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Quadratic alternative algebras are completely classified, up to isomorphism, by means of the
associated set of “vectors.” They include the quaternion and octonion algebras, but also many

other nonassociative algebras used in physics.

I. INTRODUCTION

Quadratic algebras, other than quaternion and octonion
algebras, have been recently studied, in connection with
some physical questions, by Jantzen,' Plebanski and Przan-
owski,? Ilamed and Salingaros,* Domokos and K évesi-Do-
mokos,>® Wene,” '? and others.

The aim of this paper is to unify and cover most of the
“algebraic” results of these authors, providing a description
of a broad class of quadratic algebras, namely, all the qua-
dratic alternative algebras.

Any quadratic algebra over a field of characteristic not 2
can be decomposed into a direct sum of the field and an
anticommutative algebra equipped with a bilinear form.
Hence the properties satisfied by the algebra are closely re-
lated to the properties of the anticommutative algebra and
the bilinear form. If the quadratic algebra is alternative then
the structure of the anticommutative algebra is severely re-
stricted. This will be used to describe these algebras. We
shall recover in this way some classical results on nondegen-
erate quadratic forms permitting composition and results of
Kunze and Scheinberg'’ on alternative algebras with scalar
involution.

Il. QUADRATIC ALGEBRAS

By a quadratic algebra 4, over the field F (F will be
either R or C, but everything will be valid over arbitrary
fields of characteristic not 2), we shall understand any non-
associative algebra with an identity element 1 and such that
1, a, and @* are linearly dependent for any a in 4.

Following Osborn,'? if 4 is a quadratic algebra over F
{multiplication denoted by juxtaposition) and ¥V is the set of
“vectors” [that is, the set of the elements x in 4 such that
x&F but x2eF (here we identify F with F1)], then Vis a
subspace of 4 and 4 decomposes as a direct sumA4 = Feo V.

If x,yeV, we write

xy= —(xy) +x, : »

where (x,y)eFand x-yeV. Clearly ( , )isabilinear form
on V (not necessarily symmetric) and - is an anticommuta-
tive product on V. The multiplication in A is then given by

(@ +x)(B+y) =(af— (x) + (ay + Bx + x°y),
(2)

foraand Bin Fand x, yin V.

Notice that we have added a minus sign to the bilinear
form ( , )asitappearsin Ref. 12. Usually, for any element
a in a quadratic algebra, one writes

1 J. Math. Phys. 31 (1), January 1890

0022-2488/90/010001-05$03.00

a® - t(a)a +n(a) =0, (3
with #(a) and n(a) in F.13
Now, if xe¥, then x2 = — (x,x), and thus #(x) = 0and

n(x) = (x,x); that is, the quadratic form associated to
( , ) coincides with the restriction to ¥ of the quadratic
form n. Moreover

(@ +x)>=(a® — (x,x)) + 2ax
S0
ta+x) =2a n(a +x) =a*+ (x,x).

We list in the next proposition some properties of qua-
dratic algebras that will be useful in the sequel.

Proposition 2.1: Let A be a quadratic algebra over F.
Then we have the following.

(i) The map a—t(a)l — a is an involution of 4 if and
only if ( , ) is symmetric.

(ii) A is flexible [that is, (xy)x = x(yx), for all x, y in
Al ifand only if ( , ) is symmetric and invariant [that is,
(x'y,z) = (x,p-z),forall x, y,zin V].

(iii) If A is a division algebra then for all x (#0) in V'we
have (x,x) #0, — 1 and for all linearly independent x, yin V,
x, y, and xy are linearly independent. Moreover, for finite-
dimensional algebras these conditions are also sufficient.

(iv) If n is nondegenerate [equivalently, if the symmet-
ric bilinear form on ¥ given by (x,y) + (y,x) is nondegene-
rate] then either 4 is simple or 4 is isomorphic to Fe F. If A
is flexible and simple, then # is nondegenerate [equivalently
( , ) is nondegenerate on V].

(v) A is associative if and only if it is flexible and the
identity of the double cross product

(xp)-z=(x,2)y — (N2)x 4)
is satisfied.

(vi) A is alternative [that is, (xy)y = xy* and y(yx)
= y?x, for all x, y in 4] if and only if it is flexible and the
weak identity of the double cross product

(xy)y=xpy)y— (yy)x ()
is satisfied.

(vii) n admits composition [#(ab) = n(a)n(b)] ifand
only if A4 is flexible and

(x,x) (7y) = (6,p)* + (x'p,x°p). (6)

In particular, if 4 is alternative, then n admits composition.
(viii) 4 is a form of the algebra of color” if and only if 4
is flexible, 7 is nondegenerate, for all x, y in V:

((x») )y =4y)(xp), @)
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and there are elements x,ye¥ such that x,y and (x-y) 'y are
linearly independent.

Proof: The assertions (ii) and (iii) have been proved by
Osborn'?; (i), (v), and (vi) are straightforward'*'%; and
(viii) has been proved by the author.'®

With respect to (iv) we can proceed as follows: Let / be
a nontrivial ideal of 4 and let a@ + x be a nonzero element in
I Since the bilinear form (u,0)* = (u,v) + (v,u) is nonde-
generate, (x,p)+ #0 for some ye¥, and hence if @ = 0 then

O0#xy +yx = — (x,p)"el.
Thus we may assume that 1 4+ xel. Now,
(I1+x)x= — (x,x) + xel,

so 1+ (x,x)el,but I #A4,s0 (x,x) = — 1. If ¥ has dimen-
sion greater than 1, then we take y in ¥ with (x,p)* =0,
(»») #0. Then

(1 +x)y+y(1+x)=2pel

and y*= — (y,p)el. Thus I=A, a contradiction. If
dim V=1, V= Fx, and (x,x) = — 1, then F(1 4 x) is an
ideal of 4 and A is isomorphic to Fe F.

If A4 is flexible, then ( , ) is symmetric and invariant,
so its radical (the set {xeV: (V,x) =0}) is an ideal of 4.
Hence if 4 is flexible and simple, then ( , ) is nondegener-
ate.

For (vii), consider a = a + x and & = 8 + y. Then

n(ab) — n(a)n(b) = ((x,p)* + (x-p,xy) — (x,x) (»,p))
+ aB((y.x) — (x,9))
+ a((x-y) + (xp.p)

+B((x,x"p) + (xp,x)). (8)
Then n(ab) = n(a)n(b), for all a, b in A4, if and only if, for
alt x, y in ¥V, we have

(xx) () = (xp)> + (x'p,x°p),

xp) = (px), (xpy)=0.

The last two conditions are equivalent to flexibility. In par-
ticular, if A4 is alternative,

(xpxy) = —((xp)px)

= —((x,p)y — (Yp)x.x),
SO

(x,x)(p) = (x9)* + (xp,x"p)

and n admits composition.

A sufficient condition for the simplicity of 4 was shown
by Sagle.!” Okubo'® uses, as in (iv), the nondegeneracy of a
bilinear form to obtain simple algebras in a more general
setting (see also Ref. 19, Theorem 4.27), but its proof fails
for V¥ of dimension 1. A proof for the more general case
considered by Okubo may be modeled on the proof above.

If 4 is a quadratic flexible algebra and N is the radical of
( , ),thentheinvarianceof ( , ) forces NV to be an ideal
of A. Moreover, Proposition 2.1 (iv) implies that either 4 /N
is simple or isomorphic to Fe F.

In general, it is not true that if the quadratic algebra 4 is
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simple, then » is nondegenerate, as shown by the quadratic
algebra determined by ¥ =sl(2,F) and ( , ) any nonzero
degenerate symmetric bilinear form on V.

There are examples of quadratic algebras that are not
alternative although the quadratic form n admits composi-
tion (n is degenerate in those cases).?®

Notice that if the dimension of A is finite, say m, and 4 is
alternative, then (vi) shows that

Trace ((R,)?) = — (m — 1)(x,x),

so we have that ( , ) equals — 1/(m — 1) times the Kill-
ing form of ¥ [defined as {x,y} = Trace(R,R,)]. Here R,
denotes the right multiplication in ¥ by the element x.

A Malcev algebra is a nonassociative algebra satisfying
the identities x*> = 0 and

(xp) (x2) = ((xp)2)x + ((¥2)x)x + ((2x)x)y.

Any Lie algebra is a Malcev algebra and if 4 is an alternative
algebra, with multiplication denoted by juxtaposition, then
the new algebra defined on 4 by considering the product
[x,y] = xy — yxis a Malcev algebra. Thus if 4 is a quadratic
alternative algebra, then V" with the multiplication - is a Mal-
cev algebra. Moreover, any central simple non-Lie Malcev
algebra appears as the anticommutative algebra V associated
to an octonion algebra. Incidentally, notice that (v) [resp.
(vi)] proves that any anticommutative algebra equipped
with a symmetric invariant bilinear form satisfying (4)
[resp. (5)] is a Lie (resp. Malcev) algebra (see, also, Ref.
21, Corollary 2.1).

Over arbitrary fields of characteristic 3, any anticom-
mutative algebra satisfying (5) is a Lie algebra. In any other
characteristic, an anticommutative algebra satisfying (5) is
a Lie algebra if and only if it satisfies (4), too.

In the next section we shall study the anticommutative
algebras over C that appear as the algebra of vectors of a
quadratic alternative algebra. The method of working will
use almost exclusively very elementary linear algebra. Final-
ly, in Sec. IV, all quadratic alternative algebras will be de-
scribed, recovering in a unified way the classical generalized
theorem of Hurwitz and the results of Kunze and Schein-
berg.!!

lil. ANTICOMMUTATIVE ALGEBRAS VERIFYING (5)
OVER C

We shall assume in this section that F = C (or any alge-
braically closed field of characteristic not 2) and ¥ is an
anticommutative algebra equipped with a symmetric invar-
iant bilinear form so that (5) is satisfied. For any element x
in ¥, R, will denote the map p—>p-x. The linear span of all
products of n elements in V (in any order of parentheses)
will be denoted by V™.

Proposition 3.1: The bilinear form ( , ) is trivial if and
only if ¥ is a two-engelian Malcev algebra [that is, (R, )?

=0, for all xe¥]. In this case ¥* = 0 and V satisfies (4) if
and only if V3 =0.

Proof: The first and last assertions are obvious. Since
(V,V) =0, by linearizing (5) we get

(xp)z=(z'x)'y VxyzeV.
Then
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((xy)-2yt=0@(x»)yz= (tx))z=(zy) (tx),
but

((xp)2)t=((y2)x)t=(x1)(y2)= — (z2p)(t:X)
)

((x-y)z)t=(zp)-(+x)=0

and therefore V* = 0.

The fact that any two-engelian Malcev algebra is nilpo-
tent of class <3 (V* = 0) follows also from some results of
Filippov.?

Corollary 3.2: The radical Nof ( , ) in any quadratic
alternative algebra A is the only maximal nilpotent ideal of
A, it is of class of nilpotency at most 3, and the quotient
algebra is either simple or isomorphic to Fe F.

Let us assume now that {( , ) #0; thus there is an ele-
ment A€V with (h,h) = — 1. Then from (5) we get (R, )>

=R,,soV=V,oV,®V_,, where

V, = {xeV: xR, = ix}.

Now if ze¥V,, then 0 = (z-h) -h = (z,h)h + z; thus V,
= Fh. Moreover

VoV +V_)=Veh (V, + V_)
=(Vy'h,V,+V_,) =0,

so (Vo) =V, +V_,.

If x,yeV,, then

(x9y) = (Xh,J’) = (X,hJ’) = - (X,J’);
thus (V,,V;) =0 and also (V_,,¥_,) =0. Besides,
(x-y)-h +xy=0,s0 (V,)’CV_,and (V_,)?’CV,.

If xeV, and yeV_, then (x-y)-h + x-y = (x,y)h and
(yx)-h —yx = (px)h; hence x-y = (x,p)h.

Three cases appear.

(A) N=V,+ V_,. In this case V,-¥_, =0 and, for
x,pin V,and zin V_,, we have (x'y) -z = O by the lineariza-
tion of (5). We therefore have N * = 0. Moreover, if V satis-
fies (4), then for x,yeV,, (x'y)-h=0,s0 N> =0.

(B) There exist elements eV, and feV_, such that
(e =L Vi=Fe+ NNV,and V_,=Ff+ NNV_,.

In this case, if x,yeNOV,, (x-y):f=0by (5), but

0=((xy)fe= —2(NHH)xy= —xy.

Hence N2 = 0. Moreover, the subalgebra generated by e, £,
and A is isomorphic to s1(2,F) and if {u;: icl} is a basis of
NNV, andv; = u, e, then {v;: icl}isabasisof NNV_,,so
N= o{Fu, + Fv;: icl}.

There is only one, up to isomorphism, irreducible mod-
ule for s1(2,F) considered as a Malcev algebra, that is not a
module for s1(2,F) as a Lie algebra.?® This module has di-
mension 2.

Since

u;"f=(u;, Nh=0=v;-¢
v f=(u;e) f= =2eNu, = —u,
we check that Fu, + Fv; is precisely this non-Lie module

[notice that wu;-(e'f)=u;, but (u,'e)-f— (u; f)e
= — u,;, s0 Fu; + Fv; is not a Lie module for sl(2,F)].

ue=uv,
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If V satisfies (4) and xeNNV,, then (x-e)-h =0, so
xe=0,but0= (x-e)-f= — (ef)x. Hence N=0.

(C) There are elements e,,e,€¥, and f,, ,eV_, with
(ei1fj) = %‘sij (,j=12).

In this case we write e; =f|f, and f; = e,-e,. The in-
variance of ( , ) and (5) show that e, e; =€, ;. /3, fi'f;
= €; e, and (e;f;) = 46;; (i, j = 1,2,3), where €, is the
skew-symmetric tensor of Levi-Civita (€,; = 1). Now, if
zeV, and (z,f;) =0, i = 1,2,3, then

ez= (fl.f2)z= — (f.lz)f‘z =0,
but
0=(z'e3) /3= —2(eyfy)z= —z
Therefore, in this case, N = 0 and ¥V is, up to isomorphism,
the only simple non-Lie Malcev algebra over C.>*
Summarizing these we get the following theorem.
Theorem 3.3: Let ¥ be an anticommutative algebra over
C equipped with a symmetric invariant bilinear form satisfy-
ing (5). Then either (a) V'is a two-engelian Malcev algebra;
(b) there are vector subspaces M;, N,, i = + 1, and skew-
symmetric mappings ¢;; M; XM, >N _,; (i= + 1) such
that V=Cheo M, & N,o M_, ® N_, and the multiplication
in Vis given by

m;-h=im;,, n; h=in,
)]
nM;=n'N;,=m; N, =M;M_,=0,
and
m; -m; = ¢,(m;,m;), (10)
for mi’m;GMia nieNi’ I’J"_" + 1; (C) V=SI(2;C)

® (® {N,:iel}), where Iis an indexing set, N = & {N,: iel}

is Abelian, and each N, is a non-Lie Malcev irreducible mod-
ule for s1(2,C); (d) Vis the simple non-Lie Malcev algebra
over C.

Conversely, all the algebras listed here satisfy (5).
Moreover, FV satisfies (4) if and only if either (a') Vis a
nilpotent Lie algebra of class <2; (b") there are vector sub-
spaces N;, i= + 1, such that V¥=Che N,® N_, and the
multiplicationis givenby n,-h = in;,, N;"N; =0,i,j= 4+ 1;
or (c¢') Vis isomorphic to s1(2,C).

Notice that in all cases the algebra splits over the ideal
N. This could have been easily proved without the reasoning
before Theorem 3.3. It should also be remarked that
Theorem 3.3 is valid over any field F provided either
( , ) =0or thereis heV with 0# — (h,h)eF>.

IV. QUADRATIC ALTERNATIVE ALGEBRAS

In this section 4 will denote a quadratic alternative alge-
bra over R or C (or, with some obvious changes, over any
arbitrary field F, char F #2). Then 4 = F& ¥V and the alge-
bra V satisfies (5). If either F= C or F= R and ¥V contains
an element x such that (x,x) <0, then everything works as in
Sec. III and A4 is completely determined. In the case F =R,
by extending scalars up to C we see that the dimension of the
quotient of 4, by the radical of ( , ), is 1, 2, 4, or 8. In the
latter case, 4 ® 5 C is the split Cayley-Dickson algebra over
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C,'S s0 4 is an octonion algebra and we are done.

So we have to pay attention to the cases in which F = R,
the dimension of 4 /N is 2 or 4 and A4 does not contain any
element xeV with (x,x) <0.

If the dimension of 4 /Nis 2 and eis an element of ¥ with
(e,e) = 1 then R + Re is isomorphic to C. We will identify
both fields. Let o be the conjugate operator of C over R
(1°=1,¢"= —e¢). ThenA=CeNand N*=0.

In this case, for x,yeN,

(xp)e= (x-y)-e=(ex) yeN?,
so N and N 2 are vector spaces over C (action on the right).
Fora=a + Bein C, x in N, we have ax = xa°. Let Sbe a
supplementary subspace to ¥ ? in N. The multiplication in N
determines a skew-symmetric bilinear mapping ¢:
S XS— N2 Now, for u,veS, (u-e)-v= — (u'v)-e, so for
acC, p(uav) = p(u,v)a’.

It is immediate to see that this construction gives an
alternative algebra.

Assume now that the dimension of 4 /N is 4 and that ¢,
and e, are orthogonal elements in Vwith (e;,¢;) = 1,i = 1,2.
Then Q = F1 + Fe, + Fe, + F(e,"e,) is the quaternion di-
vision algebra, 4 = Q& N, and N2 = 0. For ueN, a,beQNV,
we have

(ua)b = (u-a)-b= — (au)-b= (a*b)-u—(ab)u
= u(ba),

so N is a vector space over the division algebra Q°? (the
opposite algebra of Q). On the left, if geQ, ueN, then qu
= uq’, where ¢ is the standard involution in Q. In this way
A is completely determined.

Gathering together these results and the ones in Sec. III
we obtain the following theorem.

Theorem 4.1: Let 4 be a nonassociative algebra over F.
Then 4 is a quadratic alternative algebra if and only if one of
the following holds.

(i) A=FeoV, with V a two-engelian Malcev algebra
and multiplication given by (2 + v) (B + w) =af + v-w.

(ii) A decomposes as a direct sum of vector spaces:

A=FleFheM, e NoM_,eN_,. (11)

Also there are skew-symmetric bilinear mappings ¢,: M,
XM;-N_,; (i= + 1) such that the multiplication in 4 is
determined by

h*=1, mh= — hm,=im,,

nh= —hn, =in, (12)

NM,=M,N,=NN,=MM_,=0,

mim: = ¢i(mi’m;)r

for m;,m;eM;, n.,eN,, i= 4+ 1.
(iii)F = R and A decomposes as a direct sum of vector
spaces:

A=CeoSoT. (13)

Here S and T are vector spaces over C (action on the right);
and there is a skew-symmetric bilinear mapping (over R) ¢:
S X S-T, such that p(s,k,s,) = @(s,,5,) k7, for 5,,5,€S and
keC, where o is the standard involution in C. The multiplica-
tion in A4 is determined by the multiplication in C, the actions
of C on the right on S and 7, and
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ks=sk? kt=tk® 5,5 =@(5,5),
ST=TS=T>=0, (14)
for keC, s,5,,5,€S, and teT.
(iv) A decomposes as a direct sum:
A = My(F) ea(e Fz). (15)
icl

Here Iis an indexing set, and the multiplication in 4 is deter-
mined by the usual multiplication in M, (F), the fact that
@ {F%icl}isanideal of 4 thatsquaresto0,and, for (a,8) in

any copy of F?, by
b
(@B (‘c’ d) = (aa + bac + Bd),

that is, the usual matrix multiplication of (a,f3) by the trans-
pose of (2 %), and

(16)

b d —-b
(“ ) (@B) = (a,ﬂ)( ) . (17)
c d —c a
(v) F=R and 4 decomposes as a direct sum:

Here Q is the quaternion division algebra, N is a linear space
over Q° (the action on the right), and the multiplication on
A is determined by the multiplication in Q and

N2=0, gn=ng°, (19)

for neN and ge@, where o is the standard involution in Q.

(vi) A is an octonion algebra.

Moreover, A is a quadratic associative algebra over Fif
and only if either (i') 4 is asin (i) but with ¥ a nilpotent Lie
algebra of class at most 2; (ii’) 4 is as in (ii) but with
M,=M_,=0;(iii") Aisasin (iii) but with.S = 0; (iv’) 4 is
isomorphic to M, (F); or (v') A is the real quaternion divi-
sion algebra.

Proof: Only a few details must be checked. Case (iv)
corresponds to the case ¥ = sl(2,F) @ {N;; iel} of Sec. III.
Then we can identify 4 with ( ©_ ), ewith ($ 3), Fwith
(S ¢ 1, and, for any i, u; with (1,0) and v, with (0,1) in the
ith copy of F2. The rest is straightforward.

Notice that this provides a proof of Hurwitz’s Theorem,
once it is proved that any composition algebra is alternative
(see Ref. 13).

Remark: Quadratic algebras with the corresponding
norm form n, possibly degenerate, admitting composition
form a broader class of algebras, since this condition affects
only 4 /N, so it allows a great diversity for the radical N. For
instance, it is not always true that there is a subalgebra S'such
that 4 = S e N, as the following example shows:

A=F1+ Fh+4 Fe+ Ff+ Fu,
(20)
V=Fh+ Fe+ Ff+ Fu,

with anticommutative product in ¥ (the algebra of vectors)
given by

eh=e+u, fh=—f
uh=u,

ef=1h, an
ue=uf=0,
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and symmetric bilinear form (
(U,V) =0y (h;h) = — 1,

other pairings being equal to 0.

In this example, N = Fu, A /N=M,(F), the bilinear
form is the one in sl(2,F) so that the corresponding norm
form admits composition. But this algebra does not split
over the ideal N, since it is easily shown that there is no
subalgebra T of Vwith V=Te N.

Actually, Proposition 2.1 (vii) tells us that a quadratic
algebra admits composition if and only if it is a flexible alge-
bra such that its quotient algebra modulo the radical of
( , ) is acomposition algebra.

» ) given by

(ef) =4 (22)

V. CONCLUDING REMARKS

Let us see how the algebras described in this paper unify
some of the quadratic algebras considered in the references.

Ilamed and Salingaros® considered quadratic alterna-
tive algebras with dim V=3 and nondegenerate ( , ).
They correspond to the cases (iv) and (v) of Theorem 4.1
with N = 0. That is, they obtained, up to isomorphism, the
quaternions, M,(R) and M,(C).

Jantzen' considered finite-dimensional quadratic alge-
bras in which V is a Lie algebra and ( , ) equals
— 1/(m — 1) times the Killing form of V. we have seen in
Sec. II that this condition is necessary for 4 to be alternative.
Then he proved that the quadratic algebra so obtained is
associative in the following cases: (i) dim V= 1; (ii) m > 1
and x-y=1/(m — 1) [Trace(ad(x))y — Trace(ad(y))x];
and (iii) dim ¥ = 3 and Trace{ad(x)) = O for all x.

The first of these cases corresponds to Theorem 4.1 (i')
and (ii') with N, =N_, =

In the second case, either Vis Abelian [and we are in the
situation of Theorem 4.1 (i')] or there is an element eV
such that ¥ = Fh & S with Trace(ad(h)) = — (m — 1) and
S = {veV: Trace(ad (v)) = 0}. Hence this latter case corre-
sponds to Theorem 4.1(ii') with the additional condition of
N_, being equal to 0.

Finally, in the third case we get that either Vis nilpotent
of class at most 2—so we are in Theorem 4.1(i'}—or Vis
simple—Theorem 4.1(iv’) and (v').

Plebanski and Przanowski® get the finite-dimensional
associative version of Theorem 4.1 by means of the Bianchi—
Behr classification of real Lie algebras. They call the result-

5 J. Math. Phys., Vol. 31, No. 1, January 1990

ing algebras “quaternionlike algebras” and study the rela-
tion of these algebras with abstract cross products on vector
spaces® [recall Proposition 2.1(v)].
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The rules of canonical quantization of gauge theories are formulated on the basis of the
extended BRST symmetry principle. The existence of solutions of the generating equations of
the gauge algebra is proved. Equivalence between the extended BRST quantization and the
standard method of generalized canonical quantization is established. Ward identities
corresponding to invariance of a theory under the extended BRST symmetry are obtained.

I. INTRODUCTION

The method of generalized canonical quantization is
now becoming increasingly popular as the most effective
means for solving the problems of quantization of dynamical
systems with constraints'~ [see, also, the review (Ref. 4)].
This method is based on the idea of a special type global
supersymmetry, which in the Hamiltonian formalism is a
generalization of the so-called BRST symmetry originally
introduced in the Lagrangian formalism in the Abelian
gauge theory® and in the Yang-Mills theory.® According to
the now generally accepted terminology, the Lagrangian
BRST supersymmetry along with its Hamiltonian analog
are united by the general term “BRST symmetry.”

In its original version, the BRST symmetry means in-
variance of a resultant action under global nilpotent trans-
formations of dynamical variables with one single fermion
parameter. The original BRST symmetry is, in principle,
quite sufficient to construct a correct quantum description of
an arbitrary dynamical system with constraints.

It turns out, however, that the requirement of BRST
symmetry may be substantially strengthened in such a way
that the action be invariant not only under BRST transfor-
mations, but at the same time also under so-called anti-
BRST transformations.”® The totality of global transforma-
tions extended in such a manner introduces instead of the
original “restricted BRST algebra” an “extended BRST al-
gebra.”

The requirement of an extended BRST symmetry yields
two most essential additional advantages. First, the fermion
parameters of BRST and anti-BRST transformations, the
same as their generators, turn out to form a natural doublet
under the global symplectic group Sp(2). Second, the ex-
tended BRST symmetry in a number of cases leads directly
to a natural geometrical formulation in which BRST and
anti-BRST transformations assume the form of supertrans-
lations in configuration and phase superspaces.

The above-mentioned advantages of the extended
BRST symmetry have been pointed out earlier by a number
of authors,?~'! who have also discussed the various technical
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aspects of the corresponding quantization procedure for spe-
cial classes of dynamical systems.

In the present paper we shall, for the most part, concern
ourselves with a consistent formulation of the version of gen-
eralized canonical quantization based on the requirement of
extended BRST symmetry for dynamical systems with lin-
early independent constraints. Besides, the most essential
points of the formulation proposed are substantiated. First,
this is the proof of existence and the description of arbitrari-
ness of solutions of the generating equations and, second, the
proof of equivalence of our formulation and the usual ver-
sion based on the restricted BRST symmetry.

We shall restrict our consideration to the case of first-
class constraints. The extension to the case of second-class
constraints can be obtained in an obvious manner.

