~(N;+3,M;+ I );(Nt,M;+4)~(N;+3,M;+s) . 
(4.6) 

(d) Triple collisions among Nand M particles, sepa-
rately, as in (b) of model 1. 

(e) Triple collisions mixing Nand M particles: 

(N;,N;oM;+3 )~(Nh,Nh,Mh+3); 

(M;,N;+3,N;+3 )~(Mh,Nh+3,Nh+3)' 

for h = 1, ... , 6 and 

(N;,M;+ I,Mt+3 )~(N;+3,M;+2,M;); 

(NoM;+s,M;+3)~(N;+3,M;+I,M;) . 

Consequently, the discrete velocity model can be writ­
ten as 

=..!.{CS ± (NhNh+3 -N;N;+3) + 2cS(N1+3M;+ I +N;+3M;+S -N;M;+2 -NtM;+4) +7J(~6/1T)CS.S3/2 
E 3 h=1 3 

X ± (NhN"+2N"+4 -NtN;+2N;+4) +7J(_2_)CS.S3/2[ ± (N"N"M"+3 -N;N;M;+3) 
h=1 3,fii "-I 

+6(N;+3M;(M;+1 +M;+2) -N1M1+3(M;+1 +M;+s»]}, (4.7a) 

(!....+ 2Ce;"Vx)M; =..!. {2CS ± (M"M" + 3 -M;M;+3) + 4cS(M1+3N;+ I +M;+3N;+S -M;N1+2 -M;N;+4) at E 3 h= I 

+71 2.(~6/1T)CS.S3/2 ± (MhM"+2Mh+4 -M;M;+2M;+4) +~S·S3/2 
3 h = I 3,fii 

X [htl(Mh+ 3NhN" -M;N;+3 N;+3) 

+6(M;+3 N;(N;+1 +N;+2) -M;N;+3(Nt+ I +N;+s»]}. (4.7b) 

c. Global existence and stability 
Section III has shown that global existence of the solu­

tions to the initial value problem near equilibrium for dis­
crete velocity models with multiple collisions can be proven 
under suitable stability conditions. In particular, we refer to 
conditions 3.1 and 3.2 as well as to the sufficient stability 
criteria provided in order to verify the above conditions. 

Model 1 will be studied in details, whereas only some 
indications will be given referring to model 2 in order to 
repeat technically the analysis. In particular, condition 3.1 is 
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verified for model 1 by using criterion 3.2. While the same 
condition can be verified for model 2 by using criterion 3.1. 
Referring now to modell, the following can be proven. 

Proposition: Consider model 1 when both binary and 
triple collisions are taken into account, then 

(i) Dim.L = 3, .L = span{f/J(0),f/J(I),f/J(2)}, and the sta­
bility condition 3.1 is verified through criterion 3.2. On the 
other hand, when binary collisions only are taken into ac­
count, then 

(ii) Dim.L = 4,.L = span{f/J(0),f/J(I),f/J(2),X} where X is 
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an artificial invariant, specified later, and Stability condition 
3.1 is not verified. 

Proof: Let c = 2, then the six velocities of the model are 

VI = - V4 = (Jj,l), 

V2= -Vs= (0,2), V3 = -V6= (-Jj,l). 

Therefore, in two space dirnensions 

Vi = Jjdiag(1,O, - 1, - 1,0,1), 

V 2 = diag(l,2,1, - 1, - 2, - 1) . 