The notation used is as follows. We use the standard
definition'? of the Poisson superbracket in phase space
= (P,,0%:

(G.F) = 8G 8F  O6F &G (— 1)@h
50“ 6P, 8Q“ 5P,

(1)

By €(G) we denote Grassmann parity of the quantity G.
Derivatives with respect to generalized momenta P, are al-
ways understood as left-hand, and those with respect to gen-
eralized coordinates Q4 (unless specified) as right-hand
ones. Left-hand derivatives with respect to Q% have a special
sign “/”’: §,/6Q *. The Grassmann parities P, and @ coin-
cide: e(P,) = e(Q") = €,. The superbracket (1) possesses
the standard algebraic properties:

{G,F} = - {F‘)G}( - l)e(G)e(F) 1]
{F,GH} = {F,G}H + G{F,H}( — 1)sP<® | (2)
{F,G}Y,H}( — 1)sP<tD 4 cycl, perm. (F,G,H)=0.

The last relation is the Jacobi identity for the superbracket.

Next, the indices of the global symplectic group Sp(2)
are denoted by lowercase latin characters a,b,c,... and take
on two values a = 1,2. The invariant tensor of the group
Sp(2) is denoted by

© 1989 American Institute of Physics 6



0 1)
b
6‘1_(—1 o/

Symmetrization in Sp(2) indices is denoted by
A{ab}=Aab+Aba.

Gauge indices are denoted by lowercase greek char-
acters a.,5,¥s... .

The ghost number of the quantity 4 is denoted by
gh(A4). For a new ghost number of the quantity A we use the
notation ngh(4).

Gacécb == 52 .

. BRST QUANTIZATION

We consider a dynamical system that in the phase space
of initial canonical variables ( p;,q"), i = 1,2,...,n, is de-
scribed by the Hamiltonian H, = H,( p,q) and by the set of
linearly independent first-class constraints T, = T, ( p,q),
a=1,2,.,m, whose Grassmann parities are €(H;) =0,
€(T,) = €,, and the involution relations hold true:

.{Ta’TB}= TYUZB’ {HO’Ta}=T/3Vg H (3)
where the structure functions U, possess the properties of
generalized antisymmetry UZz; = — ( — 1)*?U%,. Next,

we introduce an extended phase space I" parametrized by the
following set of canonical variables:

F = (PA’QA) = (pi’qi;?aascaa;’ia’ﬂa) 4
€(d) =€, e(C*=¢,+1, e(@)=¢,,

where the ghost momenta &, and the coordinates C**
form doublets with respect to the index a under the group
Sp(2).

P The key role in the procedure of extended BRST quanti-
zation is played by the generating functions Q° and 77°. The
fermion functions £}° are the solutions of Sp(2)-covariant
generating equations

4

{0’} =0, (5)
which also satisfy the boundary conditions
60 = T8,
8Clcan—w_1-0 6)
600 = é'ab.@ab .
677"1 C=7=A=0

In its turn, the boson function 7 satisfies generating equa-
tions of the form

{Zal=o0, (N
with the boundary condition
H|cen—o —a—o=H,. (3)

The total unitarizing Hamiltonian H is now determined in
terms of 77 and 2° by the formula

H=57 + %eab{{(p’nb}’ﬂa} s (9)

where ® is the boson function fixing a concrete choice of
admissible gauge. An essential property of the unitarizing
Hamiltonian H [ (9)] is its invariance

6H={HOQ%u, =0, (10)
under extended BRST transformations of the variables of
phase space I'" [see (4)]
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8T = {I,0%, . (11)

Here 1, is a doublet of constant Grassmann parameters of
extended BRST symmetry. The invariance (10) obviously
follows from Eqs. (5) and (7), as well as from the Jacobi
identity (2) for Q°

We now consider from a quantum point of view the
standard consequences of invariance of the unitarizing
Hamiltonian H under the global transformations (11). To
this end we define the vacuum functional Z,, in terms of the
following functional integral:

Z¢=JDl"exp [%fdt(PAQ"—H)]. (12)
Then Z,;, does not, in fact, depend on the choice of the gauge
functional ®. Indeed, one can readily establish that any
change of the gauge ® —» ® + AP in the integral (12) can be
compensated by the change of integration variables
'-T + 6T, where

8T = (i/2#){T,Q%¢,, {Q°AD} .

Hence Z, , ,o = Z,, and therefore the S matrix is gauge
invariant in the formalism of the extended BRST quantiza-

tion.
Another consequence of invariance of the total Hamil-

tonian, which we discuss here, is the presence of gauge Ward
identities. To derive these Ward identities, we consider the
generating functional

ZJ,r+n)
=fpr exp [—%Jdt(PAQ‘ —H4JT

+T300Y + L Te iradod)].  a
Using this generating functional, the Green’s functions of
the theory with the Hamiltonian H [Eq. (5)] are calculated
through differentiation with respect to the sources J for I'*
=T=J=0. In (13) we have introduced additional
sources I'* to the transformations {I',°} of extended
BRST symmetry and the source T to the generator 1€,
{{r,2%},Q°} and have taken into account that by virtue of
Eqgs. (5) and the Jacobi identity (2) there are no other non-
trivial generators. We shall now make the change of vari-
ables (11) in the functional integral (13), use the invariance
property of H [ (10)], and also use the fact that the Berezin-
ian of the change of variables (11) is equal to unity. Then we
shall obtain the following Ward identities for the generating
functional Z [(13)]:

J 6z _ €T 6—5 =0.
or* or

It should be noted that the derivatives with respect to

the additional sources I'* and T in (14) are left-hand ones.

The identities (14) can be rewritten for the generating func-

tional of the vertex functions (the effective action). The ef-

fective action .S is determined in the standard manner as the

Legendre transformation of In Z with respect to the sources
J:

SUD),r*T) = (#/i) n ZJ,T*T) —J-(I),

(14)

(15)
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where the averaged variables (I") are determined as

# 8In Z(J,T*T)
N=————3—>~ 16
() - 57 (16)
Then (15) and (16) obviously imply
sSUDYIAE) _ an
()
and the identities (14) can be rewritten for S to become
85 85 | aredS_. (18)
6(T) or* or

In Eqgs. (16)-(18) the derivatives with respect to J are left-
hand and those with respect to (I') are right-hand.

Ill. THE EXISTENCE THEOREM FOR GENERATING
EQUATIONS OF THE GAUGE ALGEBRA

The question of existence of solutions of the generating
equations (5) and (7) satisfying the boundary conditions
(6) and (7) is the crucial point of the whole scheme of ex-
tended BRST quantization. Here we shall prove, using a
power series expansion of canonical variables C ** and 7%,
the existence of solutions of Egs. (5) and (7) and describe
the arbitrariness present in these solutions. We shall prove
the possibility of choosing solutions of generating equations
in the form symmetric under the group Sp(2).

In the standard BRST quantization procedure, the ini-
tial canonical variables p; and ¢’ are associated with the zero
ghost number, the ghost variables C* (C*=C*') are asso-
ciated with gh(C ) = 1, and the antighost variables C*(C*
=C) with gh(C*) = — 1, etc. The solutions of generat-
ing equations are expanded in power series of the compo-
nents C * (C * enters only through gauges) associated with a
positive ghost number. Therefore, the requirement of con-
servation of the ghost number in each order determines com-
pletely the structure of the expansion. As a result of the fact
that gh(C*'C #?) = gh(#*) =0 in the procedure of ex-
tended BRST quantization, the structure of the expansion in
power series of C ** and #“ is now not fixed by the require-
ment of ghost number conservation. In view of this, it is
convenient to introduce for all variables of the extended
phase space (4) the so-called “new ghost number” ngh(I")
by the rule

ngh( p;) =ngh(¢’) =0, ngh(C*) =1,

ngh(#*) =2, ngh(Z,.)= —1, (19)
ngh(4,) = -2,
ngh(4B) = ngh(4) + ngh(B),
and to require fulfillment of the conditions
ngh(#) =0, ngh(Q%) =1. (20)

We shall seek solutions of Eqs. (5) and (7) in the form of
expansions in power series of C *® and 7*:

0°= ¥ 02, ngh(Qf)=1, QZ~C """,

n=1

H=Hy+ S H#, ngh(¥#,) =0, #,~C~ 7.

n=1

2n

(22)
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To begin with, we shall prove the existence of solutions
of Egs. (5). In the first-order perturbation series, the solu-
tion of Egs. (5) and (6) has the form

QO =T,C*+ P ,7°. (23)
Suppose that we are given quantities Q% such that Eqgs. (5)

are satisfied in the nth order. Now we shall find the expres-

sion for {Q2°,Q%} in the (n + 1)-th order:
{Qayﬂb},.+1 = W{GQ:}+1 + B:b+ 1 (24)
ab

where the quantities B ;°, , are constructed from Qf, k<n,
and possess the symmetry properties B2, | = B, . The
operators W “in (24) are given by the formula

6 5 €, 51
_— — 1)“en” :
87 . 64, + (=D sCet

(25)

One can directly verify that the W*° [(25)] form a set of
nilpotent anticommuting operators

We=T, +et7,,

wiwb =0, (26)
The quantities B 2%, , satisfy the equations
WeB%, | +cycl. perm. (a,b,c) =0, 2n

which follow, with allowance made for (26), from the Jacobi
identities for €1 calculated in the (n + 1)-th order.

All further steps of the proof are based on the following
lemma (a similar lemma for the case of a single nilpotent
operator W was proved in Ref. 13).

Lemma 1: Any regular solution of the equations

WexX=0, (28)
W{aXa.u-a.,}:O’ (29)
which vanishes when T, = Z,, = 4, =0, has the form
X=l¢, WWY, (30)
X = W{a,yd;“'ﬂn}, (31)

respectively, where ¥, ¥“ "“~' are some functions of the
variables of the extended phase space (4). In Eq. (29) the
functions X “"""“" are regarded as symmetric under permuta-
tion of any indices. The symbol {a,a,'*‘a,} in (29) and
(31) stands for cyclic permutation in a,, a,...,4,,.

To prove the lemma, we shall introduce a set of auxiliary
fermion operators I', “‘conjugated” to W° by defining their
algebra as

Iy =0 WT, +T ,W*=5IN. (32)
The solution of Eq. (32) exists, for example,
5 S
[, =P e —— — €34, . 33
8T, “7° 87, (%)

Given this, the operator N in (32), scalar under the group
Sp(2), takes on the form of “conformal” operator

6 6 I}
N=T,—+ Z,, Aa 34
5T, + 57, + 54, G4
commuting with W¢and I',
NW®=W*°N, NI',=T,N. (35)
Batalin, Lavrov, and Tyutin 8



We shall first consider the solution of Egs. (28). We
shall act upon Egs. (28) from the left by the operator T", and
take into account (32). Then, with allowance made for the
fact that on the solutions N> 0, we have

X=(I/NMW'T' X=(1/N)WT,X. (36)
From (36) it follows that
X=(I/N)W'T (I/N)WT,X
= — W'W*(1/N?)I',I',X)
= e, WWN(1/2N?)e“T, T X), 37

which proves the validity of Lemma 1 concerning solutions
of Egs. (28).

Now let us proceed to the solution of Eqs. (29). To this
end, in the algebra of the operators W and I', we define the
Sp(2) scalar operator M = I', W °. One can readily establish
the following essential properties of this operator:

Mn= (2n—l_ l)Nn—ZMZ_ (2n—-l_ Z)N"_lM,
n>3,(38)
I',M?>=NT,M. (39)

Let us act on Eqgs. (29) from the left by the operators T,
and sum over the index “a.” We obtain

MX™" 4 pNX %~ WL X% =0, (40)
For the functions X " "“ vanishing when T, = 7, =4,
=0, Eq. (40) implies

X = wley e x iy, (41)
where

Y{ %"= (1/nN)T X%, (42)

X = _ (1/nN)MX ™ (43)

The functions X' " satisfy Egs. (29) and, therefore, by
virtue of (40), admit the following representation:

XT;”’an= W{axygz"'“n}+x‘2'1"’“n, (44)
where
a, " 'a 1 a,**+a,a 1 a» - -a,,a
Y "=—T,X}V "= —-———TC,MX" “",
2 aN ! n’N?
(45)
1 1
X9 s - MX{ " =—— M. (46
2 nN ! n’N? (46)

In turn, the functions X3 " also satisfy Eqs. (29) and,
therefore,

X3 = wlayye L x e (47)
yorno L yores_ L popoper-as
nN n’N?3
(48)
X5 —LMX’;""""= 1 apspece
nN n’N3
(49)

With allowance made for (38), from (43), (46), and (49) it
follows that
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X3 "= — /X3 — (2/nHX] (50)
Substituting (50) into (47), we find
X;-"'ﬂn= n W{a.y‘;z"'“n} _ 2 X‘:I“.an
n+3 n(n+3)
n
Then (51) and (44) imply
X‘l’x"'an — n(n + 3) W(a|Y¢21:"'a,.}
(n+1)(n+2)
2
1 wlays e (52)

+—__
(n+1)(n+2)

Finally, taking into account (39), we find, from (41), (42),
(45), (48), and (52),

Xal...a”:W{alr (__1—_ M )X“z"'“n}"_
‘\nN n(n+1)N?
(53)

Comparison of (53) with (31) completes the proof of
Lemma 1.

It should also be noted that the proof of Lemma 1 that
we have carried out here exhibits an important fact concern-
ing solutions of Egs. (28) and (29). Namely, in case the
solutions of Eqgs. (28) and (29) are Sp(2) covariant, the
quantities Yand ¥ "“"~' can be chosen in a Sp(2)-covar-
iant form. To prove this assertion, it suffices to refer to the
representation of solutions of Eqs. (28) and (29) in the form
(37) and (53), respectively.

We now return to the proof of the existence of solutions
of Egs. (5). Since ngh(B%,,) =2, it follows obviously
that, for n>2, we have B2, , =0for T, = #,, =4, =0.
When n = 1, the representation

Bab= _ {Ta7TB}C Bbcaa( _ l)fa
= —T,U%yC PC( - 1)

holds true, and hence we have B® = 0 for T, = 0. Then by
virtue of Lemma 1 there exist functions Y5 _ ,, such that

B, =wly? . (54)
Next, choosing
Qﬁ+1=—Yﬁ+|» (55)

we obtain that Eqs. (5) are satisfied already in the (n + 1)-

th order. Applying induction, we conclude the proof of exis-

tence of solutions of the generating equations (5) with given

boundary conditions (6). Note that, instead of € ,
= — Y., we could take other functions

Q:+l= _Y:+1+Wazn+1 (56)

and again the corresponding Q* would satisfy Eqs. (5) in the
(n + 1)-th order. On the basis of Lemma 1 proved just now,
one can readily show that the terms W*°Z, _, in (56) ex-
haust [ with given boundary conditions (6)] all the arbitrar-
iness in the solution of Eqs. (5) in the (n + 1)-th order.
The above-mentioned arbitrariness in the solution of
Egs. (5) can be transformed to the form of canonical trans-
formation. Indeed, suppose there exist two solutions ¢ and
Q5 of Egs. (5). Suppose next that these solutions coincide up

Batalin, Lavrov, and Tyutin 9



to nth order inclusive [in the first order they coincide by
virtue of the boundary conditions (6)], while in the
{n + 1)-th approximation they are already distinct. We
shall write

‘Q':+l =an+1 +AQ’;+1 -
Then the functions AQ; | satisfy the equations

wiaQl, =0,
whose solution has by virtue of Lemma 1 the following form:

AQL, =W" n4t -
Now we shall perform a canonical transformation of ¢ with
the generating function X, , ,:

O =exp{ — X’n+ 1107 exp{/A\’,,J, 1}
where we have introduced the notation

o 8X. & X\ b

X n+t = 4 A .

- 6P, 6Q 8Q* 6P,

Then in the (n + 1)-th approximation we have

N2 =Q =QF,, k<n,

Q':.a+l = Q";z:+l - {Qa»Xn+l}n+l

=O':+1 - We n+1 =Q’8n+l ’

i.e., solutions of Egs. (5) already coincide in the (n + 1)-th
order. Then by induction we have that any two solutions of
Egs. (5) with the boundary conditions (6) and with identi-
cal new ghost numbers equal to unity are related by a canoni-

cal transformation.
The situation is similar to the existence of solutions of

equations for the boson generating function (7) with the

boundary condition (8). In considering Eqgs. (7) we shall
think of the functions Q¢ as given solutions of Egs. (5). In
the zero approximation, ##° = H,. Next we assume that
quantities 5%°, are constructed such that Eqs. (7) are satis-
fied in the nth order. Let us find the expression for {%°,0°}
in the (n 4 1)-th order:

rat,, .= -w, ,+D:,,,

where the operators W “ are defined in (25), and the quanti-
ties D, , are constructed from #°,, and Q% , ,, m<n. The
Jacobi identities for the functions 57, Q4 Q°, and Egs. (5)
imply that

({%,na},nb } + [{%,nb},ﬂa} =0. (57)
Considering the identities (57) in the (n 4 1)-th order and
taking (26) into account, we obtain

wiph  — (58)
Since ngh(D¢,,) =1 and n + 131, it obviously follows
that DG, =0 for T, =%_,, =A,=0. By virtue of
Lemma 1, the general solution of Eqs. (58) can be written as

:+1 = l’VaXn+1 .
Choosing
%n+l= n41 (59)

we find that Eqs. (7) are already satisfied in the (n + 1)-th
order. Applying induction, we complete the proof of exis-
tence of the solution of Egs. (7) with given boundary condi-
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tion (8). Note that instead of (59) we could takeas #°, , |
the function

i1 =X, + i€, WWY, (60)

and again the corresponding #° would satisfy Eqgs. (7) in the
(n + 1)-th order. On the basis of Lemma 1, one can easily
show that the second summand in the right-hand side of
(60) exhausts all the arbitrariness in the solution of Egs. (7)
in the (n 4 1)-th order.

The description of arbitrariness in the solution of Eqgs.
(7) with the boundary condition (8) rests upon the follow-
ing lemma.

Lemma 2: Any regular solution of equations

{0°x} =0, (61)
vanishing when T, = Z _, = A, =0, has the form
X=1e,(Q%{0%7}}, (62)

where Yis a certain function of the variables of the extended
phase space.

We shall seek the solution of Egs. (61) in the form of
expansion in power series of C ** and 7%

x=73 X, X,~C"=mr.

n=0

In the zero-th order, Eq. (61) has the form
WX,=0.

By virtue of Lemma 1, the solution of this equation,
Xo=le, WWY,=1¢, (Q{Q%Y}} + -,

with accuracy up to terms of higher order in C “* and I1* can
be represented in the form (62). Next we suppose that up to
the nth order the solution X of Eq. (61) can be represented in
the form of (62):

Xzieab{nby{ﬂa9[Y]n}}+X(n+1) ’ (63)

with a certain function [ Y '],, which is a polynomial of de-
gree n with respect to powers of C and 7. In the (7 + 1)-th
approximation,

Xn+l = %eab [Qb’{ﬂa’[y]n}}n+l + AXn+ 1

(64)
AXn+l = (X(n+1))n+1 s
where the function AX,, , , satisfies the equation
Wa n+l1 = 0 4
and, therefore,
AX, ,, =l ,W°WY,
=1e, (0°{Q°Y, 1} + -, (65)

with accuracy up to terms of higher order than (n + 1).
Taking (63)-(65) into account one can represent the solu-
tions of Eq. (61) in the (7 4 1)-th approximation in the
form (62). Now the use of induction completes the proof of
Lemma 2.

One can similarly prove the assertion that any solution
of the equation

{atx" "} =0,
for X “"""*" symmetric with respect to the indices a; and van-
ishing when T, = Z,, = 1, =0, has the form

Batalin, Lavrov, and Tyutin 10



X Q{G.Y"z""’n} -

Furthermore, one can show that there exist odd functions =,
and an even function © that form, along with €24, the com-
plex

{Qaynb} = {Ea ’Eb} = {00’9} = {Ea )e} =0 ’

{0°=,}=6;0.

Making use of Lemma 2, one can now easily describe the
arbitrariness present in the solution of Eqs. (7) with the
boundary condition (8). Indeed, suppose there exist two so-
lutions of Egs. (7), #*" and #7?, with the boundary condi-

tion (8). Consider the function A% = #V — %@, This
function satisfies the equation

{92057} =0

and possesses the property A% =0 when T, =2,
= A, = 0. By virtue of Lemma 2, ‘

A = e, (251051}

and the arbitrariness in the solution of Egs. (7) with the
boundary condition (8) corresponds to the change of the
gauge in the total unitarizing Hamiltonian.

IV. EQUIVALENCE OF STANDARD AND EXTENDED
BRST QUANTIZATIONS

As is well known, in the standard BRST quantization
procedure the first step is determination of the fermion Q,,;,
and the boson 77, generating functions using the follow-
ing equations and boundary conditions:

80,
{Qmin ’Qmin} = 09 - = Ta ’ (66)
8C*e c=P =0
{%min’ﬂmin}=0’ %min|c=!7”=0 =H0’ (67)

in the minimal sector I, = ( p;,¢;Z »,C%), where Z,
=2, ,C*=C"". Next, making use of Q;, and 7#°,;,, one
constructs the fermion function ,

Q=Qmin + '@a’”a (gazgcﬂ) ] (68)
and the total Hamiltonian H,
H= %min + {\P,Q} E (69)

where W is a gauge fermion.

Returning to the procedure of extended BRST quanti-
zation we note that using a canonical transformation, one
can always bring the function Q' (or ?) to the form (68).
Indeed, consider the canonical transformation P,, 0“4 -~ P/,,
Q'* with the generating function

X(P'9Q) =X0(P',Q) + «@;q(A_l)g(p,aq)Cﬁa

+AL (AT (P77, (70)
where X, ( p',q) is the generator of canonical transformation
of the initial phase variables under which the constraints T,
take on the form

T.(p(P.9).9) =psA5(p.g) . (71)

Here A % is the matrix nondegenerate on the hypersurface
T,=0.
Under the canonical transformations (70),

NN = p:zciaa_'_eabg;b"rla_'_ e, (72)
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The functions 2'° [ (72) ] satisfy Eqgs. (5) and the boundary
conditions

50° — 5 p

8C" ¢ cwamp i =0 bie

PR (73)
=P .

6””“ C'=w=4"'"=0

In the class of boundary conditions (73) there exists a solu-
tion of Egs. (5) in the form

Qe =p,C*+ P 7. (74)
Any two solutions of Eqgs. (5) satisfying one and the same
boundary conditions are known to be related through a ca-

nonical transformation. Therefore, there exists a canonical
transformation P/,, Q"4 P’, Q "4, such that

Q- Q" =plC"* + P, 7", (75)
We now change from the variables P%, Q "“to P,, 0%, em-
ploying a canonical transformation whose generating func-
tion is

Y(P",0) =Xo(p"9) + Zu (A5 (p".9)C*

+ALT+ PICe. (76)
Taking into account that under such a transformation the
relations (hereafter the tilde is omitted)

piC =T, (p,g)C*+ O(C,Z)%),
Prp"e=P 7%,
hold, we obtain
0" -0' =0, (2.0.2.0) + P 77, (717)

where ), satisfies the equation and the boundary condi-
tions (66). Consequently, the function Q' [ (77)] is canoni-
cally equivalent to the function () defined by (68).

Now let us represent the boson generating function 7#°

as
ﬁﬂ=%l +%2, (78)
%l=%‘f=y)’=”=j=0! %||C=:’7=O=HO'

The equation {#°,02'} = 0 falls into two parts:
{# .00} =0, {#,0'}=0. (79)

By virtue of (67) and (78), it follows from (79) that in the
standard version of BRST quantization, 5%, can be identi-
fied with 7, : ¥, = # ... Next, taking into account
Lemma 2 and the fact that %, =0when T, = Z_, =4,
= 0, we conclude from (79) that 7, can be represented in
the form

%2 = {X’Ql} s

where X is a certain fermion function;
Thus the total Hamiltonian of the extended BRST quan-
tization admits the representation [cf. (69)]

H=X,,+ (X +{0,0},0}, 0=02.

We have proved that the extended BRST quantization in a
special basis of canonical variables is a particular case of
standard BRST quantization that corresponds to a special
choice of the gauge.

It should also be noted that at the same time we have
established the following fact: any regular solution of Eqs.
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(5) with ngh(Q?) = 1 is canonically equivalent to a linear-
ized solution of the type (75) with the same new ghost num-
ber. Indeed, suffice it to note that the generating functions of
canonical transformations (70) and (76) conserve the new
ghost number.

V. CONCLUDING REMARKS

We have proved the possibility of a consistent version of
extended BRST quantization and established equivalence
between extended and standard BRST quantizations.

The lemmas proved here also make it possible to de-
scribe the arbitrariness in solutions of the generating equa-
tions (5) and (7) due to ambiguity in the choice of boundary
conditions (6) and (8). It is a well-known fact that the clas-
sical dynamics does not change if to the Hamiltonian H,, we
add a linear combination of constraints 7,: H{ = H,

+ A°T,. Consider the solutions of Egs. (7) that correspond
to boundary conditions with H, and H ;. Denote these solu-
tions by 5 and 77, Their difference AJ¥ = 77" — 77 obvi-
ously satisfies the condition A#¥ =0for T, =%, =4,

= 0 and the equations {AZ°,Q°} = 0. It is immediate from
Lemma 2 that

A = ieab (Qb,{ﬂ.ayz}] ’

with a certain function Z. Consequently, passing over from
the boundary condition with H,to H ; = H, + A“T, corre-
sponds to a change of the gauge in the unitarizing Hamilto-
nian H [(9)].

The classical dynamics is also known to be independent
of the choice of linear combinations of constraints 7,. Let us
investigate the behavior of solutions of Egs. (5) in passing
over from the constraints T, to T, = = 45T, where = 5 isa
certain nondegenerate matrix. We have already seen that
any solution of Egs. (5) is canonically equivalent to a linear-
ized solution. Let {)* and Q' be solutions of Egs. (5) that
correspond to boundary conditions 7, and T',. These solu-
tions are canonically equivalent to one and the same linear-
ized solution and hence are related one to another through a
certain canonical transformation.

Thus all the arbitrariness existing in the solutions of
Eqgs. (5) is described by a canonical transformation, and the
arbitrariness in (7) transforms into the change of the gauge
in the total unitarizing Hamiltonian.

APPENDIX: THE EXISTENCE THEOREM IN THE
STANDARD FORMULATION

We present here, from methodical considerations, the
proof of the existence theorem for generating equations of
the gauge algebra in the standard (nonextended) BRST
quantization procedure. It should be noted that the proof of
this theorem is given in the review (Ref. 4), but it is rather
cumbersome there. Here we shall present a simpler version
of the proof based on a systematic application of the algebra-
ic mechanism the reader may find in Sec. III of this paper.

So, in the minimal sector

Coin = (21452 2,C%) 5 (A1)
we consider the equations
12 J. Math. Phys., Vol. 31, No. 1, January 1990

0N
{nmin ’nmin} = 0’ —_— = Ta ’ (AZ)
, 6C* lc=2 =0

{ymin’nmin}=0’ meinlC:?:O =H0’ (A3)
whose solution is sought in the form

Qmin = i Qnr Qn"'ﬁn—lcny (A4)

n=1 .
Houn =Ho+ S H,, H,~TC". (AS)
n=1

The lowest approximation for £, is

Ql = Taca . (A6)

For higher approximations, the first of Eqs. (A2) gives the
recurrent relations

we,..+B,.,=0, n=12,.., (A7)
where
W=T, é , W?2=0, (A8)

B,.,={[01,.[01,}. .1, [m,.ski Q. (A9)

and { , }, implies the C" approximation of the bracket
{,}

_ The lowest approximation for 77, ,, is obviously H, and
for the approximations following this one the first of Egs.
(A3) yields

WH#,,,=D,.,, n=01l,.., (A10)
where
Dn+[E{[%]n)[n]n+l}n+1 ’ (All)
[(#l,=Y #. (A12)
k=0

For our further puposes we need the following lemma:
any regular solution of the equation

WX=0, (A13)
which vanishes when 7, =0, ﬁa =0, has the form
X=WY. (A14)

To prove this lemma, it suffices, as in the main text, to
introduce the operator I" with the following properties:

r’=0, TW+ WI=N, (A15)

where N is the operator positive on the solutions of the
above-mentioned class.

The operator I corresponding to W from (A8) is cho-
sen to take the form

=2, & (A16)
oT,
and then
S = O
¢ 8T, + 7 87, ¢ )

Applying to (A13) the operator I from the left and taking

“into account (A15), we are led to the assertion of the lemma.

Turning again to the proof of the existence theorem, we
shall first consider Egs. (A2). Suppose that these equations
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are satisfied to an accuracy of C " terms, that is, the functions
Q,, k = 1,...,n, exist. Then from the identity

(iel.,[e1.10901,}=0 (A18)
in the C"* ' order we have

WB,,.,=0. (A19)
From (A4) and (A9) it follows that

B, ilr,-3,-0=0. (A20)

Then, by virtue of the lemma, we find, from (A19) and
(A20),

B,,,=—-WQ,, ; (A21)
this equality being the definition of the function €, ,
~PrCnt

Thus (A21) implies that Eq. (A2) is already satisfied in
the C"*! approximation. Induction by n completes the
proof of the existence of a solution of Eq. (A2).

13 J. Math. Phys., Vol. 31, No. 1, January 1990

We now turn to Eq. (A3). It should only be noted here
that when repeating quite similar arguments, rather than the
identity (A18) one should use the relation

[{[%]n’[ﬂ]n+l}’[Q]n+l}Eo(cn+2) ]

which is identically fulfilled with respect to [H], by virtue
of (A2).
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A differential representation of the classical Lie superalgebra osp(m/2n) acting on superfield
functions is given. This representation is used to construct matrix representations of the finite-
dimensional irreducible representations of the algebra. Inner products on the irreducible spaces
are discussed and classes of star and grade-star equivalent representations are identified.

I. INTRODUCTION

It has recently been shown in considerable detail'~* how
vector coherent state (VCS) theory provides, under certain
conditions, means to induce irreducible highest weight rep-
resentations of a complex Lie algebra or superalgebra g from
highest weight irreps of a subalgebra n,Cg of rank
(ny) = rank(g).

VCS theory makes use of a Z gradation of g,

g=n; + Z n,.;,
i==1,2,..
defined in terms of a grading operator 2, belonging to a Car-
tan subalgebra, by the equation

(Zx) =ix, Vxen,, (1.2)

where the bracket (-,-) is the graded Lie product. Such a
gradation endows the algebra with a Z graded structure. The
zero grade component ny, is called the stability subalgebra.

By definition, a Lie superalgebra, endowed with a Z
graded structure, is a vector space g that (i) is a direct sum of
vector subspaces n;, where the index / takes integer values;
and that (ii) has a bilinear product that satisfies

(1.1)

(xy)en,, ;, (1.32)
(xp) = — (=D (yx), (1.3b)
(x32)) = ({xp)2) + (— DYp(x2)),  (1.3c)

for xen;, yen;,andanyzing.

It can be shown that any classical Lie superalgebra can
be assigned a convenient Z graded structure, with either
imax = 1 or 2. We then have for a classical Lie superalgebra
that the even sector

g = Zni

i even

of the superalgebra is its Lie subalgebra gz =n, or
n, +n_, +n_,. The odd sector is

(1.4a)

gi=ym=n_;+n,,.

i odd
The subspaces

(1.4b)

’max

n, =3%n,

i>0
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n_= yn
<0
are nilpotent subalgebras of raising and lowering operators.
Since each level n; is invariant under the adjoint action ad,
of the stability algebra n, the subalgebras n . are generally
reducible under ad,, .

For i,,, = 1, the subalgebras n, are necessarily Abe-
lian. The first applications of VCS theory addressed Lie alge-
bra cases with n, Abelian,'~ which present some simpli-
fying features. The Lie superalgebra gl(m/n) with n
Abelian and g; = n,, has been studied in Ref. 6.

Recent developments* have shown that VCS theory ap-
plies equally well to Lie algebras with 7,,, >2 and n, non-
Abelian. The aim of this paper is to study classical superalge-
bras for which

& =N, +n_,+n,,

and for which n are non-Abelian and reducible under n,,
More precisely, we consider the osp(m/2n) superalgebras
for all m and n. Among the extra complications arising, note
that, in contrast to the Abelian superalgebraic case for which
the coset representative exp X of G /N, with Xen _ , is para-
metrized by Grassmann variables only, the non-Abelian
case requires a parametrization by both Bargmann and
Grassmann variables since n_, contains elements from both
the odd and even parts of the superalgebra g (see also Farm-
er and Jarvis, Ref. 7).

To improve the efficiency of VCS theory as a tool for the
explicit construction of irreducible representations of simple

(1.5)

_ or semisimple algebras, we introduce herein some significant

developments over previous expositions of the subject.

We give an explicit construction of the irreducible VCS
module as a submodule of the vector-Grassmann-Barg-
mann (VGB) space. This is achieved by expanding VCS
states on an ab initio orthonormal VGB basis. The expansion
operator &, defined by Eq. (6.1), thereby defines a mapping
from theVGB space onto the irreducible VCS subspace.
Note that previous treatments skipped this expansion and
concentrated rather on the construction of matrix represen-
tations of the algebra.

We introduce a projection operator in Eq. (6.3) that
significantly simplifies the identification of the highest
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weight states of the g5 submodules contained in an irreduci-
ble VCS module of g. Previous treatments unnecessarily
linked this identification to the independent problem of con-
structing equivalent Hermitian (star or grade-star) repre-
sentations. Following the introduction of the projector, the
algebraic derivation of relevant recursion formulas [Eqgs.
(6.2) and (7.13)1 is considerably simplified.

The identification of classes of star or grade-star equiva-
lent representations® is shown to be quite simple within the
present formalism. One has only to identify the circum-
stances under which the expression ( —1)® &, where
( — 1)?® is a phase signature proper to either the star or
grade-star case [Eq. (7.14) ], defines a positive-definite op-
erator % on the VCS irreducible module.

Also noteworthy are the following points.

We show how VCS theory provides a rationale for Kac’s
subsidiary conditions® for the finite-dimensionality of irre-
ducible modules of the osp(m/2n) algebra (Sec. VI C).

We show how VCS theory predicts the decoupling'® of
g-invariant submodules for atypical representations (Sec.
VI D).

We construct explicitly all the irreducible finite-dimen-
sional representations of the superalgebras osp(1/2n) for
n»1 (Secs. VIII and IX B), of osp(2/2) (Sec. IXC) and
osp(3/2) (Sec. IX D). Analytical expressions are given for
all matrix elements of the representations. We identify all
classes of star and grade-star equivalent representations for
these algebras and give the (generalized) unitarized forms of
the representations with their properties under (general-
ized) adjoint conjugation.

Il. THE osp(m/2n) SUPERALGEBRA
A. The even subalgebra g =sgo(m)esp(2n)

The even part g5 of the Lie superalgebra g = osp(m/
2n) is the direct sum®'! so(m) @ sp(2n) [and only sp(2n) if
m=1].

1. The so(m) subalgebra

A basis for so(m), m3>2, is given by {H,, = — H,,;
1<a < b<m} with commutation relations
(H,pHyy) = 8y Hoy + 8pyHy + 80Hy + 6, Hyy  (2.1)
(Z, graded commutators are denoted (...,...) in this manu-
script).

It is convenient to introduce a set of Cartan (raising,
lowering, and weight) operators for so(m): we set (we use
the convention that 1<a,b,c,d,... <m while 1<i, j,k,1I,...<r)
with r = [m/2]

Ay = —; =3(Hyp — Hy 151 — iHy_ 1y
—iH,yy 1), 1<i<j<r, (2.2a)
By=—RB =3Hy_ 13 — Hypy — il _ 1
—iHy ), 1<i<j<r, (2.2b)
Cy=4(Hyyy +Hy_ 1351 —iHy 135 +iHyy ),
14, j<r, (2.2¢)

to which we add, if m = 2r 4 1,
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D= — (N2 (Hyyy 1201 +iHy 10, 1<IKr,
(2.2d)

€ = (1/\/5) (Hyp12io1 —iHy, 002:), 1<IKr. (2.2e)

From (2.1), we find the following set of commutation
relations:

(€ ijpd 1) =Op oA y + 6y 1; (2.3a)
<(glj9gk> =5jk'@i ’ (2.3b)
«glp%kl) = 5jk%’il - 511%1‘,‘ s (2.3¢)
(€:)&)= — 6.8, (2.3d)
(CijyBru)= —6uFBy—86uRB ;- (2.3e)

From these we conclude that the set {%;;, 1<i, j<r} gener-
ates a u(r) Lie algebra [or rather its complexification, not to
be confused with the u(n) Csp(2#n) algebra to be introduced
below] while the sets {7 ,;}, {Z,},{%,},and {#;} span,
under ad,,,, irreducible tensorial sets of rank {11}, {1},
{ — 1}, and { — 1 — 1}, respectively.

Similarly, we find, whenever m = 2r + 1, that

(-@w@u) =6i1gk —aikgl ’ (2.30)
(Cond ) =6,D,— 6,9y, (2.38)
from which we conclude that the union of the two u(r) irre-
ducible tensorial sets {2, } and {#;} spans an irreducible
tensorial set of rank [ 1] under the adjoint action of the alge-
bra
so(2r) =span{¥,;, I<i,j<r, &, &, 1<i<j<r},
where the so(2r) algebra closes through
(Bjsol i) =8, 1; — 8aC1; + 8y C 1y — 6;F 1 - (2.3h)

Finally, whenever m = 2r + 1, we verify that theso(m)
algebra closes through

('@i’gj) = d;‘j s (2.31)
(ghgj) ='@ji’ (23_])
(2,8,)=%,; - (2.3k)

All other so(m) commutators involving elements from the
basis (2.2) vanish.

Associated with the generators (2.2) of so(m) are, for
r=[m/2]52,

the set of positive roots + (¢; —¢;)

associated with Z';, 1<i<j<r, (2.42)
the set of negative roots — (¢; — €;)

associated with € ;, 1<i<j<r, (2.4b)
the set of positive roots + (¢; + ¢;)

associated with «;;, 1<i<j<r, (2.4¢)
the set of negative roots — (€; + ¢€;)

associated with #,;, 1<i<j<r; (2.4d)
and, form =2r 4+ 1, o
the set of positive roots + ¢;

associated with &,, 1<i<r, (2.4¢)
the set of negative roots — ¢;

associated with &, 1<i<r. (2.4f)
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For so(2) ~u(1) (m =2), we only have the weight opera-
tor H,, with an associated null root.

2. The sp(2n) subalgebra

Similarly, a Cartan basis for sp(2n) Du(n), n>1, is giv-
en by

{Caﬂ ,Aaﬁ = Aﬁa s Baﬁ = Bﬁa; 1<a,ﬂ<n} (2.5)
with commutation relations

(CoppAy) = 05,40, + 65,4, (2.6a)

(Cop:C,) =85,Co, —8,,Cop» (2.6b)

(CopsB,,) = —64,Bg, —64,B.5 (2.6¢)

and
<AaB’B/,w) = 6a;t CBV + 5av Cﬁp + 5ﬂy Cav + 531/ Ca;t .
(2.6d)

All other sp(2n) commutators involving elements from the
basis (2.5) vanish. Obviously,

n;=span{C,z, l<a,B<n} (2.7a)

generates a u(n) Lie algebra (more precisely, its complexifi-
cation) while the Abelian subalgebras

n,,=span{d,;, 1<a,f<n} (2.7b)

and
1<a,B< n} (2.7¢)

span, under ad,,,, , irreducible tensorial sets of rank {2} and
{ — 2}, respectively.
Associated with the generators (2.5) of sp(2n) are

the set of positive roots + (6, — 8z)

n_,=span{B;,

associated with C,5, I<a<pf<n, (2.8a)
the set of negative roots — (5, — ;)

associated with Cp,, 1<a<f<n, (2.8b)
the set of positive roots + (8, + 8g)

associated with 4,5, 1<a,B<n, (2.8¢)
the set of negative roots — (8, + 85)

associated with Bz, 1<a.,B<n. (2.8d)

3. Cartan subalgebra and Z grading operator

The sp(2n) roots (2.8) and their so(m) counterparts
(2.4) belong to the space h* dual to the Cartan subalgebra h
of g; generated by the set of weight generators

h =span{h,, I<i<r, h,, 1<a<n}, (2.9a)
where

h,=%,; (nosumoni), (2.9b)

h,=C,, (nosumona). (2.9¢)

We therefore have a dual basis {¢;,i = 1,...,n8,,a = 1,...,n}
with

6,(h1)=6‘1, 6a(hj)=0’
€(h,) =0, 6,(hg) =6, (2.10)
The trace operator
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Z=3 heeh (2.11)
=1

naturally grades sp(27) into the three subalgebrasn,n _ ,,

and n_, with Z grade 0, + 2, and — 2, respectively. Since

the generators of

so(m)=n,, (2.12)

commute with the generators of sp(2n) in general and with
Zin particular, and since all generators of u(n) =ng similar-
ly commute with Z, the subalgebra

n, =N, ®ny =so(m) eu(n) (2.13)

can be regarded as a stability algebra (null Z grade subalge-
bra) leaving invariant all subalgebras n  ; of given Z grade
and, by extension, subspaces of representations of given Z
grade. We remark that Z belongs to the center of n:

(Zx) =0, Vxen,. (2.14)

B. The odd subalgebra g; of osp(m/2n)

The odd part g; of the Lie superalgebra g = osp(m/
2n), m#2, carries an irreducible representation®!! [1]: (1)
of its even part g5 = so(m) @ sp(2n), where [1] and (1)
stand for the fundamental irreps of so(/m) and sp(2n), re-
spectively. Under u(n), the sp(2n) irrep (1) splits into the
two irreps {1} and { — 1}:

sp(2n)tu(n) : ({1} +{~-1}.

[For the case m = 2, g; is reducible and spans the irreduci-
ble representations [ 4+ 1]: (1) of so(2)esp(2n)

~u(l) esp(2n).] We therefore introduce the n,
= so(m) & u(n) tensorial sets

n,, =span{D,,; l<a<m, l<a<n} (2.15a)
and

n_, =span{E,,; l<a<m, l<a<n} (2.15b)

spanning the irreducible representations [1]:{ 4 1} and
[1]:{ — 1} of n, (and, for m = 2, the irreducible representa-
tions [ + 1]:{ + 1} and [ 4 1]:{ — 1} of n,), respectively.
We necessarily have

(HopsDey ) = 64 Doy — 8Dy, (2.16a)
(CogsDoy) = 6g,Dc (2.16b)
(H..E,) = 8,E,, —b6,E,,, (2.16¢)
(CupsE..) = —84,E,, , (2.16d)
while
(AopEo) = 85, Deq + 84, D5 (2.16¢)
(BagsDey) = 6p,Ecy + 80, Eg (2.16f)
(A.p,D,,) =(B.g,E,)=0. (2.16g)

Obviously, n ., and n_, have Z grade + 1 and — 1, re-
spectively.

In order for

g=gog =(Mmen ,en_,)e(n,,on_,)

to close upon the Lie superalgebra osp(m/2n), one must
specify a set of anticommutation relations g; X g; — 8; com-
patible with the Jacobi superidentity
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(PAQR)) = ((PQ)R) + (— ! {O(P(QR)),
(2.17)

where §(P) is the Z, grade of the operator Peg = osp(m/
2n), herein assumed to be consistent with the Z grade of P.
We verify that

(Dﬂa’Dbﬁ) = — 6abAaB‘ ’ (2.18a)
( aa’Ebﬁ) = 6abBaﬁ ’ (218b)
<Daa’EbB> = 6abCaB - 6aBHab (2 180)

satisfy (2.17). Equations (2. 18) may present a normaliza-

tion different from those appcarmg in the literature.
Associated with the generators of g; are, for r = [m/

2]>1,

the set of positive roots ( + €; + 8, ) associated with

51: e = (I/Ji)(DZi— re Dy ), 1Ky, I<agn,

(2.19a)
the set of negative roots ( 4+ €, — 8, ) associated with

E;ti,a = (1/‘/5) (Eyi_ 1o +iEy,), 1<i<n, 1<a<n;

(2.19b)
and, if m =2r 4 13,
the set of positive roots + &, associated with
Dy, =Dy, , 10 l<a<n, (2.19¢)
the set of negative roots — &, associated with
Eyo =Ey 14 l<a<n. (2.19d)

C. Supersymmetric invarlant billnear form on root
space

The set of all even roots (2.4) and (2.8) is referred to as
Aj while the set of all odd roots (2.19) is referred to as A;z.
We further distinguish®'" the sets of roots

B ={1(+€6+8) +(—€&+8,);
1<i<r, 1<a<n}, (2.20a)
=@, form=1 (r=0), (2.20b)

i.e., the sets of positive and negative odd roots Jeh* such that
294¢A;.

We find®!! that half the sum of the even positive roots pg
is given by

p5 = pE™ +p_p<2n) (2.21a)
where
ppem ____ z 2n 42 -2a)s,, (2.21b)
a=1
p§0(m) 0, m=12, 2.21¢)
e =_2 (2r+1-—2i)e;, m=2r+133,
2= (2.21d)
p%o(m) z (2’—21)€,, m =2r>4, (2216)

i=1

while half the sum of the odd positive roots (p7 ) is given by

(2.21f)
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for all m. Finally, we denote by p the supersum

P =ps—pi - (2.22)

A supersymmetric invariant and nondegenerate bilinear
form on h* is given by®!

(6,€) = -9, (2.23a)

(€:,6,)=0 (2.23b)

(8:08) = + 8,5, (2.23¢c)
implying

(8,%) =0, VdehA; =A;" +A7 . (2.24)

D. Simple roots for osp (m/2n)

We denote by I a distinguished set® of simple roots for
osp(m/2n) containing a single odd root. It is given (i) for
osp(1/2n), by

O={8, —6,,0, —6;,..8,_, —6,,6,}, (2.25a)
with 8, the odd root; (ii) for osp(2/2n), by
N={e, —6,,6, —6,,6, — 8,0, _, — 5,,28,},
(2.25b)

with (€, — §,) the odd root; (iii) for osp(2r + 1/2n), r31,
by

1-[ = {51 -— 62,62

8n — €156,

—83sBy_ — 8,

— €gyes€r_ 1 — €€, }, (2.25¢)

with (8, — €,) the odd root; and (iv) for osp(2r/2n), r>2,
by

n = {5] - 82,52

8, — €1,6, — €4..00€, | —

— 08350, — 8, ,
6,,6,_ 1 + 6,} ) (2.25d)

with (8, — €;) to odd root. The distinguished set of simple
roots II minus its odd root plus the even root 28, forms a set
of simple roots Il for g; =so(m) @sp(2n) [except for
osp(2/2n), where Il is given by I1 minus its odd root]: it is
given (i) for osp(1/2n), by

O ={6, —6,,6, — 85,8, _, —6,,28,}; (2.26a)
(ii) for osp(2/2n), by
Iy = {8, —6,,6, — 63,...8,_, —5,,25,}; (2.26b)
(iii) for osp(27 4- 1/2n), r>1, by
g =18, —8,,6, — 85,...8,_, — 6,25, ,
€ — €€, | — €,,€, }; (2.26¢)
and (iv) for osp(27/2n), r>2, by
H6={51 —52#52 035000 —5'.’25",
€ — €y, — €€, +E,}. (2.26d)

ill. GRADED HIGHEST WEIGHT MODULES
A. Graded highest weight modules for osp(m/2n)

A Z, graded carrier space for a representatioin of
osp(m/2n) is referred to as a osp(m/2n) module. Let
M(A°®) be a module for a finite-dimensional irreducible rep-
resentation of osp(m/2n) with highest weight
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A= e+ ¥ 038, r=[m/2], (3.1)
i=1 a=1

and highest weight state |A®) such that

B A% = €4[A%) = A7[A%), 1<i<r (nosumoni),

€ y1A%) =0, 1<i <j<r,

D,|A% =0, I<i<r (ifm=2r+1),

o ;|A%) =0, I<i<j<rn;

(3.2)

hy|A%) = Caa|A%) =03 [A%), 1<a<n (nosumona),

C.s|A% =0, I<a <fB<n,

Aaﬁ,Ao) = 0’ 1<a<ﬁ<n,

Daa |AO) = 0, l<a<r) l<a<n-

M(A")(AO) = ['n)eM(AO) such that

This subspace carries an irreducible representation of the
stability algebra n, = so(m) & u(n) conveniently labeled by
its so(m) and u(n) highest weights [1°]:{c°}, where
[A°1=[A949--A%] and {0} ={o 007 -0} refer to
so(m) and u(n), respectively [see Eq. (3.2)]. This subspace
will be referred to as the intrinsic n, module.’

It is assumed herein (although this is not essential for
the validity of the present induction formalism) that the in-
trinsic n, module M ‘A" (A°) is finite dimensional and that
the labels 4 °and o are real numbers such that

(0% -0, 1)eZ*, 1<akn—1,

0%z,

(A°=A% nezZ™*, I<ikr—1 (3.5a)
2A%Z +, m=2r+ 133,

Al +A%Z T, m =2r>4,

where Z * is the set of non-negative integers. The subsidiary
)

A - A
MW(AY = {[n)eM(A") such that Z|m) =z(A)|m)

Z ) = 2"*(A) |n)
Xl”) =0, VXGH+ =Nn,,®n,,

The Z gradation of osp(m/2n) naturally imparts a Z grada-
tion on this module consistent with the Z, gradatjoin.

B. Intrinsic highest Z grade module for n,

Let M *"(A°) be the highest Z grade subspace with re-
spect to the Z gradation, i.e., the subspace of weight vectors
in M(A°) of homogeneous highest Z grade z™* (A%),

2™ (A0) = Z o?,

a=1

3.3)

annihilated by the subalgebra of raising operators
n,=n,,6n,,

] . (3.4)

Aaﬁ|77> = 0, VAaBen+2

requirements® (see also Sec. VI C)
A0, =A0 ...=,1?=0

od+1 a%+2 7

(3.5b)

must also be imposed when m>3 and 0 % <r = [m/2].

C. Intrinsic modules for g;

Besides the intrinsic highest Z grade n, module defined
above, there exist other subspaces of importance for the pres-
ent study. They are defined as the subspaces M (*’(A%),

A=Y e+ Y 0,8,, m=2r+1 (3.6)
i=1 a=1
[compare to (3.1) ], of homogeneous Z grade z(A),
z(A) = Z Ous 3.7

a=1

now annihilated by the subalgebra of n _, raising operators
only,

] , (3.8)

and carrying generally reducible highest weight representations (A) = [41]:{c} of the stability algebran, = so(m) @ u(n). A
n, submodule M A’ (A°) is isotypic in the sense that it is a direct sum of a set of equivalent irreducible n, submodules. It is an in-
trinsic module in the same sense as above for a generally reducible g5 representation in the decomposition

gigs : (A% 3 m, (A), osp(m/2n)iso(m)@sp(2n) : [A°1:(a )4 ; my.[41:{o),
A "0

where m, = m,, is the multiplicity of occurrence of a given
irrep(A) = ([ 1:{0)) of g5 =so(m) @sp(2n). From a
knowledge of the representations of so(m) & sp(2n), an ir-
reducible module for a representation (A) of
so(m) @ sp(2n) can be induced from an irreducible intrinsic
module for so(m) ® u(n). It follows that the module for an
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(3.9)

r

irrep of osp(m/2n) is uniquely identified by specification of
the irreducible components of the various M ‘A’(A%).

IV. VCS THEORY FOR osp(/m/2n)

The VCS theory of osp(m/2n) is similar to that for
gl(m/n) (Le Blanc and Rowe®), the main difference stem-
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ming from the fact that the raising nilpotent subalgebra n__

=n_,®n,, is non-Abelian, that it is reducible under ny,
and that it contains part of g5, namely, n_ ,. Consequently,
the supercoset G /N, must be parametrized by both bosonic
(Bargmann) and fermionic (Grassmann) variables (see
also Refs. 7 and 10).

A. Embedding of an irreducible module in a vector-
Grassmann-Bargmann Hilbert space

An important aspect of VCS theory is the embedding of
an irreducible graded highest weight g module M(A°) in a
vector-Grassmann-Bargmann (VGB) space."*¢ For the
classical Lie superalebra osp(m/2n), the VGB space is the
tensor product space ¥ @ Gr ® Bg, where we have the follow-
ing.