The space of collision invariants has dimension 3 and is 
spanned by mass, and momentum, in the directions 0)1 and 
0)2' as vectors of R6: 

dim JI = 3, JI = span{~(l),~(l),~(2)}, 

where 

1 1 1 

1 ° 2 

~(O)= 
1 

~(l) =Jj -1 
~(2)= 

1 
, 

-1 
, 

-1 

° -2 
1 -1 

A simple calculation shows that VI~(2) = ~(3) and 
VI~(l) = ~(O) + ~(4), where 

1 

° -2 

~(3)= 3 -1 
~(4)= 

1 
1 

, 

° -2 

-1 
the vectors ~(O),~(l),~(2),~(3), and ~(4) form an orthogonal sys­
tem in R6 and therefore ~(O) ,~(l) ,~(2), V I ~(l), V I ~(2) are linearly 
independent vectors so that the stability condition 3.1 is veri­
fied. (Note that Stability condition 3.1 can be directly veri­
fied by simple technical calculations. ) 

On the other hand, model 1 does not satisfy condition 
3.1 when binary collisions only are considered. To see this, 
we first note that in this case, 

dim JI = 4, JI = span{~(O),~(l),~(2),X}' 

where X is an artificial invariant and is given by 

1 

-1 

X= -1 

-1 
Consider now the set n consisting of six unit vectors in 

(4.8) 

then, it is easy to see that for each evEn, there exist real 
numbers ai' a 2, and f3 satisfying (al>a2,{3) #0 such that 

V(O)~ = ° for ~ = al~(1) + a2~(2) + f3x, 
which means that condition 3.1 is not verified in this case. 
The proposition is then proven. • 
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Remark 4.1: Even in the case of binary collisions only, if 
one considers a one-dimensional flow in 0) directions, it is 
possible to verify Stability condition 3.1 frozen at 0), pro­
vided thatO)#n, wherenisgivenbyEq. (4.8). However, as 
it has been pointed out above, the stability condition does not 
hold for all 0). 

The stability analysis can be applied, in the same fashion 
as for modell, also in the case of the second model thus 
arriving to the same conclusions, which essentially confirm 
that including triple collisions improves the stability proper­
ties of the model itself. We can acknowledge these conclu­
sions without repeating all calculations, which can be re­
garded as a repetition. 

Some conclusions can now be worked out from the anal­
ysis developed throughout the paper. Referring to Ref. 7 
where the stability problem was originally posed in the style 
of this paper, the author conjectured that some models do 
not show stability properties toward equilibrium as their in­
trinsic structure was too simple to be physically consistent 
with a reasonable physical behavior (in our case: stability of 
small perturbations of equilibrium). In the light of the analy­
sis developed in this paper, the said conjecture ap~rs essen­
tially correct. 

In fact, the introduction of triple collisions exploits 
more completely the applicability of a certain discretization 
and may, in the largest part of cases, stabilize unstable mod­
els. In any case, even if this cannot be regarded as a general 
rule, the paper provides a rigorous method to establish sta­
bility properties of the mathematical models of the discrete 
kinetic theory with multiple collisions. 

On a physical ground, it can be conjectured that intro­
ducing multiple collisions increases the gas viscosity so that 
trend to equilibrium is improved. This conjecture, however, 
still has to be put in mathematical terms. The main conclu­
sion still remains that a careful analysis of the stability prop­
erties of the discrete Boltzmann equation is one of the main 
steps toward the validation of specific discrete velocity mod­
els. 
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Addendum: Static spherically symmetric space-times with six Killing vectors 
[J. Math. Phys. 29, 2473 (1988)] 

Asghar Qadir and M. Ziad 
Department of Mathematics, Quaid-i-Azam University, Islamabad, Pakistan 

(Received 29 June 1989; accepted for publication 19 July 1989) 

In a previous papert static spherically symmetric space­
times with six Killing vectors were studied. They gave the 
symmetry group SO (1,2) ® SO (3). Of those space-times 
one metric was a generalization of a metric given by Petrov. 2 

The Killing vectors for that space-time were not given sepa­
rately. They are given explicitly by Petrov and satisfy the 
algebra G ® SO( 3 ), where G has the following commutation 
relations: 

[Xt ,x2] = - X3 , 

[X3,xt] = X2, 

[X2,x3] = 0, 

and is not an SO( 1,2), but a solvable Lie algebra. 

IA. Qadir and M. Ziad, J. Math. Phys. 29, 2473 (1988). 
2A. Z. Petroz, Einstein Spaces (Pergamon, New York, 1969). 
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