(i) Vis the intrinsic n, module ¥ = M " (A®) defined
by Eq. (3.4). We recall that it carries a unitary irreducible
finite-dimensional representation of the stability albegra ny,.
Let %, = {|57)} be an orthonormal basis for ¥ with respect
to the inner product on ¥ and let {{7|} be a dual basis satis-
fying (3|7} =&,

(ii) Gr is the space of polynomials in the mn
( = dim n__,) anticommuting [ we have assigned a Z, grade
1 to the variable 8, ; the commutator in (4.1), interpreted as
a graded commutator, thus stands for an anticommutator]
Grassmann variables {6,,; 1<a<m, 1<a<n};

( aa,ebﬁ) =O. (4.1)
Equation (4.1) implies
(8,.)°=0; 4.2)

the Grassmann space Gr is thus 2" dimensional. It is iso-
morphic to the antisymmetric (exterior) tensor algebra over
% ™" and has a natural inner product for which the nonzero
polynomials

(1 11 0arin

R, =0,1; |7)eR ,,] 4.3)
a=1a=1
form an orthonormal basis for the vector—-Grassman
VG = V & Grspace. The space Gr carries an irreducible rep-

resentation of the Grassman algebra Gr(mn),

Gr(mn) = span{@aa,a 4 —,1; 1<a<m, l<a<n],
“ (4.4)
defined by the anticommutation relations
(eacuabB) =0, ( aa’abﬁ) =0,
(BocrOsp) = 6,40,5- (4.5)
With respect to the inner product on Gr, we have
(Bag) =0er (Boa)' =6, (4.6)

The Grassman variables and their derivatives can be inter-
preted as fermion annihilation and creation operators; Gr is
thus isomorphic to a fermion Fock space. In terms of the
inner products on ¥ and Gr, the VG space V' ® Gr becomes a
Hilbert space 5y .

(iii) Bg is. the space of polynomials in the
dim n(n + 1)/2 =n_, Bargmann (complex) symmetric
variables {z,z = z4,; 1<a,f<n}. The Bargmann space Bg is
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infinite dimensional. It is isomorphic to the symmetric ten-
sor algebra over € ""* /2, and has a natural inner product
for which the nonzero polynomials

gy
By =1a=1 (1 +5ﬁ7’ n 1”

N =01, ng =012,.; |7)eB ,,]

(6.e)"|7);

|=s

(4.7)

form an orthonormal basis for the full VGB space. The space
Bg carries an irreducible representation of the Heisenberg—
Weyl algebra hw(n(n + 1)/2),

hw(n(n+1)/2)= span{ 2y Vg = 3;:3 ,1; 1<a,f<n ] ,
(4.8)
defined by the commutation relations
(zaﬂ’zuv) =0, (vaﬂavyv) =0,
(VagsZun) = 04,05, + 8,,05,. 4.9)

With respect to the inner product on Bg, we have

z)' ' =V0, (Vo)T=2z,. (4.10)
The Bargmann variables and their derivatives can be inter-
preted as symmetric boson annihilation and creation opera-
tors.'? In terms of the inner products on ¥, Gr, and Bg, the
VGB space ¥V ® Bg becomes a Hilbert space # ygp.

The dimension of the VG basis (4.3) is 2™" times the
dimension of the intrinsic n, module V. Levels can be defined
on this basis in terms of the eigenvalue ng of the -number
operator N© = e Oace- There are mn + 1 such levels. The
number of VG states onagiven levelis () times the dimen-
sion of the intrinsic module. The Z grade of a VG state is
defined by

z=2z""— n,, 4.11)
consistent with the definition (2.11) for the grading opera-
tor, Eq. (3.4) and Eq. (4.20d) below. Now, if the intrinsic
space is assigned a Z, grade 0, consistency requires us to
identify the even (odd) subspace of #°, with the set of all
VG states with n, even (odd). The Z, grade £ of a state is
then given by

§=ng mod 2. (4.12a)

Conversely, if the intrinsic space is assigned a Z, grade 1, we
identify the even (odd) subspace of 5,5 with the set of all
VG states with n, odd (even). The Z, grade & of a state is
then given by

§ = (ng + 1)mod 2. (4.12b)

The dimension of the even subspace of 57y is equal to the
dimension of its odd subspace since

z.(m)=2.00)
ng even ng ng odd Ry

Levels can be also defined on the VGB basis (4.7) in
terms of the eigenvalues n, and the ever eigenvalues 7, of the
operator No = 2,5V .. We define the Z grade of a VGB
state by

z=z""—nyg —n,. (4.13)

This definition is again consistent with the definition (2.11)
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for the grading operator, Eq. (3.4) and Eq. (4.20d) below.
Obviously, the Z, grade of a VGB state is the Z, grade of its
underlying VG state:

£= (2" —ny —n,)mod 2 = (* — ny)mod 2.

, (4.14)

The VCS embedding (this embedding could be consid-
ered as a superalgebraic generalization of the development of
superfunctions”'®) M(A®) -7 p is defined by

[9)~9(6:2) =3 |n)(nlexp T(6,2)|9), |MeBy,

(4.15a)
where
T(62)=6-D+ %Z-A
=3 Y 0D+ LS 24,415
a=la=1 2 py=1

This embedding invokes a projection M(A%) -»M A" (A°)
in which

[9) = exp T (6,2)|9)
projects to its highest Z grade component

[9)~1(62) = |m(n$)

and which, since M(A°) is a direct sum of graded subspaces,
is well defined without the necessity of assuming that M(A°)
is a Hilbert space.

B. The VCS expansion for osp(m/2n)

The VCS realization I'(X) of an arbitrary generator
Xeosp(m/2n) is defined by

LX) ¢(6,2)

=3 [n){(nlexp(I)X |}
1
=; |,7)(771(X+E (7.X)

+ AT UTIO) + "')Xexp(y)ldi)- (4.16)

Because the variables 8, and z,,, belong to algebras that are
independent of the superalgebra osp(m/2n), we have that
all of the following (graded) commutators vanish:

(0,0 X ) ={2,,,X) =0, VXeosp(m/2n). (4.17)

For example, the set {6, } of Grassmann variables anticom-
mutes with the set of odd raising and lowering operators
{D,,} and {E__ }, and (4.16) should be developed accord-
ingly.

The operator I'(X) can be expressed as a differential
operator on the superfield ¥(6,z). First note that, since |7)
belongs to the highest weight g5 submodule M A" (A?),

(7|Bag exp(I)|¢) =0, VBzen_; (4.18)
this is easily verified by considering the Z graded structure of
the highest weight module M(A®) with the understanding

that states of different Z grade are orthogonal. We also de-
fine
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S H ™ |)(nlexp(I)|)
]

=3 [n){q|H; exp(T)|¥),

(4.19)
> Cas’|m (nlexp(T) |¢)
n
= 1m (n|Cop exp(T)|¥),
7
where span{H {""}@span{C3"} is the intrinsic

so(m) ®u(n) representation carried by the irreducible
highest weight submodule M ‘A" (A®). We find, with the
usual convention (we recall that we use the convention that
1<a,b,...<m, 1<a,B,...<n) concerning the summation of re-
peated indices, the following VCS expansion for the genera-
tors of osp(m/2n):

T(4,) =V, (4.20a)
T(D,) =00 — 162,V s (4.20b)
T(H,) =H3" + (8,, 9y, — 64, 9,,), (4.20c)
T(Cop) =CB” — 0.3 0en — 2, 0rs (4.20d)
T(E,) =0,(CA" —42,,Y, —10., 9,,)

+ 0., (H +1(6,, 3., — 6., 3,,))

+ 2y Oy — 10460.06.,V e, (4.20¢)

F(Baﬂ) = Z‘w(c,(,lﬁ\") - ecﬁ aw - % ZB§V§0)
- éeca ocacg-gb) + iaca eca 0dﬁ ada
(4.20f)
where we have used the identities
Vs €xp(T) = A5 exp(T),
Oua €Xp(T) = exp(T ) (D, + 16,,4,4)-

Note that in the VCS realization, the so(m) subalgebra
consists of the piecewise sum by component of an intrinsic
subalgebra (H {2") and a Grassmann realization

H =(0,, 0y, —0,,9,,) (4.21a)
of so(m). Similarly, the u(n) subalgebra consists of the

piecewise sum of an intrinsic subalgebra (C(}”), a Grass-

mann realization

CP=(—040.), (4.21b)
and a Bargmann realization
CR=(—25V,,) (4.21c)

of u(n). Note also that the VCS expansion for the stability
subalgebra n, = so(m) @ u(n) is Hermitian with respect to
the VGB measure whenever the intrinsic representation is
Hermitian (recall that a Hermitian representation of a Lie
algebra corresponds to a unitary representation of the Lie
group). This is an important characteristic of VCS theory
that allows one to construct (see Sec. V) orthonormal VGB
bases with good n, transformation properties upon which
VCS states can be developed. In contrast, one sees that the
VCS expansion for the maximal (here even) subalgebra
n,®n_,on 2 of osp(m/2n) is not Hermitian with respect
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to the VGB measure. This is in spite of the fact that, for
positive integral highest weight, it is known to be equivalent
to a Hermitian representation. The concepts of adjoint oper-
ations and Hermiticity for irreducible representations of
osp(m/2n) will be discussed in Sec. VII. For the moment,
we simply remark that all the computations carried out be-
low exploit the inherent Hermiticity properties of the VGB
bases under n, transformations. '

V. VCS GRADED HIGHEST WEIGHT MODULES

The VCS construction naturally exploits the observed
fact that the restriction of the VCS representation (4.20) of
osp(m/2n) to its stability subalgebra n, = so(m) @ u(n) is
Hermitian under the VGB inner product. This facilitates the
construction of an orthonormal YGB basis that [unlike the
basis (4.7)] reduces the stability subalgebra so(m) e u(n).
The construction is given in Secs. V B and V C below. But
first, we must distinguish a basic VCS representation, which
is irreducible, from an extended VCS representation, which,
generally, is not.

A. Irreducible and extended VCS modules

Starting from an irreducible highest weight representa-
tion of a subalgebra, VCS theory induces (finite- or infinite-
dimensional) irreducible highest weight representations of
the Lie algebra or classical Lie superalgebra under consider-
ation. More specifically, starting from the intrinsic module
M A (A®), the T realization (4.20) generates, through the
usual laddering down process, the irreducible invariant sub-
space M(A®) of the VGB space. According to its definition,
Eq. (4.16), the domain of a VCS operator I' (X) is restricted
to this subspace. However, the VCS operators of Eq. (4.20)
have a natural extension to the whole VGB space. We call
the representation in which the domains of the VCS I opera-
tors are extended to the whole VGB space the extended rep-
resentation and denote it by T

B. Basis for the VG space
Since
(T(Hu),000) = 840y — 80c64» (5.1a)
(T(Cp),0,,) = — 80 6uaps (5.1b)

it follows that the Grassmann variable 6, transforms as the
acomponent of aso(m) [1] tensor and the u component of a
u(n) { — 1} tensor. The set {6,,} thus transforms contra-
gradiently to the set of raising operators {D,, }, which has a
VCS realization involving the set of partial derivatives {5,,,‘ }
comprising a [1]:{ — 1} so(m) @ u(n) tensor.

~ More generally, a basis of fully antisymmetric polyno-
mials of higher rank in the Grassmann variables, orthogonal
with respect to the Grassmann inner product, and having
good n, transformation properties, can be constructed by
considering tensor products of the fundamental Grassmann
tensor 8 {! ;. We shall denote these polynomials by

@[Kl(m,)

(= ¥em_ o (0), (5.2)

where (m, ) and (m _ ,) stand for basis labels for the so(m)
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and u(n) irreps [«] and { — 7}, respectively.

The n, ranks of the polynomials that one can construct
in this way are given by noting that the polynomials of degree
N in the Grassmann variables span a fully antisymmetric
irrep {1} of a u(mn) algebra,

u(mn) = span{6,, 3,5, 1<a,b<m, 1<a,B<n}.(5.3)

This fully antisymmetric irrep decomposes, under the re-
striction u(mn) {u(m) & u(n), into the sum of irreps

u(mn)iu(m) eu(n) : {IN}lz {74 { -7}
where the u(m) algebra '

u(m) = spanlfg,,,, =S 6, 0, 1<a;b<m] (5.42)
is said to be complementar;=tcl> the u(n) algebra

u(n) = span[Cm, = — 2 - 1<,u,v<n] (5.4b)

a=1
in u(mn), where the partition {7} has n rows of length 7, in
the range 0<7, <m, where {-7}
={—7,,—7,_1s» — 71}, and where, as a result of the
antisymmetry of the polynomial, {7} is the partition conju-
gate to {7} having n columns of respective height 7,,. Neces-
sarily

S 5=73 r,=N

a=1 a=1

Since the so(m) irreps contained in a u(m) irrep {7} are
given by the decomposition'?

{%}l; [7/¢1,

(5.5)

(5.6)

where D is the set of partitions having even parts
({€} = {£,£,.-.}, &, even), we determine that the polynomi-
als of degree N in the Grassmann variables span the
so(m) @ u(n) irreps given by the decomposition

u(mn)iso(m) eu(n) :{l”}iz Sy (776 1{ -7}

T &eD
(5.7)

The construction of orthonormal bases for the (generally
non-multiplicity-free) decomposition

u(m)iso(m) :{’T}lz [7/€ 1=1«],
&eD
[«] =[x, ok, ), r=[m/2],
using VCS techniques is given in Ref. 14.
Now, an orthonormal basis for the VG space, which

reduces the stability subalgebra n,, is defined by the coupled
products

G5 B im ) = [OF 5 (O)X |4 ] Byens, (5.9)
where (i) the polynomials ®(60) have been defined above;

(ii) the kets

I =1Cams) (5.10)
span the intrinsic highest Z grade n, module defined in Sec.
IIT A (see also Sec. IV A); and (iii) the square brackets
[-+X*+]refertoaso(m) ®@u(n) (upper and lower) cou-

(5.8)
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pling of the ® polynomials with the intrinsic basis. (All cou-
plings in this manuscript should be understood to be going
from right to left. Also all multiplicity indices resolving the
possible multiplicites arising from the various Kronecker
products are implicitly understood but explicitly ignored for
the sake of notational simplicity. )

Now, observe that all states of the VG subspace of the
VGB space have no dependency on the Bargmann variables
and therefore satisfy the equation

T4 B3 HG50.,) =0, 1<aB<n.  (5.11)

In accord with Eq. (3.8), we conclude the irreducible n,
subspaces of the VG space defined by Eq. (5.9) form a basis
for the n, highest weight (intrinsic) subspaces M ‘*’(A°).
This fact will be highly relevant to the computation of g;-
reduced matrix elements in Sec. VI.

C. Basis for the VGB space

The construction of an orthonormal basis for the VG
space is easily extended to the full VGB space by observing
that, since

(T(H,)z,,) =0,
(T(Cop)zuy) = — b0u25, (5.12b)

the Bargmann variable z,, transforms as a [0] tensor under
so(m) and as the ( uv) component of a u(n) { — 2} tensor.
The set {z,,} thus transforms contragradiently to the set of
raising operators {4 lw} which has a VCS realization glven
by the set of partial derivatives {V,,}; thus it comprises a
[0]:{2} so(m) @ u(n) tensor.

A basis of fully symmetric polynomials of higher rank in
the Bargmann variables, orthogonal with respect to the
Bargmann measure, and having good n, transformation
properties can be constructed'? by considering tensor prod-

(5.12a)

- 5avzp69

ucts of the fundamental Bargmann tensor z{! ,;. We shall
denote these polynomials by
ZP gim_p (2), (5.13)

where (m _,) stands for basis labels for the u(n) irreps
{ — £} with £eD, the set of even partitions.

An orthonormal basis for the whole VGB space, which
reduces the stability subalgebra n, is defined by the u(n)
coupling of the basis of Bargmann polynomials (5.13) with
the orthonormal VG basis (5.9):

T B Rl
=[ZP 5 @) X |E4 1) 1o

=[Z 5 X [BFL () xXIER TN 1 -
(5.14)

VI.I-MATRIX REPRESENTATIONS FOR osp(m/2n)

A. identification of the irreducible submodule of the
VGB space

Considerable economy in the expression of the matrix
elements of an algebra’s matrix representation can be gained
by exploiting the Wigner—Eckart theorem. Furthermore, if
one assumes a complete knowledge of the subrepresenta-
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tions of the Lie subalgebra g; contained in a given represen-
tation of a Lie superalgebra g, it is then sufficient to deter-
mine the g5-reduced matrix elements of the odd tensors of g
to obtain a full knowledge of the superstructure of the repre-
sentations under consideration. We show in this section how
such a program is implemented within the VCS framework.

The irreducible osp(m/2n) module M(A®) can be con-
structed by laddering down from its highest Z grade n,-in-
variant intrinsic module M ‘A (A°). The VCS implementa-
tion of this laddering-down process is achieved by
performing a n, coupling of polynomials ®(T"(E)) in the
VCS lowering operators I (E) with the states of M “*” (A°)

[0} 5 TEIX BN 16
[compare to (5.9) where we have substituted 8— T (E)]. In
this way, M( A°) is generated as a direct sum of ng-invariant
submodules. However, since we assume a complete knowl-
edge of the irreps of g5, it is more economical to represent
M(A°) as a direct sum of g5-invariant submodules each of
which contains, and is characterized by, an intrinsic (n,;-
invariant) highest Z grade subspace M *>(A°). We there-
fore seek to identify these intrinsic ny-invariant subspaces to
characterize completely M(A®).

The identification of the intrinsic n,-invariant subspaces
M M (A®) is grately facilitated by the use of projector opera-
tors. The introduction of such operators is necessitated by
the fact that the subalgebra n_, is not super-Abelian; anti-
commutators of generators belonging ton_, lie in n_,, the
set of lowering operators for sp(2n). Let P denote the projec-
tion operator that projects each g5 module in the VGB space
onto its intrinsic n, subspace M ‘’(A°). If |¢) belongs to a
g; module of highest weight (A) = ([4]:{o}), then
P|gYeM M’ (A®). Consequently, the intrinsic n, submodules
M Y (A®) contained in M(A°) are spanned by the states

PO ,(T(E)X ) 15

{a}(m,) "
These states can be expanded on the VG basis (5.9);
PO L (TENXIEL 1l
= 01841 5 G
n [ my [
= Z| B G o B3 Vg,

The matrix & of expansion coefficients is computed using
the recursion formula (double bars indicates n,-reduced ma-
trix elements throughout)

BdEa B 12015354 5 )
= ELEALHIPTEOIER 5 ). (62

easily obtained from (6.1) using straightforward recoupling
techniques.
The projector P can be written

(6.1)

F(BaB)P(AaB)
P=1-
2 OB T Ao )

| - (6.3)

[the extra terms, of higher order in T(4) and T (B), are not
needed here]. When this expression for Pis introduced in the
recursion formula (6.2a), the latter becomes
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(B B3 Io0164:t A )
= BB A EHTOE 21538 A1)
G BHTOBNE A )

T A T B B TV B (B3 AT )

where
F(O)(Eaa) = 0 (C(AO) - éeca ac#)

+ 0. (HD +4(6,, 8 — 0. 3,,),  (6.40)
TYN(E,) =2, 80y (6.4b)
TOBup) = —146.06:,C %" + 16205645 94,
—18,0.5H L + (aoB), (6.4c)
TO(Bp) =24, (CA” — 0.5 3.y — 125V, ) + (@B).
(6.4d)

The various partial expansion T and T in (6.4) are ex-
tracted from the expansion (4.20) and stand for their N® -
invariant [z-number operator, Eq. (6.5i) below] and their
N'® -increasing components, respectively. It is appropriate
to set

o4y =1
as a starting point for the solution of the recursion formula
(6.2) since the states of M ‘A (A°) are unchanged by the
projection operator.

Matrix elements involving T'?( E) are easily computed
by means of the matrix element equality

(EHELAEHTOB st 2 1)

= (B BI04 5 1) (6.5a)

where
A -~ ~ ~ ~

— ) ® @
Q=lom — Yum — ilsom) + M uimy + Mo

(AL B0,

<F°¥ A B EUTOE 21543k 2 B »

(6.2')

S EHTO@B LI Eh) = Gt Bt

—[m—n— 1)/4]1/;’“’) +[(n+ l)/4]1/\\f(" (6.5b)

A
is a ng—invariant operator with (i) I, ,,, the so(m) quadrat-
ic Casimir operator

Iso(m) =T (H,)T(H,); (6.5¢)

(i) 7.9, the quadratic Casimir operator for the Grass-
mann realization of so (m) [see Eq. (4.21a)],

1Q. =\HDHD, (6.5d)
(iii) I,,, the u(n) quadratic Casimir operator '
Iu(,,, =T(C B)I‘(Cﬁa) (6.5¢)

(iv) 1 (@, the quadratic Casimir operator for the Grass-
mann realization of u(n) [see Eq. (4.21b)],

6) (8) (" (6),
Iu(n) Caﬂ Cﬂa ’

(6.5f)

)1 ( , the quadratic Casimir operator for the Bargmann
realization of u(n) [see Eq. (4.21¢c)],

I, = C“’Céf,’, (6.5g)
(vi) N® the Grassmann number operator
N©—g,_38,; (6.5h)
(vii) N® the Bargmann number operator
N©® =z,,V,,. (6.51)

Similarly, matrix elements involving T*(B) are easily
computed by means of the matrix element equality

Finally, matrix elements involving T(E) are easily computed by noting that

T = [T <ot e

Eigenvalues of the n,-invariant operator Q [Eq. (6.5b)] on the VBG basis (5.14) will be noted

QUL AL o o) =0 (B BRI o ) 1B 5 BEP o B1s)

where

Q(t{,"g i f}ia}’y)] 5}% ; )= yso(rn) ([’1 ])

(m—n—l)E +(n+1) S £

4 a=1
or, more simply,

DIBLE S 1) = Bl 2 BDIBS L B,
when £ =0 ({0} = {o}).
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i u(n) ({(0})

B IODIEYE B, (6.5))
(6.5k)
[4]("14) (6.6a)
so(m)([K]) +£ u(n) ({_T}) +lIu(") ({ é'})
(6.6b)
a=1
(6.6¢c)
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B. I'—-matrix representations for osp(m/2n)

For m+2, the odd elements of the osp(m/2n) superal-
gebra tranform as the components of a single irreducible
tensor of rank [1]:(1) under the Lie subalgebra g;
= so(m) @sp(2n). This tensor, denoted F, comprises the
irreducible [1]:{1} and [1]:{ — 1} n, tensors D and E, re-
spectively [cf. Egs. (2.15)]. For m = 2, Fis the sum of two
irreducible tensors of rank [ + 1:(1), which, respectively,
comprises the n, tensors [ + ]:{1}and [ 4 ]:{ — 1}. Tocal-
culate g5-reduced matrix elements of Fin the T representa-
tion, one clearly needs a basis for the representation that
reduces the gz Dn,, subalgebras. Since the basis (5.14) only
reduces the n, subalgebra, we introduce another basis that
also reduces g;. The latter basis states can be expected to
have complicated expansions in terms of the VGB basis
(5.14). However, we shall show that, since we presuppose a
knowledge of the gz -irreducible representations, the explicit
construction of the latter basis can be avoided.

Suppose that a basis for the VGB space that reduces gz
Dn, is given by a set of states

[2 @ Helt~Ha

Note that, as distinct from the notation used in defining the

[A1(my) ) ) (67)

— £} {w}(m,)

CLEH TZE

and
PGS A B e EDIT @G5k 5 850

D ITD A 5 G s K1)
= (o) —- §}{w};[l]{1}ll<0 MW= Ho D (@41

1ol

= ({oH — EHok[11{ — 1H{o M — & Ho D @GR B NIT W 19231 5 ),

VGB states that do not reduce gg, here we use angle brackets
to designate the irreducible representations (o) of sp(2n)
contained in the irreducible representation
(A% = ([A°):(o®)) of osp(m/2n). (Recall that werestrict
consideration to representation of g; equivalent to Hermi-
tian representations of the compact real form of the Lie alge-
bra.) We also assume that the matrix elements for these Her-
mitian representations are known.'= It will be noted that,
since the (extended) VCS representation T is not Hermitian
with respect to the VCB inner product, the basis (6.7) is not
orthonormal with respect to the VGB inner product. It is, in
fact, orthonormal with respect to an alternative inner prod-
uct, previously referred to as the VCS inner product? (see,
also, Sec. VII below). Since we assume full knowledge of the
g; representations, these questions need not concern us here.
Instead, we simply introduce the orthorgonal dual states

P 0 o) (6.8)
to the basis (6.7). ;

Observe now that we can, in this g5 -reducing basis, safe-
ly use the Wigner—Eckart theorem to define g5 -reduced (tri-
ple-bar) matrix elements of the g; tensor I (F) in terms of

ny-reduced (double-bar) matrix elements of (D) and
I" (E) according to the equalities

EDINTWE 9 2 ED) (6.92)

(6.9b)

where ((0){ — EHw};[11{ £ 1}|{c "M — £’ Hw'}) are sp(2n) Du(n) reduced Wigner coefficents. From a knowledge of
these g5-reduced matrix elements and the appropriate Wigner coefficients, one can retrieve all the matrix elements of T (D)
and T'(E) between states belonging to Hermitian representations of the g5 algebra.

To determine the gg-reduced matrix elements in the right-hand sides of (6.9), it is sufficient to determine only the ng-

[A]1(my)

reducing highest weight states |({2o);{) ; 5yms ) ) and to use the relationships

GEH A EDITDPES 2 6))

= (ol 1H{1Ho Mo D @GS A EDNT@ 9GS0, 80),

when ¢’ > 0, and
@EL A EDIT@ NG 5 ED)

= (Hok 11 — Mo Ho DBEH I EDNITM 9L 48,

when o’ <o.

(6.10a)

(6.10b)

Now, since the ny-reducing states (5.9) provide a natural and convenient basis for the intrinsic modules M “*’(A?)

defined by Eq. (3.8), we are allowed the identification

. [AI ) L+ [l]
19051 5 Grims ) = 1B 3 o)

(6.11)

between the subset of the highest grade g;-reducing basis and the VG basis.

The dual states

o [A1(my)
<'/}([(:17"])’% ‘r}(a)(:::))!

are not immediately identifiable in this simple way, However, for any state |¥) in the VGB space, we have the identity

o [A10my) o [A1(my)
<¢([ﬁ"])’% T}(a>(:A))|\P>’_ ([ﬁ"])’i T}{a}(::) IPI‘I’)’

(6.12)

where Pis the projection operator Eq. (6.3) that projects any gg state to its highest weight component. We therefore obtain
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PEL A EDITOIRERE 8 = EhE A B IPT OIS 5 £, (6.13)

where X stands for either D or E. Note that we suppress for sake of notational simplicity the symbols #, ¥ in equations like
(6.13) [seealso Eq. (6.14) below] in the following since the use of angle brackets of label the irreps [1]:{o) of g; is sufficient

to distinguish the g5-reducing basis.

In terms of matrix elements of the operator # defined by Eq. (6.1), and of the Bargmann tensor & and its Grassmann
conjugate d in the VG basis (5.9), we finally obtain the g;-reducing matrix elements

@A EINTAONNEL R 26 =

BRI BT DB B

(oMo, (OH{1}[{o ) o'}

_ (BRS04t 5 1)

for o' > o, while, for o’ < g, Egs. (6.1) and (6.2a) give

GRS CHIT NG 2 &) =

, 6.14
(kDo Yo (6.192)
(EA A EUPTENE A 8D
(oMo (H{ = 1} (e}
_ 131267 1B ) i

(oMo { -

1}|{a " Ha'})

These reduced matrix elements obey g;-reduced commutation relations, examples of which will be given in Sec. IX.

C. Subsidiary conditions for finite-dimensionality of
representations

Necessary and sufficient conditions for the finite-di-
mensionality of a representation of any semisimple Lie alge-
bra g5 are given by’

(X_) A% =0, c=2(A%a)/(a@), (6.15)

where |A®) is the highest weight state with weight A° and
X _ . isanelement of g5 associated with the root — a, where
aellj is a positive simple root. As seen in Sec. II D, the set
Il for g5 corresponds to the distinguished set II of simple
root for osp(m/2n) except for its (even) simple root 26,,,
which is replaced by the single odd root of Il. Thus, except
for the special case @ = 26,,, which, as just argued, is not a
simple root of osp(m/2n), Eq. (6.15) yields the usual condi-
tions [Eq. (3.5a)] for finite-dimensionality of representa-
tions of the Lie algebra g5. The VCS formalism provides the
following rationale for the subsidiary requirements (3.5b)
stemming from consideration of the special case a = 2§, in
(6.15).
We want to find the conditions for which

(X_35)°"" 1A% =0,

whenever

g% =2(A%25,)/(26,,28,)<r=[m/2]. (6.16)
For X _ ;5 ~B,,, we easily verify that

(T(B,,))|A% = (ax + b)¥|A®) (6.17a)
(no sum on »), where

a=2z,,

X =07~ Ocn Ocn — $20nVuns (6.17b)

b= —0,6,H.

By recursion, we obtain
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r
(ax+b)1+lIAO)

! N .l+1)
- I+ 1—ipi
_[,.;,a b( i
1—i
X[H(02—1+1‘)]+b’+‘]|1\°),
j=0

which, for / = ¢ 9, yields the simple expression

(TB)Y A% = (— 0,0, HA™)" 1A%,
(6.18)

an expression fully antisymmetric in the Bargmann variables
upon expansion. Using a standard Clifford representation
for the intrinsic orthogonal algebra HA" , one can ascertain
that necessary conditions for the vanishing of the right-hand
side of (6.18) are given by the subsidiary conditions (3.5b)
(that they are sufficient has been concisely argued by Kac in
Ref. 9).

D. VCS expansion for g; highest weight irreps
A=A%-B, BeA{

It is interesting to look at the VCS expansion of states
obtained from the intrinsic highest Z grade module
M " (A°) by lowering once with the operator I'(E) in Eq.
(6.1). The possible g5 representation labels are then given by
(A) = (A° — B), Be Aj* ,and each such gzirrep appears in
a multiplicity-free fashion. The recursion formula for the
expansion of these states on the VG basis then simplifies to
the first term on the right-hand side of Eq. (6.2b). Setting
first B to B= + € + 6,€A;* [cf. Eq. (2.20)] and using
(6.5) and (6.6), we readily derive [in (6.19), A(]) is,e.g., a
partition having null entries everywhere except for unity in
the /th entry] that
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o (B RaTR0h)
= Q4 p BV ERO) —
=(A’+p, +€ +6,), (6.19)

in terms of the supersum p defined by Eq. (2.22), and the
invariant bilinear form defined on the root space by Eq.
(2.23). For completeness, we also derive for 8 =8, ¢A7"
that

IEAE s
= QE4 B aen) — @ (GRS )
= (A°+p,6,) — 1. (6.20)

Equation (6.19) conveniently summarizes for osp(m/2n)
the content of Theorem 3 and Lemmas 5 and 6 of Thierry-
Mieg,'® which state that the g;-invariant subspaces identi-
fied by the highest weights A = A°-8; B;€A;*, such that
(A° + p, B;) = 0, decouple from the highest weight irredu-
cible representation (A°) of g5 = osp(m/2n).

Irreducible highest weight representation (A°) for
which

(A°+p,8) =0, Behs, - (6.21)
have been qualified atypical by Kac®; otherwise, the repre-
sentations are called #ypical. [ Note that if (A° + p, B8;) =0,
we also have (A° — B; + p,B;) = 0 as a consequence of Eq.
(2.24).] Asdiscussed in Sec. V A, I'-matrix representations
of typical and atypical representation are always irreducible.
The same does not hold true for the extended T-matrix rep-
resentations defined in Sec. V A when the representation un-
der consideration is atypical: the extended representation is
then reducible but not fully reducible, i.e., indecomposable.
This is exemplified in Sec. IX.

LGEECEAY)

VII. STAR AND GRADE STAR REPRESENTATIONS

One can define two types of adjoint operations® for an
irreducible representation y of a classical Lie superalgebra g
on a Hilbert space.

(i) The star adjoint 7' (X) of an operator y(X) for Xeg
is defined by the usual Hermitian adjoint rule

(x]y" (D)) = (r(X)x|p). (7.1a)
A representation y of a Lie classical superalgebra g is then

said to be a star representation if, for every Xeg, there is some
Z ,eg for which

(X)) = +9(Zy), Y'(Zy)=+y(X). (7.1b)

A star representation of a classical Lie superalgebra corre-
sponds to a Hermitian representation of a standard Lie alge-
bra.

(ii) A grade-star adjoint is defined by

I XD y) = (= DEFPE(p(X)x|y), (7.2a)

where £(X) is the Z, grade of the element Xeg and {( y) is
the Z, grade of the ket |y). A representation ¥ of a classical
Lie superalgebra g is then said to be a grade-star representa-
tion if, for every Xeg, there is some Z, eg for which

P X)) = +7(Zy), Y(Zy)=FprX). (7.2b)
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Since we are considering finite-dimensional irreducible
representations of osp(m/2n), we require the star and
grade-star adjoint operations to be compatible with the Her-
mitian adjoint operation

(H‘j)t = -Hjn (Ca.;g)Y = Cﬁa)

(Aaﬁ)T =Baﬁ9 (Bap)T =Aap, (7.3)
on the compact real form of (the complexification of) g;.

There exist for (finite-dimensional representations of)
osp (m/2n) two possibilities (up to equivalence) for the
grade star (}) adjoint operation: we have

(D)} = + E,,, (7.42)
(Ew)t = FD, (7.4b)

There also exist, for the special case m = 2, two possibilities
for the star adjoint operation: we have

(D) = +iEyy, (Ep)' = FiDy,
(Ela)"' = iiDZa’ (D2a)T :FlEla (75)
The conditions for a star or grade-star representation

can be expressed succintly for an arbitrary representaiton y
of osp (m/2n) by the equation

x| = £ (= 1D*PP D% Z)y). (7.6)

If a solution to this equation exists for every Xeg, then the
representation y is a star representation if ( y) =0 and a
grade-star representation if ¢( y) = £( »).

To bring the irreducible VCS representation T into a
form in which we can apply this criterion, we seek a K map-
ping from the VGB space to the irreducible subspace such
that the given VGB basis maps to a basis that reduces the
osp(m/2n) Dso(m) @sp(2n) Dso(m) ®du(n) subalgebra
chain.

The similarity transform K can be equivalently defined
by .

K:T'(X)->y(X) =K ~'T'(X)K, Xeosp(m/2n). (1.7)
Since the VCS representation I' is, by construction, Hermi-
tian with respect to the VGB measure on restriction to the
stability algebra n,, it is convenient to require that K com-
mute with the VCS representation of the stability algebra,
ie.,

NX)K=KT'(X), VXen, (7.8)

The X operator, diagonal in n,, can be defined in terms of its

matrix elements,

Eht n BLEL o BNK B 5 BHE s ) =
foro'>o, (7.9)

between VGB n, submodules. One need not compute K on
the whole VGB space; rather, it is sufficient to know the
value of its restriction

X By e,
= (F"% LrﬂaﬂKW‘@ Helt 2 )R (7.10)

for the M 4> (A®) subspaces defined in Sec. III C. It is con-
venient to require that the restriction %~ be Hermitian. It is
also convenient to set

L) = 1.
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Following a projection procedure similar to the one in-
voked in Sec. VI A, one easily derives from the definition of
the y representation that

B[OF s (ENX|ES) 1L ims)
=P[O} ,(K ~'TEKX|EY) 1y
=X EREHP[OF L (CENX L) 10y,
(7.11a)

where P = K ~'PK. Similarly, from Egs. (7.4)—(7.6), one
finds that

Pep ,(r(E)x IM > 16
= (£ 1) DF
XPE} [0, (K*r* (DK ~MXIED) 1oy
= (£ 1) = DO
XX G EDIGEE L ), (7.11b)
where ¢(i) either stands for ¢(i) = O for a star equivalent
representation, or for the Z, grade (i) = {(A°) — iofa VG
state of rank / in the Grassmann variables for a grade-star
equivalent representation and where 7, is the rank of the

polynominal ®. Equating the right-hand sides of Egs.
(7.11a) and (7.11b), we thus obtain

P[OF (T (ENX|}4) |
= (4 Do — 1> 0
XIHESEDIESE ) o) (1.12)

from which one could derive the following recursion for-
mula for the square of the Hermitian restriction %~ of X

[Eq. (7.10)]
At BHTONESL s 1) = £ (-
X (f:t st 2 8-

1)¢(A)
AEYIPT(E) T K (7.13)

Actually, it is not necessary to solve (7.13) as (6.1) and
(7.12) readily imply that

Hr= (4 1) = )0y, (7.142)
which, for star equivalent representations, simplifies to

Hi=(+1)"0, (7.14b)
and, for grade-star equivalent representations, to

HP= (1 (—DEANY (1)~ D2g. (7.14c)

Equation (7.14) provides us with the means to identify the
classes of finite-dimensional representations (A°) of osp(m/
2n) which can be declared equivalent to star or grade-star
representations (this will be demonstrated in the next two
sections); simply, it is sufficient to identify the representa-
tions for which the right-hand sides of Eqgs. (7.14b) and
(7.14¢) define positive-definite operators %2 as requested
by the definition of the latter.

Finally, we derive from Eq. (6.14) that g;- reduced ma-
trix elements for the ¥ representations are given, for o’ > o,
by

Bt A B3 DG A B

@A EI PG4 5 8 =

(oMol {}{e Yo
_ S BU T oL 5 6)

thus, more simply, by
G A G NPOINES L 2 6)) = (st 2 &

For o'’ < 0, the elements are given by

A BNy NGSE 2 8 =

or, more simply, by

(BN Y ey (7.152)
HF T NG 5 G (7.15b)
G A BIPYE G 2 )
(oo - 1}{e Yo'}
e B
DAL T IO 4. (.16b)

@A A G NrPNE L 8 = £ (=

VII. THE LIE SUPERALGEBRA osp(1/2n)

We consider in this section the superalgebra osp(1/2#). An irrep of osp(1/2n) is finite dimensional if the highest weight

AN=0= ¥ 004,
a=1
is such that

0 o + 0.7+
o]—0}, eZ™, o0,eZ
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(8.1a)

(8.1b)
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[cf. Eq. (3.5)]. Since the partitions { — 7} for the Grassmann polynomials @ _ ; (8) restrict to the set { — 1}*, 0<k<n, we
conclude that representations of osp(1/2n) are multiplicity-free on restriction to g5 [here sp(2n)]. This canbe easﬂy verified

by noting that the u(#) couplings

{UO}X{ - lk}"’{a - A(J)} = {0.0 e A(jpjzv-'sjk)} =

{o} (8.2)

fwhere A( j,, Jor---di ) 1K1 <jo < .- <Ji €1, is a null # vector except for the numerical one is its ( jy, j,,..-, jx } entries] in Eq.

(5.9) are multiplicity free.
The VCS expansion (4.20), with 6, = 6,,, simplifies to

aﬂ’
ro,) =24, — 46,
F(Caﬁ) = Cégo - 93 s ‘_zﬁuvua’

F(Ea) = ey(c,(‘ﬁo) - izaavay - ioa a ) + 240 aa’
T (Bap) =20, (C” — 05 3, —125: V)

—16, 6,C” + (aeP).

(8.3a)
(8.3b)
(8.3¢)
(8.3d)
(8.3e)

We find that I'® (B), the term quadratic in the Grassmann variables in (8.3¢), here can be rewritten more simply as

TOB_ ) =3[8_ 1y X Tum

A
—I0y.0_ ) li-ns

(8.4)

where the product [0 X (...,8 } ] stands for a u(n) coupling, and where the quadratic Casimir operators’I\ have been defined in

Eq. (6.5).

The recursion formula (6.2) for the coefficients of expansion & for the VCS submodules M (g ®) can be written

{oH - 1"H{oHigo|{oc " H - 1*"Ho+ AGHD
= {{o "H - 1"HeHIT*(E) |{o °H —

1*='"Ho+ A(j)D

3 2": ({e " H - 1"HoH T B {e 'H — 1**Ho + A(j..j) )
i e H - 1" "Ho + A, i) H — 2HaHT P (B) [{o °H — 1*~*He + A, J)D)
#Ja
X {{o°H — 1*"*Ho + A(j.,j ) H = 2HHIT(E) 2|{o 'H — 1* " "Ho + A(j)D), (8.5)
which yields
oo Hoh = [, At L 3 UHa )y P 2Bt D oo agi
2 2,50 (Pl + P+ 1) izt (Pia—Pia)
#la #c
k(Do +PYn) .
=B [l 0o Ko + AU, (86)
=1 (Pn +Djn + 1)
#d
—
and which has for a solution sp(2n)-reduced matrix elements (6.14). This would
(5, + P?mn ) amount to an explicit construction of the representations. In
¢ {o’h{o}h) = [ H Pin ] ( D order to carry out this program successfully, one needs only
Pin + Py (8.7) the relevant sp(2n) Du(n) Wigner coefficients.
. . Only the grade-star adjoint operations (7.4) can be de-
where pi, is the so-called partial hook fined on osp(1/2r) when we restrict our attention to the real
Ph=p"4+n—i compact Lie subalgebra sp(2n) of osp(1/2r). We therefore
In particular, for k = 1, we obtain seek to identify the possible classes of grade-star equivalent
’ " representations of osp(1/2n). From Eq. (7.14c), we know
O{o{e®—AGDN=(A+pd,) —4=p;a 58 that the restriction % is given by
[see Eq. (6.20) ]. Under the restrictions (8.1) (1 .d) H7 (o koh)
see Eq. (6.20) ]. Under the restrictions (8.1), we conclude o _
that these coefficients of expansion are semi-positive-defi- = (4 (— DY = 1, =125 ({0} {o}).

nite. In fact, they are strictly positive definite except for the
coefficients associated with the partitions {o} defined by
(8.2) withj, =nandp%, =09 =0.

Equations (8.6) and (8.7) and very strong analytical
results since they can allow one to compute in principle the
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(8.9a)

But the positive definitiveness of %™ requires that
+ (= 1)5°” = 4 1, for k = 1. This determines which one
of the two possible grade-star operations (7.4a) is compati-
ble with the Z, grade of the highest Z (intrinsic) subspace.
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Equation (8.9a) then simplifies to

H?({o}{o}) = (— H**= V20 ({0 }{oD.
(8.9b)
Since the various quantities & ({o °};{c}) are semi-positive-
definite, we conclude that they must actually vanish when-
ever the phase ( — 1)**~ /2 s negative for the representa-
tion to be grade-star equivalent. For example, consider the
osp(1/4) case: we have, from (8.7) and (8.9b),
H?{oYo3t{otad}) =1,
F?{oYodk{ol — 103 =0 +1,
FH?*{oo3k{os, 08 =1} =09,
X*{olo3k{o? — 103 — 11
ol +0o9+1 ]
o%+0%+2)’
from which we conclude that a representation of osp(1/4) is
grade star if and only if the o vanish (see, also, Ref. 16).
More generally, only a very restricted set of representations

of osp(1/2n) can be realized as grade-star representations
for n> 1. The case n = 1 is studied in more depth in Sec. IX.

= —Ug(a?+1)[ (8.10)

IX. THE LIE SUPERALGEBRA osp(m/2)

In this section, we intend to study the compact classical
Lie superalgebra osp(m/2), for m = 1, 2, and 3. These alge-
bras have been studied to a large extent in the literature. We
nevertheless choose, in addition to the computation of new
closed analytical results, to rederive some known results's-'
in order to show that the somewhat disparate approaches
found in the literature can be encompassed in the present
unifying framework. These low rank subalgebras have been
chosen, first and foremost, because the Wigner—Racah cal-
culus for sp(2) ~su(2) is well known; and since Kronecker
products in su(2) are multiplicity-free, we are able to carry
out explicitly all the computations. Also, in going from
m = 1 to m = 3, the tensorial structure of the Lie superalge-
bras osp(m/2) increases in complexity. The case m =2 is
notable for the fact that the odd subalgebra g; is reducible
under g5, while the case m = 3 presents all the complexities
of the general problem except for the fact that the
g = s0(3) @sp(2) algebra is isomorphic to su(2) ®su(2),
thus allowing us once more to give fully analytical results. It
should be noted, though, that the corresponding VCS alge-

J

osp(1/2): n,, = Span{F+ 12 = D},

n_,= span{F_ 172 =Ell};

0sp(2/2): n,, =span{F' /2 = T (1/{2)(D,; £iD;)},

braic manipulations do not significantly increase in com-
plexity with increasing m; the relevant information concern-
ing the superstructure of the algebras and their
representations is concisely carried by a few n,- and g5 -re-
duced quantities easily computed within the present frame-
work. This results in a large economy for the more general
situation, especially as the ranks of the algebras increase.

A. Tensorial structure of osp(1/2), osp(2/2), and
osp(3/2)

First, we slightly modify the notation to take advantage
of the sp(2) ~su(2) isomorphism and of our knowledge of
the Wigner-Racah calculus for su(2). In terms of the basis
{4,:, C,;, B,,} for sp(2) (Sec. I A2), we define the
sp(2) ~su, (2) angular momentum algebra,

Ji=3y, Jo=1Ch J_=1By, (9.1a)
with the ususal commutation relations
Jod )= £J,, (T J_)=2 (9.1b)

Also, for osp(2/2), the Lie subalgebraso(2) ~up (1) willbe
generated by the “baryonic” operator'’

B=%11/2= —iH12/2 (9.2)

(this redefinition should not give rise to any confusion with
the symplectic generator B,z in the following), while, for
osp(3/2), the so(3) subalgebra will be generated by

L+1 =gl = (l/ﬁ)(H13+iH23)’

Ly=%, = —iHy, (9.3)
L—|=g1=(1/\/i)(H13—iH23)-
We also have
osp(1/2): ng=u,(1), g5=su,;(2),
osp(2/2): mo=uz(l)®u,(1), gs=uz(l)esu,(2),
osp(3/2): mnyg=so(3)e@u,;(1), gs=so(3)esu,(2).
(9.4)

The grading operator Z is here given by the weight oper-
ator 2J,, spanning the u, (1) Csu, (2) subalgebra. We thus
have that the tensorial sets n,,=span{D} and
n_, = span{E} are, respectively, the spin-up ( +}) and
spin-down ( —}) components of a (reducible for m = 2)
spinorial (J =}) tensor {F} = {D}U{E}. More precisely,
we have

(9.5)

n_, =span{F *}/? = F (1/\2)(E,, +iE;)}

0osp(3/2): ny = sPan{F[Jlrlln};o = Dj,, F[lllr'}z: = F (1/\/5) (D £ iDZl)}’

n_, =span{FU=0=E,, F-+l=F (/2)(E), + iE)};
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i.e,, n ., is ng-irreducible for osp(1/2); ny-reducible for
osp(2/2) (with FL*!72) a B eigenvector of eigenvalue
b= +1, FI7))7¥ of eigenvalue b = — }); and ny-irreduci-
ble for osp(3/2) [with F!}1, , an L = 1 s0(3) tensor]; with
similar conclusions for mn_,. We also have that
g; =n,,en_, is gs-irreducible for osp(1/2) (with FaJ
spinor); gs-reducible for osp(2/2) (withF'+ab=4J
spinor, F1~ 1 a p = — } J spinor); and gg-irreducible for
osp(3/2) (with F!" a L = 1 J spinor).
We shall make the substitutions

V=1V, z=2z,, (9.6a)
in the VCS expansion (4.20) so that

(v,2) =1 (9.6b)
Also, the u, (1) intrinsic subalgebra

JE =3 (9.7a)
is defined such that

TRy < ORIy 9j0= 08, (9.7Tb)

where { Iff} "1tm1)3} spans a basis for the M ‘A (A®) ny-intrin-
sic module, and the set {(m,.)} spans a basis for the so(m)
intrinsic irrep [4°].

The label [A °] is redundant for m = 1. For m = 2, we
set

[A°1(my0) = [5°] (9.8a)

(irreducible representations [5°] of s0(2) ~ug (1) are one
dimensional) such that the intrinsic operator B A" is de-
fined by

By = pOIR"), (9.86)
For m = 3, we set
[A°1(mY)~[1°1m (9.9a)

such that the intrinsic angular momentum algebra LA” acts
on the intrinsic basis according to the transformation law

LGOIy = (1o 1 |1°m + m WSO + 1) [+ ),
(9.9b)

where (/°m;1m’|I°m + m’) is the usual su(2) coupling
(Clebsch—-Gordan) coefficient.

2. The Lie superalgebra osp(1/2)

In this section we examine the finite-dimensional repre-
sentations of the Lie superalgebra osp(1/2) with highest
weights

AO = 0?6] = 2j 061.

We find, in angular momentum notation, the following
commutation relations for osp(1/2):

(9.10)

JaF,) =13 (;u;lalgv)Fv, (9.11b)

(F,,Fg) = 22(3B)a|im)J,,. (9.11¢)
The VCS expansion (4.20) (with 6,, = 8) simplifies to

rJ,)=Vv, (9.12a)
L(Fyyp)=0—6V, (9.12b)
T'(Jp) =J — 109 — 2V, (9.12c)
T(F_,,;) =60 —2V) + 24, (9.12d)
T(J_) =2z(2J A" — 09— 2V). (9.12¢)

The VGB basis | j % j) for m; = j states is given by
17%7% =17, (9.13a)
17%i° =1 =6]i°. (9.13b)

From (6.1) and (6.2), we find the following values for the
coefficients of expansion of the VCS basis on the VG basis:

oj%i% =1,
Oj%i°=1) =(A"+pb) —1=2"
also given by (8.7) withk=n=1.

We find, in the ordered VG basis (9.13), the following
g5-reduced I'-matrix representation:

e =(

(9.14)

0 1
27°1(27° + 1)/25°]'/2 o)'
(9.15)

We verify that it obeys the reduced-commutator algebra
1 1
U(.y =~ ? .'s - ”1)
;‘, gy s

XCGSTINMEN TSI G IF NG %)

=8;V2(j+ 1), (9.16)
easily deduced from Eq. (9.11c).

Only the two grade-star adjoint operations

(F,) =4+ (—-DY*"°F_, (9.17)

are possible for 0sp(1/2) whenever we restrict our attention
to its real compact Lie subalgebra sp(2). Accordingly, we
find the following values for the restrictions ¥ [Eq.
(7.14¢) 1:

Hj%i% =1,
FHj%i0—1) = + (= 1)FUMe (9.18)

The positive-definitiveness of ¥ implies that
+ (—1)*Y” = 4 1, which determines which one of the
two grade-star adjoint operations in (9.17) is compatible
with the Z, grade of the highest weight state. We conclude
that the irrep j° of osp(1/2) is a grade-star representation
for all j °>0.

The g;-reduced y-matrix representation of the odd ten-
sor of osp(1/2) equivalent to (9.15) is given, in the ordered

(Ja,JB> = \/i(lﬁ;lally)J,,, (9118) basis (9.13)’ by
J
0 [+£(— 1)§(j“)(2jo)]1/2)
.0, 0, N . W s 9.19
IO (i(—l)“"[i(—l)“”(2j°+l)]”2 0 ©19
which also verifies (9.16). These sp(2)-reduced y-matrix elements obey the grade-star conjugation rule
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GSINrdNN%SH = £ (= DED (= 1Y+ 2D [dim( /) /dim () 126 % | [y B % 1) (9.20)
easily derived from Eqgs. (7.2) and (9.17). These results reproduce concisely the analysis of Scheunert ef al.!?

C. The Lie superalgebra osp(2/2)

In this section we examined the finite-dimensional representations of the Lie superalgebra osp(2/2) with highest weights

A0=2-(1)61 +0(1)61 - 2b061 + 2j061,

(9.21)

with b © here a real number. From Sec. II, we find the following commutation relations in su(2) coupled form:

Judp) = 2(1B51a| 1),

Vw2V = [[(lali) FL= 2,

<B,F‘[z+ 1/2]) — iF‘[z+ l/Z]’ (B,F,[,— 1/2]) —_ L— 1/2],
(FLVALFL= V) = — 2\2(3 Be|ly)d, — 2V2(} B}a|00)B.
The VCS expansion for the superalgebra is given by
ryJ,)=v

rFEM = -9; -6V,

T(B)y=B“" 416,49, —16_40_,

T(Jy)=J* —40, 9, —16_40_

D(FY) =0, (WP £2BN —2V—05 93 ) —20%,
rJ_) = z(2J(‘,"" —0,9,—-6_9_—2V)+20_6,B™.

The substitutions
9+90_, B(AO)_, _B(Au)’

clearly reflect the superalgebra automorphism

FUF D5, B~ —B, J,—,.
The orthonormal BG basis of m; = j states is defined by

87187y = |18,
|[b“1’[|f’_;i] =0, 18",
ey =6 |8,
1L = 0.6, |187).

(9.22a)
(9.22b)
(9.22c)
(9.22d)

(9.23a)
(9.23b)
(9.23¢c)
(9.23d)
(9.23¢)
(9.23f)

(9.24a)

(9.24b)

(9.25a)
(9.25b)

(9.25¢)
(9.25d)

From (6.1) and (6.2), we find the following values for the coefficients of expansion of the VCS basis on the VG basis:

ACRAES!
ol = (A4, — € +8) =2(° + 5,
oELRT) = (A% +pe + 8, =2(° — b,
OB ) =2(2° — (B9 — (jOYV°

(9.26a)
(9.26b)

(9.26¢)
(9.26d)

(note that p = Ohere). Vanishing of the coefficients (9.26b) or (9.26¢) gives us the atypicality conditions for osp(2/2). Note
that Egs. (9.26) also provide us the branching rule (3.9) for osp(2/2), e.g., it is clear that whenj 0 = p%thestates (9.25¢) and
(9.25d) do not belong to the representation.
We find, in the ordered basis (9.25), the following g;-reduced I'-matrix representation:

NI e =

31

0

0
0
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+2G°+b61[(2°+ 1)/2j°1"2

0

0
0
0

-1 0
0 -1
0 or
—2(°+590(° - 1/%°1"* 0
(9.27a)
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0 —1 0 0
0 0 0 0
b"l (bl [—1/21)) | 16°L(81)
|||F(F )”l] > —2(b0——_]0)[(2_]0+1)/2}0]”2 0 0 1
0 —2(6°—jO[@2°-1)/2j°1"* 0 O
(9.27b)
We verify that it obeys the reduced-commutator algebra
. 1 . 1 I3 o ’ o ” ” o
S Ui O) G ) (L 0
b, j"
. l . 1 o [ - [ " o " o
— qu U(_],?,j, 7;_1 0)(”’ L || F! 1/2]|||“’ ’;}." 1)(}.3 1;}.” 1|||F[+"21||]}f,’ 1;}”1) - --6,,,,,61.f2\/§b, (9.28a)
. 1 . 1 n 0 ’ o » ” o
3 U (g LG F O ()
55
+ Z U(j,%,j, %;j”l)ab"] (b’ ’|||F[‘V2]||| "1 [b ])([b 1/21|[|[b"][b1> — _5bb 5”_2 (21(]+ D,
o (9.28b)

easily deduced from Eq. (9.22d).
The matrix representation (9.27) reproduces very concisely the analysis of Scheunert ez al. 17 For example, we see that, for
b° =" the (extended) I'-matrix representation is of the form

(G @)

0o C/’

i.e., it is reducible but not fully reducible with A the left upper 2 X 2 matrix. Similar conclusions can be drawn for the case
b° = — j°to within a reordering of the basis (9.25).

Two star and two grade-star adjoint operations can be defined on osp(2/2) (see Sec. VII) upon restriction of its Lie
subalgebra to the compact real form so(2) @ sp(2): from (7.5) and (9.5), we find

(F([1+ 1/2])1’= j: ( _ 1)1/2—aF[——a1/2]’ (F,Ex_ 1/2])1’___ ¢( _ l)l/Z—tzF[_+al/2]’ (9.293.)
for the star adjoint operation and, from (7.4) and (9.5),
(FL+ 121yt F(— )2 —epl-1/2 (FL_ 121yt — F(— 1)1/2—aFl_+a1/21, (9.29b)

for the grade-star adjoint operation. 7
We first seek to identify the star equivalent representations. From (7.14b), we find the following values for the restric-
tions %%

FRT) =1, (9.30a)
HE(ELT ) = 1206459, (9-30b)
X2 [b“l’j[b_—i] ) = +2(b°—j°), (9.30c)
TR ) =2 - (G~ (GO (9.30d)

Positive definitiveness of % forces us to conclude that we have a star representation whenever 4 b >/ °. In the ordered basis
(9.25), we then find, for the star equivalent g5-reduced y-matrix representation,

([b"l’[b )Hly(F[ + 1/2])|||[b"1 [bl

0 0 —[+26°—jN1""? 0
+ [+ G+ + 141 0 0 —[£B°—j9Q°-1/°1'"
= 0 0 0 0 , (9.31a)
0 0 FL+£26°+59]" 0
<,['If"];,[-b']|||7’(F[_Vz])l”,[go];,[b])
0 —[+26°+j"1"* 0 0
0 0 0 0
=l i eo—so@0+ nsoe 0 0 [+ @+ ngoz) OO
0 FL£206°—i91"7 0 0
which verifies (9.28). These g;-reduced y-matrix elements (9.31) obey the star adjoint condition
L[ (F |0 = & (= 1Y+ 72~/ [dim()/dim () ]2 [ (F L D[R, (9.32)

easily derived from (9.29a).
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From (7.14¢), we find, for the grade-star adjoint operation, the values for restrictions %" of the K operator;

FARLED =1
Ry = & (- D880 459,
ﬂ/z(lk"l-.[""‘“) =4 (—

FELET ) = —2(24°

DEU2(° — b,
— D((B)* = (G,

from which we conclude that a representation of osp(2/2) is grade-star equivalent if and only if + ( — 1)59" =

(9.33a)
(9.33b)
(9.33¢)

(9.33d)
+1,j%°=}

and — } <b®<}. The state (9.25d) then has null VCS norm and one must truncate (9.27) to its left upper 3 X 3 matrix. We
then find for the grade-star g;-reduced y-matrix equivalent representation

0 0 —[+(—-D21-29]"?

GO F VRS =] £ (= DO+ (= D200 +269]" 0 0 :
0 0 0

(9.34a)

0 — [+ (=¥ +269]72 0

Gy (R R = 0 0 0},

+ (— DO £ (— 1)5992(1 - 251" 0 0

(9.34b)

which verifies the reduced-commutator algebra (9.28). These g5-reduced y-matrix elements obey the grade-star adjoint

condition
b"] [b1H|7,(F[+1/2])|||[b"1,[b1 -_f—(-——l)m’(——
easily derived from (9.29b).

D. The Lie superalgebra osp(3/2)

In this section we examined the finite-dimensional rep-
resentations of the compact Lie superalgebra osp(3/2) with
highest weights

A% = 1%, +2j%,. (9.36)

From Sec. II, we find the following commutation rela-
tions in angular momentum coupled form:

J.dg) =\2{1B;1a|1y) J, (9.37a)
(J F ) =i la Fils,, (9.37b)
(L FV5.) =V2(0mim|1m")F i), (9.37c)

(FUVm FOum,) = — 2/6(1m'’;1m|00) (v;ju|1a)J,
+2{1m’;1m|1m" ) {}v;}u|OO) L,
(9.37d)

In angular momentum coupled notation, the VCS expansion
(4.20) simplifies to

rJ,)=Vv (9.38a)
m -
C(FY05) = =85 —0,V, dz=(—-1' 80

(9.38b)

T(L,) =L —2{0X31""=LP + L, (9.38)

L) =J —)N°—N*, N°=Y6,3,, N, =2,

(9.38d)
C(FWn ) =6, (TN — N, —N,) — 23,

—2[OXLA"]'" 4 [0 X0 x3]1']1',
(9.38¢e)
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1Y+ V227 [dim () /dim (1) ]2 | (F L V) |17,

(9.35)

r

L) =2 = N, = N.) — (TLIO X1 XL 419,
(9.38f)

where the square brackets represent so(3) couplings, e.g.,

[6X0]in = z (lml,lmzllm)ﬁmz m,

The (2° = 8) fully antisymmetric orthonormal polyno-
mials O ”l:',“; (8), which can be constructed in terms of the
Grassmann variables {8_,,8,,6,}, are defined by

[010(9)=1, dim =1,

e (9) =6,, dim=3,

UMM = — (1/42)[8X61,,,, dim=3,
0L, (8) = — (1/V6)[0 X[0 X6]1'P, dim=1.

The orthonormal BG basis of m; =j states (with
=j%— ny/2) is defined by

(9.39)

ill"].ll"lm - |}«""]"'), (9.40a)
}g"]’lilm ) — [®[l]1/2(9) X ‘J[L"])}[l]m, (9.40b)
,“"] J[I_lr;l [9[”1 () X |J[{,"l) ] lm (9.40c)
[1"]’1['__"]'"> = ®[0]3/2 (0 |}‘I’"]m>' (9.40d)

One notes the emergence of the (multiplicity-free) j[/]
weight diagram'>-'7

FINUT [°=11 U1 [1°+1]
jo ® (ng =0)
i°—4 o ® ® (ng=1)
jt—1 ® ® e (ng=2)
AR ° (no=3)
(9.41)
R. Le Blanc and D. J. Rowe 33



from the L couplings in (9.40). Of course, angular momen-
tum forbidden coupled states (/<0) should be ignored.
Also, states with <0 will be truncated by the VCS expansion
itself in accordance with the conditions (3.5) [see Egs.
(9.42) below].

From (6.1) and (6.2), we find the following values for
the coefficients of expansion of the VCS basis on the VG
basis:

(u"].u"—u) =(2°—1)(2j°=1°—1), (9.42g)
([l"]’j[(l)"l ) = (2j0 _ 2)(2]-0 Ny L l)(2jo+ 19).
(9.42h)

Equations (9.42) give explicitly the branching rule osp(3/
2)1s0(3) @sp(2): the vanishing of any of the above coeffi-
cients & indicates that the corresponding [/]: j multiplet of
50(3) @ sp(2) does not belong to the irreducible representa-
tion.

oI =1 (9.42a) = ) . .
e, ““ 11 0 o 10 The extended I'-matrix representation of osp(3/2) in
OGN TN = (A +p,— € +8) ="+ 1), the ordered basis
(171,107 0 0 o420 INUY [°=11 [°1 [°+1]
O (jo el ) =(A"+p6)) == (%" — 1), (9.42¢) j° 1 (ng =0)
O = (A +p,e+8) = (2°—1°=1), i°=1 5 2 (ng=1)
(9.42d) jo=1 6 7 4 (ng =2)
O = (2% - D)2 °+ 19, (9.42¢) i°—3 8 (np =3)
O ) = (20— 1= 12 °+ 19’ - 1)/ (%), o . (9.43)
(9.42f)  is given by the matrix
TABLE 1. g5-reduced I" submatrices for osp(3/2) [see Sec. IX D, Eq. (9.44)].
0 1 B 21°+3]'/2 o
20141
2 1>[2’ +1)7 0 0 _[Lerss
A= C+DQ+1
o[ %° +1]m 1°42]7
@+ 19 - 0 0 -2
0:;0 172 [ [ 172
0 270 10[ 2% [21 2j°-nd +2)]
YOl h@ oD TS 0
2° 172
7] 0 0 0
0 [(1°+1)(2I°—1)]V2 _ 1
B=— 1°QI°+ 1) [1°U°+ ]2
172
0 0
[(I°+l)] 0
0 0 -1
2j0+1 172
T 0 0 0
0 [ 2P0 — 0 0
0
C=(2°—1°—1) 1°Q4° - .
- (° +1°) _[@°=ni’ei*+3)]” o
(% °— DA+ 1)'"? e+ @+
0 0 0 Y°—-2)°+ )]
@°—D@E°+
=17 Py
0 "[ ° ] [( 0
0 _ 0 2
EREASIIGEI Y 0 _1
D=
. (2° —1)(1°+1)(21°—-1) 12
%4010 _
@&+ )[ 2%°QI1°+1) ] 0 0 !
0 2i94 19 [(2j0—2)(21°—1) e 4°G°—1) [2/°—1]2
W+ Olgr har+ @°—D l2°=2
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:0 A 1|||I‘(F“‘)|||““1 1y = (A B) (9.44) (9.42d) vanishes. The (extended) T-matrix representation
K / C D (9.44) is then reducible but not fully reducible as the lower
where A, B, C, and ‘D are 4X4 matrices given in Table I.  left submatrix C vanishes.
Under the assumption that 2j°>0 and /°>0, the ([/°]j°) One easily verified that the g5-reduced T'-matrix repre-
representation of osp(3/2) is found to be atypical only if  sentation obeys the reduced commutator algebra

s 1 ” l o o ‘I o o I).
S U0 U(j7 L) EIF O I
17

= — 8, 6;v6(+ 1), (9.45a)
and

> uausl l)U( —J %,1 o) (U LR Ty R | LRI

= 6,,.81-,\/1(l+ 1), (9.45b)
easily obtained from (9.37d).

Only two grade-star adjoint operations can be defined on the superalgebra whenever one restricts one’s attention to the
real compact Lie subalgebra so(3) @ sp(2) of osp(3/2): from (7.4) and (9.5), we find

(FL”"')I= :F(_I)I/Z—a(_l)l—mF[lla—"‘. (9.46)
We find the following values for the various restrictions %%

W‘Z(}[‘I,"];l[‘ll"l) =1, (9.47a)
TP = £ (= DI+, (9.470)
%2([5"]’[5"1%) =+ (= DYUIQ°—1), (9.47¢)
‘z/z(u"]’[{)" 11) + (= 1)EUD2j0— 10— 1), (9.47d)
Wz([zo];[l"+1]) = — (2 2i0 _ 1)(2j°+ 19, (9.47¢)
T ) = — (20— 10— 1) (% +1%(2° - 1)/(2°), (9.471)
T A = — (-1 (2 =1°-1), (9.47g)
FELET ) = F (=D - - 10— 1)(2°+1°). (9.47h)

With j°>0 and /°>0, we see that the overall sign of the various restrictions depends of the values of the expression
(27° — I° — 1) and it is easy to conclude that generic representations of osp(3/2) are not grade-star equivalent. The only two
exceptions'>!” are the cases ([/°]®) = ([0]}) and ( [3]4) [we admit spinor representations of so(3) ]. For these cases, we
obtam, in the {[/ ]j = [I°]}, [1° + 110} ordered basis the 2 X 2 y-matrix representation

1"] [I lllly(Flll)”'[I“] l’]

0 — [ (= DEIOU°+ 1)(2°+3)/21° + D)2
= S0 20 ) 1/2 (9'48)
+ (- DY £ (= DFUP2(1° 4 1)] Y
with grade adjoint conditions
o 0 ; _ i _;7 [dim[/] dim(j) ]*?
I l. [11 Flll (I 1;[11 = Y1 VG RYE S RGN AVE S Ve B 4
( [, (ll|||r(Fnl)”|[l"l LTy (9.49)
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On generalization of the Sinai theorem in the random site problem
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The Sinai theorem is generalized to determine the transformations that preserve the critical
concentration P, and the critical exponent £ in the random site problem.

The interest in spin glass,' polymers, and hopping con-
duction theory has increased the importance of the random
site problem.? In this problem sites are distributed random-
ly. Let §; be some function of the r;, which is the position
vector of the jth site with respect to the ith site. The sites /and
J are considered bonded, hence belong to the same cluster, if
for some number ¢,

§i<é. (1)
This relation is called the bonding criterion. The percolation
threshold £ is the lower bound of £ that permits the exis-
tence of an infinite cluster. The surface defined by

'3 i &( Iy )=4,
where {> 0, ¢ is a homogeneous, increasing, and positive
function of the components of r;;, is called the bonding sur-
face. An identical surface Q, is constructed around every site
and we increase § until { = £, where an infinite cluster is
formed for the first time and the bonding surfaces of two
consecutive sites intersect with each other. This is called the
overlapping figure construction of the random site problem.

The problem under consideration is what are the trans-
formations that preserve £, ? The first answer was obtained
in Ref. 2 and is stated in the following theorem.

Theorem 1 (Sinai): If a surface Q; can be obtained from
a surface Q, via a linear transformation of the coordinates

X; = Ayx, (2)

(we are using the Einstein summation convention), where
the constants 4,, involve both rotation and dilatation, then
£ for the two surfaces are identical.

This result has been generalized Ref. 3 in two dimen-
sions to the following theorem.

Theorem 2: If a curve Q ; can be obtained from the curve
@, via a conformal transformation

Z =f(2), 3

wherez' = x' + iy’, z = x + iy, then £, and the critical expo-
nent 3 are identical for both cases. The critical exponent Bis
defined via the percolation probability P({) (the probability
that a given site belongs to an infinite cluster) by

P(;)"’(;_gc)ﬁ, as é‘_’gc+' (4)

Now the question is can we generalize Theorem 2 to
higher dimension, especially d = 3 and 4. This question is
related to the existence of conformal mappings and analytic
functions in dimension d > 2. As for the conformal mappings
it is known* that conformal algebra exists in any dimension
and is given by
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[D’Pu] =—P, [D’K#] =K,,
[Jpv’PA] = nMPv - nvAP[J’
[JIIV’KA] =77;MKV -nle;n (5)

[P#’KV] = Z(W#VD—J,W),

[Vevidoo | = Mupdve — oMo — Nopdus + Mvodup-
Therefore we infer that, at least locally, conformal mapping
exists in any dimension.

Analytic fucntions, however, are a different matter. The
generalization of the complex variable z = x + iy to four di-
mensions is the quanternion, which we denote by

Z=Xy + 11X, + iyXy + i3Xs, (6)
such that

i% '—_i% =i§ =ili2i3= bt 1,

., . N

iy = €p5,l,, p0,T=1,2,3;

€,,- is a totally skew symmetric symbol, €,; = 1. To get
d =3 onesets x; =0.

Following the concepts of the two-dimensional complex
analysis, we introduce the following definitions.

Definition 1: There are three types of conjugations; 2",

22, 2¥ defined by
2V = xy — i\, + ixX, + i3X3,
2 = xo 4 i\x, — ixXy + i3X3, (8)
29 = xo+ I\, + Xy — I3Xs.

It is clear that they commute with each other.
Definition 2: An analytic function in four dimensions is
defined by

fa =3 ¢, 9
n=0

where C, are constant quaternions.

Now we have the following theorem.

Theorem 3: According to definitions 1 and 2 the only
analytic function in three and four dimensions is

flz) =c¢5+ ¢,z (10)

Proof: Denoting d /92’ by ,,, p = 1,2,3, the general-
ized Cauchy-Riemann conditions necessary for the exis-
tence of analytic functions are

31, f(2) = 32, f(2) = 3,f(2) =0. (11)
Assuming
[2)=U+ LU, + 5,U, +i5U,, (12)

Cauchy-Riemann generalized conditions take the form
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aoUo_alUl =0, 30U1+31U0=0,

aoU2_alU3=o, aoU3+61U2=0, (13)
30U0—32U2=0, aoUl +32U3=0, 4
30U2+32U0=0, 30U3—62U|=0, (1 )
8oUo— 3sU; =0, 3,U, — dU, =0, 5)

30U2+(93U1 =0, 30U3+33U0=0,

where
4,=4d/ox", p=0,123.

Studying the compatibility conditions of the four dimension-
al Cauchy-Riemann conditions (13), (14), and (15) it is
straightforward, though tedious, to conclude that

Uy=Uy(xp), U,=U,(x,),

Up=U(x), Uy = Uslxy), (16
as well as the condition

d2U, =0 (nosum overu). 1n

Equation (17) is reminiscent of the relation between analyt-
ic functions and harmonic functions in two dimensions,
though it is more stringent. The only solution of (16) and
(17) that is compatible with (9) is the linear function.

This completes the proof of the theorem.

It is interesting to notice that there is an analogous
theorem® proved for supermanifolds. It is known that qua-
ternions are closely related to spinors. This also explains why
the conformal algebra is infinite only in d = 2 since in this
case it is related to analytic function.®

Therefore, despite losing analytic functions, we still
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have the conformal transformations. However, recalling
that what we really need is the set of transformations that
map intersecting surfaces onto intersecting surfaces and vice
versa, the requirement of preserving the sense of the angle of
intersection is a luxury we can afford to lose. Since 1-1 and
onto transformations maps intersecting surfaces onto inter-
secting surfaces and vice versa, we have the following
theorem.

Theorem 4: In any dimension if a surface Q ; is obtained
from the surface Q, by a 1-1 and onto transformation then §,
and the critical exponent £ are identical for both cases.

We give some examples. The transformation

Y=y, zZ-z (18)

maps a sphere onto an ellipse; hence they both have the same
¢. and . The transformation

r—- —r ( 19)
is a reflection through the origin that is not a conformal
mapping; however, it preserves {. and B. Finally, one can
define a 1-1 mapping from a unit circle onto a square via the
argument 9(z=ae® on the circle); hence according to

Theorem 4 both circle and square have identical §.. This
result has been confirmed using computer simulation.’

X—ax,
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The construction of a wavelet analysis over the circle is presented. The spaces of infinitely
times differentiable functions, tempered distributions, and square integrable functions over the

circle are analyzed by means of the wavelet transform.

I. INTRODUCTION

In this paper we want to show how to analyze fairly
arbitrary functions over the circle T' with the help of a two-
parameter family g, , of functions called wavelets. They are
labeled by a position parameter ¢eT"' and a scale parameter
a, a>0. In standard wavelet analysis of functions over the
real line R, the family of analyzing wavelets is obtained from
a single function by means of dilations and translations (e.g.,
Ref. 1). On the circle it is difficult to define a good dilation
operator, and therefore the wavelets over the circle cannot be
obtained by an irreducible representation of the affine group,
as was the case in Refs. 1-4.

As proposed before’ in the case of orthogonal wavelet
analysis the wavelets that we will use are obtained from the
standard ones (1/a)g{(x — ¢)/a) by means of periodiza-
tion:

g¢,a(x)=z_1_g("_:‘sﬁ), #eT', aeR*.
neZ
(L.1)

This series converges whenever g decays sufficiently fast at
infinity. The wavelet transform of a complex-valued func-
tion over T' is a function over the position—scale space,
which is an open, infinite, cylinder Y = T'XR™. It is given
by the following scalar products:

(T5)($,a) = (844s5), (Pa)€Y. (1.2)

The wavelet transform is a sort of mathematical microscope
where the position is fixed by the parameter b, the enlarge-
ment is 1/a, and the optic is given by the wavelet itself. We
now shall give a precise meaning to all these expressions, and
we shall show how to characterize various functional spaces
over T' with the help of this transform.

Il. SOME DEFINITIONS AND EASY PROPERTIES

The space C= (T') is made of complex-valued func-
tions s over T that are arbitrarily many times differentiable.
We identify the circle T' with the interval [0, 27). A topol-
ogy on C= ('T") is given by the following directed family of
norms:

Isllceaoyn = 3 sup|9%s]. 2.1
o<p<n

In this topology C= (T') is a Fréchet space, that is, a com-
plete, locally convex, metrizable, linear space. For any func-

) Laboratoire Propre LP-7061, Centre Nationale de la Recherche Scientifi-
que.
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tion s in C* (T!), we can define its Fourier coefficients
(Fs)(n), neZ:

s(x)e "™ dx.
Tl

(F5) (n) = —— (2.2)
2

The sequences ( F5) (n) that can appear as the Fourier coeffi-
cients of some function s in C= (T') are exactly the se-
quences that decrease as |#| goes to infinity faster than any
power of n. And conversely every such sequence defines a
function in C* (T'). This sequence space will be called
S(Z). A topology on S(Z) is given by the following directed
family of norms:

Irllsczyimn = Z Sklelglkp"(k)l, n=20,1,...

Ogp<n

(2.3)
For any sequence 7 in S(Z) we define the inverse Fourier
transform F—":

(F7'n(x) =Y r(me™.

neZ

24)

The following well known theorem shows that C* (T') and
S(Z) are topologically the same spaces, and that any func-
tion in C* (T') can be decomposed into a Fourier series.

Theorem 2.1:

(i) £+ C=(T')-~S(Z) is continuous;

(ii) F~': S(Z)-C>=(T") is continuous,

(iii) F~: F= Yowiry FF™' = 1gg,.

Proof: [We only shall prove (i) and (ii).] With the help
of a partial integration we can write

kPs(x)e ™ ** dx
TI

N dLs(x)e~* dxl <27||s]l ¢« oy

which proves (i). On the other hand, since any reS(Z) is
rapidly decreasing, we may exchange the differentiation and
the summation:

ar z r(n)e™

neZ

2
= .Z n°r(n) 1+n
nez 1 +—n2

1
14+ n?

<C |7l sczysp+2-
QE.D.

<(||’|IS(Z);p + "r"s(Z);p+ 2) z
nez

© 1989 American Institute of Physics 39



This proves (ii). Q.ED.

The functions g that define via (1.1) the wavelets shall
all be in the class S(R) of Schwarz, that is, the set of func-
tions decaying at infinity together with all their derivatives
faster than any polynomial. A topology on S(R) is given by
the following directed family of norms:

“s“S(R);n,a = z sgp[x"ais(x)l, ha= 0,1,... .
o<pn
0<7<a

(2.5)

With this topology S(R) is a Fréchet space. On S(R) we
define translations and dilations in the usual manner:

7% S(RY-S(R), (T%)(x)=s(x—b), beR, (2.6)
D% S(R)-S(R), (D%)(x)=(1/a)s(x/a), a>0.
2.7)

Obviously these operators are continuous. On S(R) we de-
fine the Fourier transform .# and the inverse Fourier trans-
form & ~'as '

(Fs)(w) =f s(x)e  “*dx, (2.8)

R

(F 'nNx)=Q2m) ! f rHw)e™ dx. 2.9)

R

We will use the notation § for & s. The Fourier trans-
form is a bijective, bicontinuous map.

Theorem 2.2:

(i) Z: S(R)-S(R) is continuous,

(ii) F 1 S(R)-S(R) is continuous,

(iii) F'\F =FF ' =1sg-

For a proof, see any textbook about functional analysis.

The passage from a function s in S(R) to a function in
C= (T") will be done by the periodization operator I1:

(Ils) (x) = " s(x + 2mn), xeT"

nez

(2.10)

Theorem 2.3: I1: S(R) — C* (T') is continuous.

We shall prove this theorem in a moment. To any func-
tion in S(R) we can associate a sequence in S(Z) with the
help of the sampling operator:

3 S(R)-S(Z), (Zs)(n)=s(n), n=.,—10,1,..

(21

It obviously is a continuous operator. A natural question is
to ask what the Fourier coefficients of periodized function
are. The answer is given by the Poisson summation formula,
which reads

Ml =%, (2.12)
or, more explicitly (§ = Fs),
2s(x+21rn) =Z§(n)e"’”‘. (2.13)

neZ neZ
For a proof of this equation, see, e.g., Ref. 6.
Proof of Theorem 2.3: We have [ = F ~'3.% . All map-
pings are continuous. Q.E.D.
The space L ?(T) is made of functions s with finite norm

Il = | Isco12as. @1)
Tl
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It is a Hilbert space if it is given the following scalar product:

(r,5) =f F(P)s($)dg.
TI

Clearly L2(T"') DC> (T'). The Fourier transform extends
to a map from L *(T) to L *(Z), the Hilbert space of square
summable sequences. We may split L 2('T) into the direct
sumof H> (T"), thespace of functions that have only nega-
tive frequencies; H2_ (T"), the space of functions that con-
tain only positive frequencies; and K(T"), the constant func-
tions:

(2.15)

LXT") =H> (TYeK(TYeH> (TY).  (2.16)

The corresponding subspaces of C* (T') shall be denoted
by C= (T') and C= (T").

lll. THE WAVELET TRANSFORM OF C>(T")

In this section we analyze the space functions with the
highest possible regularity. It will turn out that this is mir-
rored in the wavelet transform by a fast decay of the wavelet
coefficients as the scale @ goes to 0. The regularity of the
analyzing wavelet, or, what is the same, the fast decay of the
Fourier transform at infinity, in turn gives rise to a fast decay
of the wavelet coefficients, as the scale @ goes to infinity.
Therefore we will be able to characterize this space as the set
of functions that are well localized in the scales; that is, every
such function has a minimal effective length scale. We shall
characterize the range of the transform, and further give an
inversion formula.

First we introduce some notations. For any f/&S(R) and
any a >0, we define £,€C= (T') as

fon = @D =3 (% XL PR
neZ
and f, ,eC* (T') with ¢eT" will stand for
Jpa(X) = (IIT?Df ) (x) = f, (x — ¢). (3.2)

For reasons that will become clear later on we shall require
that all the moments of the wavelet, g, vanish:

J x"g(x)dx =0, n=0,1,... (3.3)
R

An equivalent condition is that the Fourier transform
£ = F g vanishes at the origin in infinite order:

g(w) =0(w"), n=01,.. (0-0). (3.4)

The subset of S(R) of functions that satisfy one (and there-
fore both) of these conditions will be called S;(R).

Definition 3.1: The wavelet transform T, of any func-
tion seC= (T') with respect to a function geSy(R) (called
the wavelet) is given by the following scalar products:

(T,s)(da) = (8448), €T, (3.5a)

The same expression in Fourier space reads (using the
Poisson summation formula)

a>0.

(Ty9)($0) = ¥ ( Fg)(ak)e™(Fs) (k).

keZ

(3.5b)

The wavelet transform is a function over the position scale
space, which in our caseis acylinder Y = T! X R*. Obvious-
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ly it is a function that is infinitely differentiable. It turns out

that T, is a continuous map from C* (T') into the space of

functions y(¢,a) over Y that are infinitely differentiable, and

that decay for a—0 and a— « faster than any fractional

polynomial in a. We call this space S(Y). The topology of
this space is given by a directed family of norms:
Wllscvsnas = 2 supla?d.d,y(p, a)l,

— npn Y

o<k
119,29

naf=0,1,.... (3.6)

Then S(Y) is a Fréchet space. We have the following
theorem.

Theorem 3.2: For geS,(R), we
C *(T') - S(Y) is continuous.

We first shall prove two lemmas.

Lemma 3.3: Let 5€S,(R), and let s, be given by (3.1).
Then

have T,:

4

(i) li_t.l(l) sallzicery = lIsllz my»
(i) Yn=0L... [S:)l¢cecp, =0(1/a™)
(a- ), for m=0,1,...

Proof: Assertion (i) follows from the fact that for small
a essentially only the term (# = 0) in the sum (3.1) remains
because of the localization of f. To prove (ii) we expand s,
into a Fourier series using the Poisson summation formula:

s, (x) =3 S(an)e™.
neZ
Since $(0) =0 and §(w) = O(«” T ™*?) as w goes to infin-

ity, we can estimate, for a large enough,

la™ d%s, (x}|< Z a™|nl?|3(a- n)|<z

o P
Since the sum remains finite if @ goes to infinity we have
finished the proof. QED.

Lemma 3.4: For any seS,(R), there are functions #, v,
weS,(R) such that

(l) a¢s¢‘a (x) = ax u¢,a (x)’
(i) 9,544(x) =3,04,(x),
(iii) (1/a)s4,(x)

Proof: We use again the Poisson summation formula to
decompose s, , into a Fourier series (s = # 5):

=d,w,,(x).

) $(an)e"x— 9,

nez

s¢,a (x) =

The following functions are in S;(R):

(i) u= —s,

(ii) #(w) = —id,$w),

(iii) W(w) = (i/0)5(o).

A direct computation using the Fourier expansion of s,
shows that they satisfy the identities of the lemma.

Proof of Theorem 3.2: First let p>0. Using Lemma 3.4,
for geS,(R) we can find a function reS,(R) such that
3%L958,.(x) = 3. *r,,(x). With the help of a partial inte-
gration we can write
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|af 8,35 (T,s)(d.a)|

_ ‘ j afr,, (x)3 ' *s(x)dx|
Tl
< i‘i‘! la?rallL vy I|s||c°°(’1");l+k'

Lemma 3.3 shows that the sup is finite. Now let p <0. Again
Lemma 3.4 can be used to find a function »€S,(R) such that
a3 ,058,,(x) =3+, (x). Therefore we can write

la? 3.3 5 (T,s)(da)|

Ppa(X)3 1P+ Ks(x)dx
Tl

<fe‘:3 l7allz ¢y ||s”C°"(T');Ipl+l+ K

Again Lemma 3.3 can be used to conclude. Q.E.D.
Definition 3.5: For any function 4 in S(Y) the inverse
wavelet transform T, 'h is defined as

(T W) = [ gathipa) L2

(We shall see in a moment in which sense T~ !is the inverse
of T,.) This integral is well defined since 4 is rapidly de-
creasing as a tends to O or infinity. It again turns outtobe a
continuous map.

Theorem 3.6: For geS,(R),
S(Y)—-C = (T") is continuous.

Proof: Since his rapidly decreasing we may exchange the
integration and the differentiation and we may write

f 378, . (h(a) Y
Y a

T

we have ‘

93T "W (x)| =

84, (X)L 8"h($,a)da d¢|
Y a
<[ lealle ces da s

Lemma 3.3 assures that the integral is finite. Q.E.D.

We want to establish the relation between T, and 7'
From Definition 3.1 it follows that the positive (negative)
frequencies of the wavelet do only interact with the positive
(negative) frequencies of the function s. Therefore we will
use the splitting (2.16) to separate positive and negative fre-
quencies. Clearly the image of the constant functions is equal
to zero and therefore we can only hope to find an inversion
formula that holds on the other two parts.

Theorem 3.7: For allseC % _, (T') we have

—1 —_—pnt (=)
T, 'T,s=c, S.

The constants ¢;* and ¢, are determined by g:

® da . e .
@ =[ L@ o =[ Lp-aP
0 0

Proof: Let seC % (_, (T") be given. Since all negative
(positive) frequenmes of s vanish, we may suppose that the
Fourier transform of g is symmetric. We call s° the function
that is obtained when using the inverse transformation with
a cutoff at the small scales:
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f(x)=f ‘fT"f dg,., (x)(T,5)(da)
€ !

= j da I dédy g, ,(X)84.(¥)s(¥).
& a Jr'xrt'

For fixed £ >0, Lemma 3.3 guarantees the absolute conver-
gence of all integrals, and therefore we could exchange the
integration. Integrating first over ¢ and a yields

#(x) =f Ke(x— »)s@)dy = (K “45) (x),
Tl

and the kernel K* is given by

Ke(u) =f -‘?aif dd g, (u — $)Z. ($).
€ T!

Expanding these expressions into a Fourier series we obtain
the following equations for the Fourier coefficients (denoted
by a tilde):

~ ® . “ d . N
K*(n) =f iia— |&(an)|?> = —;a— |2(a)|> = K(en),

|n|e
where we have posed

s “ da |,

Koy =| Z g

lw| 4@
Here we have used the fact that g was chosen symmetric. The
Fourier coefficients depend only on en. Applying the Pois-
son summation formula (2.12), we obtain

K*=TDK=K,, with K=5"'K.

But [¢;"¢=’] 7! K, is a summability kernel (e.g., Ref. 6).
Therefore we can apply the theorem of the approximation of
the identity® to conclude. Q.E.D.

We now want to characterize the range of the wavelet
transform.

Theorem 3.8: For any geS,(R), the image of C* (T"')
under 7, is a closed subspace of S(Y). The range of T,
restricted to C % _, (T") consists of exactly those functions
y in S(Y) that satisfy the following “reproducing kernel”
equation:

y(da) = f Py ($.a;¢',a )y(¢',a’)
Y
where the reproducing kernel p, is given by

Pt @) = (1/¢; ) (84,0850 )
or, in Fourier space,

da' d¢'
a 1

p8(¢’a;¢,aa')
-— S (Fe)ak)(Fg)(a'k)e .
cs+(_) keZ,k> (<)0

Proof: As continuous preimage of a closed space under
the inverse wavelet transform, the image of the wavelet
transform is closed. Now for any peS(Y) in the range of T,
on C= _,(T") there is a function s in C % (_, (T") such
that T,s=y. From Theorem 3.7 we have
T, 'T,s=c; ‘s, and therefore we can write

Tng_ y= Tng— ngs = Cg+ (— )TgS — cx+ (- )_}’-
On the other hand, if yeS(Y) satisfies T, T, 'y =¢;* <7y,

42 J. Math. Phys., Vol. 31, No. 1, January 1990

then, for x = ¢;" ¢ 7T ;7 'y, we have T, x = y, which proves
that y is in the range of 7,. We now rewrite the above identi-
ty more explicitly (we can exchange all integrations, since
the integrals are absolutely convergent):

fMy (¢”al)J‘ g¢,a (x)§¢’,a' (x)dx
Y a T

= cg+ - )y(¢ya)’

which proves the theorem. Q.ED.

IV. THE WAVELET TRANSFORM OF 2 '(T")

In this section we will be interested in the wavelet trans-
form of the “functions” over the circle, with very low regu-
larity, that is, the space of distributions &' (T"). The lack of
local smoothness is reflected in the wavelet transform by a
polynomial growth of the coefficients at small scale. How-
ever, the wavelet transformation allows us to represent any
distribution by a C* function over the position scale space.

The elements of &' (T!) are continuous linear function-
als of C= (T!); that is, for any X in 2'(T') there is an
integer number 7 such that, for any seC* (T'), we have

1X() | <Cellsl] ¢ = oy (4.1)

The smallest such » is called the order of the distribution X.
A topology in & '(T"') is given by requiring that any se-
quence X, in &' (T") tends to zero if and only if X, (s) goes
to zero for all seC* (T'). We identify any function s of
C= (T"') with the distribution (s, ). This embedding is con-
tinuous. The space C* (T") is dense in Z'(T"), and there-
fore any distribution can be approximated by functions in
C= (T"). We may even choose s, (s, »X in the sense of
distributions) in such a way that, for all «C> (T"') and n,
we have (m being the order of X)

|5 [KCoell?ll ¢ o iy (4.2)

In the same way we denote by &'(Y) the space of linear
continuous functionals over S(Y). For any pair of functions
fi h over Y we define the following ‘“‘scalar product”
(*»*)L2x, Whenever the following integral converges abso-
lutely:

8wy = J;7(¢,a)g(¢»a) ﬁad—‘ﬁ .

We now define the wavelet transformation of distribu-
tions.

Definition 4.1: T,;: D'(T')-2'(Y) is defined by
Xe2' (T = (T,X)(y) =X(T;'y), forall yeS(Y).
T;% 2'(Y) —-2'(T') is defined by YeZ'(Y)
= (T7'Y)(s) = Y(Ts), for all seC= (T").

Here, for functions in C* (T') and S(Y), the definitions of
Sec. IT apply.

These definitions are reasonable, since T, and T !are
continuous maps between C* (T') and S(Y). In the follow-
ing theorem we show that Definition 4.1 actually extends
Definitions 3.1 and 3.5.

Theorem 4.2: T, and T, ' are the only possible contin-
uous extensions of T, restricted to C* (T') and Tg‘l re-
stricted to S(Y).

(4.3)
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Proof: Let X,€2'(T"), X, -0 (n— ) in the sense of
distributions. For all yeS(Y), we have

(T, X)) =X,(T; y)-0 (n—>c),

which shows that T, is a continuous map from 2'(T') to
2'(Y). In exactly the same way we can show that T~ ' is
continuous, too. Let seC= (T"'). Taking s as a distribution in
' (T"), we write, for any yeS(Y),

(T,5)(p) = f da d¢ f dx 8, (X)s(X)p($,)
Y T!

a

= (Tgsa.V)L!(v) .

We could exchange the integrations since all integrals con-
verge absolutely. Since y was arbitrary, we have proved that
Definition 4.1 coincides with Definition 3.1 in the case where
a distribution is'a functionin C* (T'). But C* (T"') is dense
in 2'(T"') and therefore by continuity there is exactly one
continuous extension. The proof for 7', ' is the same.Q.E.D.

The next theorem shows that the wavelet transform of
any distribution in 2’ (T') can be identified with a function
in C~ (Y), that is, the space of functions over Y that are
infinitely differentiable.

Theorem 4.3: Let XeZ'(T"). For all yeS(Y), we have

(TgX) ) = (QQJ)E(Y) s
where the fun\ction & is in C~ (Y) and is given by
Z(da) =X(gs4)-

Proof We can find a sequence s, of functions in

C= (T") that converges to X in the sense of distributions and
that satisifies (4.2). Therefore we may write

(T, X)) = lim (s5,, T 'P) . 2ery

n— oo

@oorn) p(8.5) 2298
Y a

= lim (44)

n—co

We could exchange the integration for fixed n because of the
absolute convergence of all the integrals. Clearly (g;,,,5,)
tends to X(g,,) pointwise, that is, for each (4,a)€Y. But
from (4.2) it follows that

l (g¢.a Sn) | <C ”gﬂ "C”(T');M’

where m is the order of X. Therefore Lemma 3.3 shows that
the integrand in (4.4) is uniformly bounded by a function
absolutely integrable over Y. We can apply the theorem of
dominated convergence to conclude.

Apgain it is useful to split the whole space into
9", _,(T"), the space of distributions that are acting on
the positive (negative) frequencies only, and ¥ (T'), the
distributions that are multiples of the integral over the circle.
Again every distribution can be written in a unique way as
the superposition of three distributions, each one belonging
to one of these three classes:

2'(T) = ' (T o X (THeD _ (TY.

We now will write a distribution in Z'(T') as a well
defined “scalar product” of functions in C* (Y) obtained by
an absolutely convergent integral over Y.

Theorem4.4: LetscC = _, (T') and let X be a distribu-
tionin Z’, _,(T"). Then
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X(s) = (1/¢; YN, Te8) 1oy s

and & = T, X as given by Theorem 4.3.
Proof: From Theorem 3.7 it follows that

(T,X)(T,s) =X(T [ 'T,s) =¢; 7X(s).

Since T,seS(Y), Theorem 4.3 shows how (7,X)(T,s) can
be written as a scalar product. Q.E.D.
We now want to characterize the image of Z'(T') un-
der the wavelet transform.
Theorem 4.5: The image of 2, (_, (T"') under T, are
exactly those functions % in C* (Y) that satisfy (i) there
exists meZ such that

% ($,a) =0(1/a") (a—0)
uniformly in ¢; (ii) for all p> 0, we have

% ($,a) = 0(1/a")
uniformly in ¢; and (iii) % satisfies the reproducing kernel
equation (pointwise)

Y (d,a) = ( 1/cg+ - ))(Pg (6,a;,°),F Y 2v) -

Proof: Let XeZ', (_,(T'). Then ¥ (¢,a) =T, X
= X(g,, ) satisfies (i) and (ii) as follows by direct compu-
tation from (4.1) and Lemma 3.3. To show (iii), note that,
for any seC= (T'), we can write, with the help of Theorem
2.4,

(T;7'T,X)(s) =X(T ;] 'T,s) =¢; 7 X(s).
Therefore, we can write, for # = T, X,

(T, T, '%)a) =c; 7% (¢,a).
On the other hand, a direct computation shows that

(T, T, '%)(pa) =c¢; (P ($.3;,°),% )Ly -
The integral on the right-hand side converges absolutely for
every (¢,a)€Y due to the rapid decrease of the reproducing
kernel p, at small scales.

Now suppose that % is a locally integrable function over
Y that satisfies (i)~(iii). We define XeZ'(T') by

X(s) = (1/¢;" 7N Z, T8 Lagvy -
Clearly X is well defined since T,s is rapidly decreasing
(Theorem 3.2), and a direct computation shows that

T,X=%, thus showing that % is in the image of
2, (_,(T") under T,. Q.E.D.

(@— )

V. THE WAVELET TRANSFORM OF L*(T")

In this section we will analyze the Hilbert space of
square integrable functions over the circle. As subspace of
Z'(T") all theorems of the previous section hold for
L2(T"). In particular, the image of L 2('T") are functions in
C~ (Y) that satisfy the reproducing kernel equation. It
turns out that the wavelet transform is an isometry. Its range
is a closed subspace of L ?(Y), the Hilbert space over Y with
scalar product (4.3). So theimage of L >(T') under T, turns
out to be a Hilbert space with reproducing kernel.

Theorem 5.1: The operator

(/e )T, H? (_,(TH-L*(Y)

is an isometry. Its adjoint is the only bounded operator
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form L*(Y) to H? _,(T') that coincides with
(1/ye; ¢7)T ! whenit is restricted to S(Y). Let the wa-
velet g have only positive (negative) frequency contribu-
tions. Then the reproducing kernel gives the orthogonal pro-
jector P;7 (=) on the image of H ( _,(T") under T,:

P} LY (Y)-L*(Y),

(P; ) (dha) = (/e WP (6,85, ) P)Lxy -

Proof: It is enough to show the theorem on a dense sub-
setof H2, (_,(T"). Lets,ueC % (_,(T"). We look upon s
as a distribution in &, _, (T"). From Theorem 4.4 it fol-
lows that

(su) = (T, Tu) 2 vy

and therefore T, is anisometry. A direct computation shows

44 J. Math. Phys., Vol. 31, No. 1, January 1990

that the adjoint is as stated in the theorem. The fact that the

reproducing kernel equation is an orthogonal projection op-
erator follows from the well known statement about partial
isometries. Q.E.D.
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A graded Weil homomorphism is defined for principal superfiber bundles and the related
transgression (or Chern-Simons) forms are introduced. As an example of the application of
these concepts, a “superextension” of the Dirac monopole is discussed.

I. INTRODUCTION

In recent years Chern-Simons forms' have found a var-
iety of applications in quantum field theory.? Chern-Simons
forms are used as topological mass terms in gravity and
Yang-Mills theories®; moreover, the consistent and covar-
iant anomalies of Yang-Mills-type theories can be interpret-
ed in terms of them*® and they play a fundamental role in
the anomaly cancellation mechanism in string theory.” Fin-
ally, several supergravity models have Lagrangians involv-
ing Chern-Simons terms.?

Therefore, it seems interesting to generalize concepts
involving Chern—Simons forms to the context of supermani-
folds and in particular to the case of principal superfiber
bundles over supermanifolds [some work in this direction,
with a particular choice of the structure (super) group and
using local techniques, has already been done®'!]. This gen-
eralization should be relevant to the study of the anomalies
of superstring and supersymmetric field theories; see, e.g.,
Ref. 11 and the references therein. Some related work
(Chern classes for superbundles and cohomological treat-
ment of anomalies of supersymmetric gauge theories) can be
found in Refs. 12-14.

In this paper, using rigorous supermanifold theory and
relying on a general algebraic description of the Weil homo-
morphism'? in the graded setting,'® we construct a Weil ho-
momorphism for principal superfiber bundles. This is used
to construct in terms of curvature forms some invariants
associated with the superbundle and in particular to define
Chern-Simons forms. Some of the concepts introduced are
applied to the study of a “superextension” of the Dirac mon-
opole."’

The relationship of the Weil homomorphism to the co-
homology of the classifying space for the structure super-
group of the principal superfiber bundle will be discussed in
a future paper. This relationship could be of some conse-
quence in physics, in accordance with the work of Bonora et
al.'®

This paper is arranged as follows. In Sec. II we review
some basic material concerning supermanifolds, including
super Lie groups and superfiber bundles. Supermanifolds
are intended in the sense of DeWitt and Rogers, > i.e., they
are topological manifolds modeled on superspace whose
transition functions fulfill a suitable smoothness condition.
We also recall some facts about the cohomology of super-
manifolds. In Sec. III the theory of the graded Weil homo-

* Also at Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, Mostra
d‘Oltremare Pad. 19, I-80125, Napoli, Italy.
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morphism is expounded and the transgression (or Chern—
Simons) forms associated with a given prinicipal superfiber
bundle are introduced. In Sec. IV we define the elementary
Ad-invariant polynomials of the general linear superalgebra
and construct the related invariants of principal super fiber
bundles, when the structure supergroup is the general linear
supergroup or one of its subgroups. In Sec. V some of these
concepts are exemplified by studying a Grassmann exten-
sion of the Dirac monopole.

We shall use some elementary sheaf theory. Indeed,
while all information concerning a smooth manifold is en-
coded in the ring of global functions over the manifold, this is
not true for supermanifolds (as it happens in the case of
complex manifolds), so that the use of sheaves is mandatory.

il. SUPERMANIFOLDS AND PRINCIPAL SUPERFIBER
BUNDLES

A. Algebraic preliminaries

In this paper we shall be constantly concerned with Z, -
graded modules. We shall always say “graded” for “Z, grad-
ed” and the grading will be denoted as follows: If
M =M, M,, |x| = jmeans xeM,. If either xeM, or xeM,
x is said to be homogeneous. A morphism of graded modules
Jf: M- N is said to be even (resp., odd) if f (M) CN, [resp.,
S(M)CN,; ]

We denote by B, the exterior algebra over R, L < .
Here B, is naturally graded, B, = (B, ),® (B.),andisa
graded commutative algebra, i.e.,

abe(BL)|a|+|b|, ab= (— 1)l918lpq,

if a, beB, are homogeneous. If N, is the nilpotent ideal of
B,, one has B, = Re N, . The relevant projections o: B,
—R and s5: B, - N, are called body and soul maps, respec-
tively. The Cartesian product B7'*" can be made into a
graded B, module by setting

By*"=By"eBI",

with B7" = (B.)gX(BL)], B7" = (BL)"X(B.)s. A
body map o™ B7"-R™ is defined by letting
o™ (xl s xmyt o yt) = (o(x) o (x™)).

A graded B, module is said to be free of dimension
{(m,n) if it is free of rank m + n over B, and has bases
formed by m even and n odd elements. Any left-graded B,
module M can be turned into a right module, and vice versa,
by letting

xa = ( —1)9¥gx, V homogeneous xeM, acB, .
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Given two graded B, modules M, N, their tensor product
over B, , calculated by considering M as a right module and
N as a left module, can be canonically given a structure of a
graded B, module. We shall always regard M® , N as en-
dowed with such a structure (of course, this applies to any
graded commutative ring and not only to B, ).

The set of (m + n) X (m + n) matrices with entries in
B, ,denoted by gl(m + n), is a graded B; module of dimen-
sion (m? + n%2mn). It can be graded so that its even part,
denoted by gl(m,n), is formed by matrices of the form

4 B
X= ,
(c D)

where the matrices 4 and D are m X m and n X n, respective-
ly, and have entries in (B, ),; while B and C are mXn and
n X m, respectively, and have entries in (B,),. Endowed
with the bracket whose action on homogeneous elements is
[X,Y] =XY— (— 1)XIIYIYX, gl(m + n) is a graded Lie
B, algebra (i.e., a Lie superalgebra over B, ).

(2.1)

B. Supermanifolds

Following Rogers,”! we introduce a sheaf of B, -valued
functions on B7" called GH> functions. We denote by
@ [ V;B,. ] the graded algebra of C ~ B, -valued functions on
VC X, where X is any manifold, and regard B, and B 7" as
topological spaces by endowing them with their vector space
topology. Let us fix two positive integers L and L', with
L’<L and, for any open set U in R™, let us denote by

Z,  C[UBL ] »C[(6™°) " (U)B,]
the morphism of graded B, . algebras defined by
ZL',L ) (x'---x")

L 1 ; i
- i.~‘§=0 i) (@9 P oty atamy
Xs(x!)ie-s(x™).
One proves that Z, . ; is injective; its image will be denoted
by ¢ 7°[0™°) ' (U)] and will be identified with the graded
algebra of GH = functions of even variables on
(™% ~Y(U). The GH* functions of even and odd variables
are naturally defined on the sets (") ~!(U), where Uis an
open set in R™. The relevant function algebra is denoted by
G2 (o™") ~'(U)] and its elements have the form

F(xl...xm’yl..yn)
= Fy(x"x™) + k_;” Fyog (XX
I<a,< " <au<n
Xyan...yak’

Pt
where F, ..., €9 57[ (0™°) ="' (U)]. The first derivatives of
F are uniquely determined by the development
no . OF
F(x+ hy+ k) =F(x,p) + z h ‘g—;(x,y)
X

i=1

= JdF
+ z k"‘% (x,p) + O(h,k)?,

a=1

provided that
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L—L’'5n. (2.2)

We may as well consider GH * functions on arbitrary open
sets WCB " An element of $#°[W] is a function in
@[ (o)~ lo™"(W)] restricted to W. One can easily
check that this defines a sl%of graded B, . algebras over
B 7*". One has also a sheaf of germs of GH ~ functions
of even variables and the two sheaves are related by

G# =GR e Alnl,

where A[#n] is the exterior algebra over R with » generators.

Setting L = L' one recovers the so-called G * functions
originally introduced by Rogers.?® These are badly behaved
since condition (2.2) is violated; the lack of definition of
partial derivatives with respect to odd variables implies that
the modules of derivations of the local function algebras are
not free. However, the sheaf ¥ #°, where L, L', and n are
supposed to satisfy condition (2.2), also has some unplea-
sant features, mainly related with the definition of a tangent
space and the relationship between derivations and tangent
vectors.?? Such drawbacks can be eliminated by considering
a new, enlarged structure sheaf

g = g%QBL:BL’ (2.3)
which is a sheaf of graded B, algebras. The partial deriva-
tives of sections of & are defined according to the rule

d(fea) df

e

The definition of supermanifold we shall adopt is such
that the structure sheaf of a supermanifold locally has the
form (2.3). A precise definition of the resulting category of
supermanifolds, whose objects we call & supermanifolds,
while the morphisms are called & maps, was given in Refs.
22 and 23. Here we wish only to recall the following.

(i) If U, Vareopen setsin B 7" and U~ Visa & map,
then if /" (& | ¥) is a subsheaf of ¥ |U; in other words a &
map pullbacks sections of & into sections of ¥ .

(ii) If S is an (m,n)-dimensional ¥ supermanifold,
the topological space underlying S is Hausdorff second
countable and on S there is an atlas &

={(U,.¥,)|¢,:U, »B ™"} such that its transition func-
tions are & maps.

Defining the evaluation morphism §f®a > fa map-
ping ¥ into the sheaf of B, -valued C * functions on S, the
triple (S, %,8) is a supermanifold in the sense of Rothstein?*;
moreover, 8( ¥ ) is the sheaf of G * functions on S.

Remarks: (i) The supermanifold S also inherits a struc-
ture of ordinary differentiable manifold of dimension
2L Y(m + n).

(ii) The module B 7" is obviously a supermanifold;
also,

B7*" has a structure of supermanifold of dimension
(m + n,m 4+ n) given by the canonical isomorphism of
(B.)omodulesof B} * "B} t™m*n,

Henceforth we shall say simply ‘“‘supermanifold” in-
stead of “¥ supermanifold.” A class of supermanifolds that
is important for physical applications is given by the so-
called De Witt supermanifolds.'>*>*> De Witt supermani-
folds are defined in terms of a coarse topology on B 7", called
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the De Witt topology, whose open sets are the counterimages
of open sets in R™ through the body map o™™":B "" - R™. We
say that the (m,n) supermanifold is De Witt if it has an atlas
such that the images of the coordinate maps are open in the
De Witt topology. Loosely speaking, a supermanifold is De
Witt if it has an atlas with a “tubelike” cover. It is easily
shown?® that a De Witt (m,n) supermanifold is a locally
trivial fiber bundle over an m manifold S, with a vector fiber.
The manifold S, is usually called the body of S and the bun-
dle projection $:5- 8, is given in local bundle coordinates
by the body map ™",

C. Supervector bundles®>2*

A supervector bundle (SVB) of rank (p,q) over a super-
manifold S is a pair (£,7), where £ is a supermanifold,
m€~Sisa Y map, and there is a cover {U, } of S with ¥
diffeomorphisms

Yo (U,)-U,XB:+4

such that pr.oy, = 7. Moreover, the transition functions
8.p defined as usual, i.e.,

&ap (X) () = pryoy, oYy ' (x0),
VxeU,NUg, veBi*9,
are required to be (B, ), linear, i.e.,
8.5:U.NUs~GL(p,9),

where GL(p,q) is the group of even automorphisms of the
graded B, module B2 * 9, which is the open subset of gl(p,g)
formed by invertible matrices.

Giventwo SVB’s £, £’ over a supermanifold S, a ¥ map
f:E—~ &' is said to be a morphism of SVB’s if the diagram

f
§—s¢'
L
S-i»S

commutes and finduces morphisms of & -modules between

the modules of local sections of £ and £°.%

D. Graded tangent space

Let S be an (m,n) supermanifold and ¥ its structure
sheaf. Let us denote by Der & the sheaf of derivations of
%%, by Der" 9 the dual sheaf; and finally,

A= A%, Der' 4.

The sections of A” are called differential p-forms. It is easily
proved that Der &, Der* ¢, and A’ are free graded ¥ mod-
ules. Differential one-forms on an open set U are said to be
even (or odd) if they are even (or odd) as morphisms
Der Y (U)-> % (U).

We wish to relate Der & with a notion of graded tan-
gent space. For each xeS, denote by 7S the space of graded
B, linear maps X:¥ , - B, satisfying

X() =X()g+ (— HXVfx(g),
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where the overtilde denotes evaluation of germs at x.2%%*
Here T,.S is a free graded B, module of dimension (m,n)
and its even part is canonically isomorphic, both as a real
vector space and as a (B, ), module, with the ordinary tan-
gent space to S at x.'%%0

Finally, the disjoint union U, ¢7T,.S can be given the
structure of a rank (m,n) SVB over S, denoted by 7, and
one has a natural identification 7S=Der ¥.

Whenever DeDer ¥ (U), neDer* ¥ (U), we shall de-
note the action of n on Dby D 1.

E. Supermanifold cohomology?*?’

A sheaf morphismd: ¥ =A’-Der' 9 =A', called exte-

rior differential, is defined by letting DJldf

= D(fIVfE¥ (U), DeDer' % (U) and is extended to mor-

phisms A?— A?* ! p>0, in the usual way, so thatd > = 0. We
introduce the differential complex

A%(S) 5 ANS) & AZ(S)— -+

and denoted by H g, it cohomology (super de Rham coho-
mology). Since.S has also a structure of ordinary manifold, it
is natural to compare H jpp (S) with the ordinary de Rham
cohomology of S, H 1, (S). Each A?(S) into €7(S) @ x B, ,
where €'?(S) is the vector space of C = differential p forms
on S, and one has a corresponding morphism in cohomo-
logy,

Hiop (S)=H.x (S)®B,, p>0. 2.4)

In general, this morphism is neither injective nor surjective.
However, we have the following result:

If §'is a De Witt supermanifold, the morphism (2.4) is
bijective. Moreover, H pp (S) =H pr (Sp)-
These facts rely on the triviality of the Cech cohomology of
¥ when S is De Witt.>” Another property of SDR cohomo-
logy is that it is not a topological invariant: Two homeomor-
phic supermanifolds may have different SDR cohomolo-
gies.”® Therefore, SDR cohomology carries different
information than de Rham cohomology; in particular, it
“feels” the superdifferentiable structure.

F. Super Lie groups?®

A super Lie group G is an algebraic group also carrying
a supermanifold structure such that (g,h)—gh ~'isa &
map. An example of a super Lie group is the group GL(p,q)
introduced in Sec. II C. Let us denote by ¥ , the structure
sheaf of G. Having introduced the left and right transport
operators L, and R, as usual, we define the Lie module W
of G as the space of left-invariant global graded derivations
of Y, ie,

W, = {DeDer 9 ;(G) st. L.D=D, V,eG}.

Now W is endowed with a bracket by setting
[D,,D,] = D\°D, — ( — 1)!®112:D,oD,.
The following results are easily proved.?®
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Proposition 2.1: We find that Wy, is a free graded B,
module of the same dimension as G. The bracket defined
above fulfills the following properties:

(i) [D,D]= —(—1!>2[D,D];
(ii) [aD,D,] =a[D,D,], VaeB;

(i) Y (= DPIP[[D,D,],D;]1=0. .

cyclic

For instance, the graded B, module gl(p,q) introduced
in Sec. II A is the Lie module of GL(p,q).

The module Wy free over B, , for a fixed basis formed by
the homogeneous elements {D,,4 = 1,..,m +n} of W
there exist elements C 3z in B, such that

[D4:Dp] = C4pDg. (2.5)
The grading of C%, is the following: |C%;|=|4|
+ |B| + |E|. The B, dual W of W;; is given by the left-
invariant one-forms on G, i.e.,

W5 ={0eA;(G)st. L ,0 =06, VYgeG}.
The analogous property of (2.5) on W is expressed by the
Maurer—Cartan equations: If D, 1682 = §%,

do*=102N65C%,.

Many other features of ordinary Lie groups have suit-
able counterparts for super Lie groups. For instance, one can

define an exponential map exp: (Wg),—G, which isa ¥
map and, in a neighborhood of 0 in (W ),, is injective.

G. Principal superfiber bundies

Let G be a super Lie group. A PSFB over S with the
structure supergroup Gis a supermanifold II carrying a right
action of G such that S = I1/G and having local trivializa-
tions satisfying the usual conditions (obviously, the quotient
I1/G must be suitably defined, but this can be done easily).
Moreover, the right action of G, the natural projection 7:
-G, and the local trivializations are required to be &
maps.

We introduce on II the vertical graded tangent bundle
T 11, whose sections are vertical derivations of & ;:

I'[U,T']
= {DeDer ¥, (U)=T[U,T1}|7.D = 0}.

We shall also denote by A%, the SVB of differential ¢ forms
on II. Let us consider the exact sequence of SVB’s

0-T"II- Tl -7~ 'TS-0. (2.6)
A connection is an even B, -linear morphism of SVB’s*®

V:TTI-T', (2.7)
which splits the sequence (2.6) and is G invariant in the
sense that

VoR,. = R,,oV.
Therefore, one has a G-invariant splitting T I~T "I

@ 7~ TS or, equivalently, a G-invariant splitting of graded
B; modules

T,NMI=T!NMeHor, II, Vuell, (2.8)
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where Hor, II is isomorphic with T,,,S. Equation (2.8)
shows that one can associate with any connection V an even
differential one-form » on II, with values in W, the Lie
module of the structure supergroup, satisfying the usual
properties of connection forms on principal bundles. To
state these properties, we must define the fundamental verti-
cal derivations of &% ;. Fixing a u€ll, one considers the right
action of the structure supergroup as a map f,, :G-1I1, g—ug
and takes the tangent map to f, at the identity of G, thus
obtainingamap 7,G=W; - T, I, DeWg—D "eT,II. One
can check that by varying well one obtains a section of
Der ¥ called the fundamental vertical derivation D * asso-
ciated with D. Then we have

R,0=(Adg "o, VgeG;

D'lwo=D, VDeW, )
Conversely, any even W-valued differential one-form @ on
II fulfilling conditions (2.9) gives rise to a connection V on
IL.

Let Hor'(I1) be the subbundle of A}, whose sections
vanish when applied on vertical derivations of Y
and define Hor/(II) = A% Hor!'(I1). Then the splitting
(2.8) yields a projection h:A{; -»Hor/(II). Given any
nel’ [ U,Af, ], where U is an open set in II, its covariant de-
rivative is defined as

Dy = h(dp).

The covariant derivative §) of the connection form w is called
the curvature of V; it fulfills the identities

O =do' — l0® ANo®C g,
DYQ = 0 (Bianchi identity).

Finally, we note that if % is a horizontal ¢ form on II of type

(2.9)

(2.10)

(A4, W), ie., nel’ [ I, Hor’ll @ 5, WG] and R,.7y
= (Ad g~ ")7VgeG, then
D' =dy* + (— 1)wEARPC4.. 2.11)

Equations (2.10) and (2.11) are conveniently written using
the following notation. Let 77 and 7 be a W-valued p and ¢
form on II, respectively, both homogeneous as elements in
W, and define the W-valued (p + q) form [%,7] by let-

ting, for homogeneous Y,---Y,, ,eDer & (II),

Yl/\'--/\Yp+q_] (9,71
1
=_2X(0')( — 1)cnor + dlo)
Pl

X[ Yoy A" AY oy 47
XYoriy N AY oy 4715
where y (o) is the sign of the permutation o,

p+4q

C(’?aO',P:q) = |77| z . !YU(I') ”

i=p+

(2.12)

d(o) = number of minus signs that occur going

from the sequence Y'Y, to the

p+gq

sequence Y, 'Y, 0,0 )9

and the summation is on all permutations of the first p + ¢
integers.
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Then Egs. (2.10) and (2.11) are written as
Q=do +}i[ow], D p=dy+ [o7].

Further results on PSFB’s and examples may be found
in Refs. 30 and 31.

lil. WEIL HOMOMORPHISM AND TRANSGRESSION
FORMS

Now we shall use the general algebraic construction de-
veloped in Ref. 13 to construct a Weil homomorphism and
the secondary Chern-Simons characteristic classes for
PSFB'’s. Throughout this section we assume that we are giv-
en a PSFB 7:I1 - S with structure supergroup G; W, will
denote the Lie module of G. Moreover, we assume that on I1
there is a connection, that we describe by means of a connec-
tion one-form @ with curvature 2. We would like to stress
that in general this is a genuine assumption since, as in the
case of holomorphic bundles in the ordinary theory, the lack
of a partition of unity prevents one from proving that any
PSFB has a connection. Actually, one can define a cohomo-
logical invariant (the Atiyah class of the bundle) which van-
ishes if and only if the bundle carries a connection.>!

A. Differential calculus of W,-valued forms on I1
The first ingredient we need is the tensor algebra of W;:

®5 Ws

WE:SNWZ’ W,((:=WG®B,_"' 5
(k times, W%, =B, ). 3.1)

Here W7, is a Z-Z,-graded algebra with ® p, as multiplica-
tion. In the following, the subscript B, will be omitted. Next
we take AP*=AP(ITI;W %), the space of p forms on IT with
values in W&. If geA?*, then for all Y,eDer ¥, (II),

YWA Y AY, A AY, dg
— _(_1)|Yr||Yi+||Yl/\”,yvi+l
AY, A AY,dg.
The vector space A”* is graded according to

(3.2)

YA AY,dp|=lp|+3 |¥.

The exterior differential on II can be extended to
d:AP*APFTLE by letting, for  homogeneous
YiEDer .911 (H)y

YIA‘-./\YP+1J¢
p+1 3 A~
= 2(_1)"(‘)Y,.(Yl/\""/\Y,-/\"'/\Yp+l 2

i=1

+ Z (——l)b(iJ)[Yvi,Yj]/\Y,/\"'/\/Y\',-/\"‘

1<i<j<p

AT A AY,, dg, (3.3)
where
i—1
a() =1+i+|Y| Y |Y,],
hiz—lx j—1 (3.4)
HESESESIADNI AR ADI AP
h=1 h=1
h#i
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and the caret indicates omission. An exterior product A:
APK X A®R_, APT 9K+ ig defined by letting

Y,A-AY,, , d(pAY)
_L — c(@,0.p,q) + d(o)
_.p!q! 20:1(0')( 1) 0.9

XY,y N AY iy @)
(Y, iy N AY (i ), (3.5)

where y (o), ¢(¢,0,p,9), and d(o) have the same meaning as
in Eq. (2.13).

Finally, let us recall that in Sec. II we defined an oper-
ation

[, LAPIXA® S AP+l (3.6)

Using definitions (3.3)-(3.6) one can prove the following
proposition.
Proposition 3.1: If geA?* and YeA?*, then

dpAy) =deAy+ (— 1)’pAdy; (3.7
moreover, if k=h =1,

d([e,¥]) = [dp¥] + (— 1)?[@.dy], (3.8)

] = — (=P I¥[yo], (3.9)

(p:[pp]]=0. (3.10)

B. Graded Well homomorphism

Let us now consider the set I, (W %;B, ) of graded al-
gebra morphisms P: W% - B, , which are graded symmetric
and adjoint-invariant, i.e.,
P(Zl® "'Z,'@Zi+1 ® "'@Zk)

=(— 1)|Zi| |zi+||P(Z1® ”‘Zi—o-l

8Z, @ "®Z,), VZeW;, (3.11)
H(Adg)zl®“'®(Adg)zk)=P(Zlgn'®Zk),
VZeW,, geG (3.12)

(one could, as well, consider the morphisms W% -C,,
where C; is the complexfication of B, , as we shall do in Sec.
IV). Condition (3.12) implies that

k
S (— R Ep(Z 6 02,2

i=1

®-8Z,)=0, VZ ZeW,. (3.13)
Wetake I, (Wg;B. ) = ® on I, (WX;B, ) and makeitinto
a graded B, algebra by defining, for Pel;. (W%;B,) and
Tels, (WE;B, ), the product PT el;, (WE+ "B, ) as fol-
lows:

PY(ZIQ"'GZk+,,)
_ 1 — 1)@ +1T1UZeqyl + -+ + [Zoqio )
_k!h!;( D

XP(Z,y) ® """ @ Zy,

8T (Zyhs1y® " ®Zo iy )s

where d(o) is as in Eq. (3.5).
If geAP* and Pel;, (W %;B, ), by composition we ob-

(3.14)
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tain a B, - valued k& form on II, P(p) = PopeA?(Il). One
shows easily that

dP(p) = P(dp). (3.15)
Moreover, property (3.13) implies that given a collection
{¢,eA™,i=1,..k} and peA"’,

i ()Pt PRI+ 1)
i=1

XP( A N[¢up ] A A) =0. (3.16)
We are now ready to prove the following proposition.

Proposition 3.2: Given a PSFB 7:I1 ».S with the struc-
ture supergroup G, let (2 be the curvature form of a connec-
tion on IT and let Pel;, (W &;B, ). Then the following holds.

(i) The 2k form P(QF), where Q= QA - AQ (k
times), projects onto a closed 2 k form P(QF)eA(S).

(ii) If #°(P) is the element of the super de Rham
cohomology group H2ZX.(S) defined by P(QF), then
#°(P) does not depend on the connection and
W g, (We;B ) — H ipr (S) is a graded algebra homomor-
phism (graded Weil homomorphism).

If we consider the morphisms P:W & —C, , then #°(P)
takes values in H25: (S) © C;.

Proof of part (i) of Proposition 3.2: Since § is horizontal
of type Ad, so is *. As a consequence, P(Q2¥) is invariant
and horizontal. Therefore, there exists a unique 2k form

P(Q*)eA? (S) whose pullback by 7 is P(Q*). To prove
dP(Q%) = 0it is sufficient to show dP(Q*) = 0. However,
using Eqgs. (3.15), (3.7), (3.16), and the Bianchi identity,
one has

dP(QF) = P(dQ¥) = kP(dQAQ* 1)
=kP([Qw]ANQ*~T) =0.

In order to prove part (ii), we first state, without proof, the
following lemma.

Lemma 3.1: Let w, and @, be two connection forms on
IT and define w, = o, + ta, @ = @, — @y, 0<2<1; then the
following holds.

(i) We find that e is an even horizontal one-form on I1
of type (Ad, W).

(ii) Wefind that @, is a one parameter family of connec-
tion forms.

(iii) We find that (d /dt)Q}, = da + [w,,a]. [ |

Another result we shall need is the following proposi-
tion.

Proposition 3.3:

1
P(QY) — P(QX) =kdf P@AQENdE (31T
0
Proof: By part (iii) of Lemma 3.1,
4 paky = kP((i n,))/\nf—'
dt dt
= kP(da AQ*~ ") + kP([w,,a] AQF ).

On the other hand, using the Bianchi identity and Eq.
(3.16),
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kdP(aAQt—1)
=kP(da AQF—Y) — k(k — 1)P(aNdQ, ANQL—2)
=kP(da AQf ") + kP([w,a] AQF™1)

and, integrating by parts over f, one obtains Eq. (3.17). B
Proof of part (ii) of Proposition 3.2: The (2k — 1) form

® =k fLP(a AQF~')dt, being horizontal and invariant,

projects onto a form ®eA*~'(S) and Eq. (3.17) in turn
projects onto

P(QF) — P(OQf) =dd. (3.18)
Finally, one shows directly that y &
I, (WgiB,)— Hgpr (S) is a graded algebra homomor-
phism. ]
C. Transgression formula

The Weil homomorphism constructed in Sec. II B de-
scribes properties of the superbundle structure which do not
depend upon the connection. However, the realization of the
homomorphism in terms of the curvature £ of the connec-
tion gives rise to new interesting objects. One indeed has the
following propositions.

Proposition 3.4: The 2k form P(Q*) on I1 is exact and

P(OQ*) =dT P(w), (3.19)
with

1

TP(w) = kJ. P(oAV —)dt, W, =tdo+ -;- £2[0,0].
0

(3.20)

|

The proof, similar to that of Proposition 3.3, will be
omitted.

Wecall Eq. (3.19) the graded transgression formula and
the forms on II given by 7P(w) for different P, graded
Chern—-Simons forms. These are invariant under the action of
the supergroup G but are not horizontal, so that they do not
project onto forms on the base supermanifold S.

IV. ELEMENTARY INVARIANT POLYNOMIALS ON
gl(m +n;C)

Let C, = B, ® g C. The set of (m + n) X (m + n) ma-
trices with entries in C,, denoted by gl(m + n;C), is a free
graded C, module; its even part, denoted by gl(m,n;C), is
formed by matrices having the structure given in Eq. (2.1),
but with entries in (C, )gor (C. ),. Here gl(m + n;C) is the
Lie module of the super Lie group GL(m,n;C), which is the
open subset of gl(m,n;C) whose elements are invertible ma-
trices. The adjoint action of GL (m,n;C) over gl(m + n;C) is
given as in the ordinary case by

Ad, X =HXH ™', HeGL(m,n;C), Xegl(m + n;C).

Finally, we recall that the ordinary concept of trace is here
replaced by the supertrace, which is defined as follows: If

X={X2 AB=1,.,m+n} is homogeneous [ie,
Xegl(m + n;C); with i = 0 or i = 1], one defines
m+n
Str X = z ( _ I)A('+I)X:.
A=1
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If X is not homogeneous, then X = X, + X, and Str X = Str
(X,) + Str(X,). The supertrace has the following proper-
ties:

Str(XY) = (— D)*YIStr(¥X),
VY homogeneous X,Yegl(m + n;C),
Str(HXH ~!') =Str X, VXegl(m + n;C),
Y HeGL (m,n;C). 4.1)

Using the supertrace we can construct functions on
gl(m + n;C), invariant under the adjoint action of
GL(m,n;C), which are polynomials in the entries of their
argument. Such functions, which we shall call elementary
invariant polynomials, are in a sense the “simplest” invariant
functions on gl(m + n;C); however, we do not know
whether these functions generate all invariant polynomials,
as happens in the ordinary case. Indeed, in order to prove
this one would need a spectral theory for matrices in
gl(m + n;C), which is not available.

The elementary invariant polynomials are defined by

k
PKX) =Y a;(Str X)),
i=1

where the coefficients a; are the same that appear in the
ordinary expression of the elementary invariant polynomials
on the Lie algebra gl(N;C) (with N=m + n).*> The Ad
invariance of these polynomials is assured by Eq. (4.1). The
first few polynomials are the following:

PY(X)=StrX, P*X)=}i[(Str X)?>—Str X?],

P3(X) = 4(Str X)* — }(Str X)*(Str X) + } Str X °.

Obviously, these polynomials are naturally defined on
any subalgebra of gl(m+nC). If X is even, ie,
Xegl(m,n;C), the polynomials (4.2) can be given the follow-
ing compact representation:

(4.2)

PHX) = l[d—k Sdet (1 + tX)] ,
k! dtk t=0

where Iis the (m + n) X (m + n) identity matrix, # is a real
number, and the superdeterminant (or Berezinian) of matri-
ces in GL(m,n;C) is defined as follows: If X has the form
(2.1), with inverse

’ Bl
=(e )
c' D

then
Sdet X = (det 4) (det D’).

Now, let 7:I1 - .S be a principal superfiber bundle, with
structure supergroup GL(m,n;C) or one of its subgroups.
Given a connection on IT with curvature ), we can construct
the forms P*[(i/27)Q]. These forms can be written in
terms of the polarization P* associated with the polynomial
P*, The polarization, which is defined as in the ordinary
case,> is an element of I (W¥%;C.), with
Ws = gl(m + n;,C); one has

P¥[(i/2m)Q] = PX[ (i/2m)Q19),

so that the results of Sec. III apply to the forms
P*[(i/2m)Q]. Thus the cohomology classes in
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H 5pr (S) @ C; represented by these forms are invariants as-
sociated with the superbundle. We define the k th Chern class
of I as

e () = { PF[(2m Q] YeH %, (S) 0 C,. - (4.3)

The reader may find in Ref. 12 a more general definition of
integer Chern classes of superbundles. To our knowledge it is
not possible to prove that the cohomology class in (4.3) is
B, valued, since we are not able to construct on II some
analog of a Hermitian connection in terms of which ¢, (IT)
would turn out to be B, valued.

In accordance with the discussion of Sec. III C, we can
also associate with the bundle I1 and the connection @
transgression forms 7, (@) such that

PX[(i/2mQ] =dT, (o). (4.4)
These are the Chern-Simons forms considered in Refs. 8-10.

V. EXAMPLE: THE GRASSMANN DIRAC MONOPOLE

In this section we give a simple example to illustrate
some of the ideas developed previously. The example is the
Grassmann version of the Hopf fibration as constructed in
Ref. 17 in purely algebraic terms.

The total space of the fibration is the (1,2 )-dimensional
super Lie group UOSP(1,2), which can be realized as fol-
lows.**?4 Let osp(1,2) be the Lie B, superalgebra of dimen-
sion (3,2) with even generators {4,,i = 1,2,3} and odd gen-
erators {R,,a = 1,2} given by the matrix representation

[0 0 0 0 0 0
A =240 o 1} 4,=Ho o i}
2o 1 0 2o —i o
00 o 0 0 1
4=Ho 1 o) rR=Y_1 0o o
20 0 -1 2\o o0 o
0 —1 0
R2=;0 o o) (5.1)
1 0 o0

Moreover, let L be an even integer, introduce the complexi-
fied Grassmann algebra C, = B, & C, and consider a graded
involution ©:C, - C, verifying

x| = |x], x°¢=(-1)"x

V homogeneous xeC,.

(xp)© = x%0,

The existence of such a map is assured by the fact that L is
even.* Now, we introduce the Lie C, superalgebra

W=C, ®p osp(1,2)
and define uosp(1,2) as the set of Xe W which can be written
as

X=d4, + R, +1°R,;, a;neC;, af =a,.

Here uosp(1,2) is a subalgebra of gl(3 + 2). The super Lie
group UOSP(1,2) is defined as the image of the exponential
map exp: gl(3,2) - GL(3,2) restricted to uosp(1,2),.

An arbitrary element ssUOSP(1,2) can be parame-
trized as follows: '
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14} 7% —i7° K
s=| = 4@ +2z7%) KA —47%p) z,(1—-}7°%p) | (5.2)
W —zm®) —XA—§7%p)  z2(1 =} 9%n)
r

Here the elements z,, z,6(C, ), satisfy z,z$ + 2,2 = 1 and
7e(CL);.
The structure supergroup of the fibration is % (1), the
Grassmann extension® of U(1): It can be realized as
% (1) ={we(C.)o s.t. ww® =1}

Here % (1) imbeds into UOSP(1,2) by

(5.3)

1 0 O
w—]0 w 0]
0 0 w°

so that we can think of 4, as the generator of % (1), i.e.,

% (1) ~{exp(Ad;)|Ae(CL), st. A=A4°}
By taking the right action of % (1) on UOSP(1,2) one ob-
tains a principal superfiber bundle

[M=UOSP(1,2) — % (1)

i
S? (5.4)

where S 2 =UOSP(1,2)/% (1). The projection 7 can be giv-
en explicitly as
w(s) =s{(2/i)4;]1st=x* [(2/D)4,] +£°(2R,), (5.5)
where s' is the adjoint of 5.3 It turns out that the x*s are
“real” even [i.e., x*¢(C, ), and x** = x*], the £ s are in
(C.),and satisfy £2 = — £'©, and the following constraint
holds: )

(x4 ()2 + () +2£'¢% =1 (5.6)

On I1 there is a natural connection: take the Maurer—
Cartan form on UOSP(1,2),

wo=S1ds=0*4, + 6°R_; (5.7)
then the component of w, along A, is a connection form on I1
given explicitly by

o = 03143,

6% = —2i(1 — §n°n) (2§ dzo + 20 dz,) (5.8)
+ (i/4) (1° dyy + 7 d°).
As for the curvature, one has
Q=[—0'A0%—(i/2)8'6%14,
= [ —2i(1 — 17%9) Xdz§ Adz, + dz{ Ndz,)
— (i/2) (4% dg + n dn®)
A (28 dzy + 20 dz,) + (i/2)dn° ANdn]A4,. (5.9)

The connection o given by Eq. (5.8) is the Grassmann
extension of a Dirac monopole. We shall show that II is not
trivial by checking that its first Chern class, which we shall
compute in terms of @, does not vanish. Let us denote by
)ig (X, %) the Cech cohomology ring of the topological
space X with coefficients in the sheaf .% .

Proposition 5.1: We find that S 2 is a De Witt supermani-
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fold with body S* (the two-dimensional sphere). If ®:
S2 - S2is the bundle projection, ®":H *(S%,Z) - H"(S2,Z)
is an isomorphism. _

Proof: It is evident that S? ~S?X B %2, where S is the
unit sphere in B39, i.e.,

S ={(x'x%,x*)eB° s.t.

X(xH?2+ () + (x¥) =1}

Let 7@ S2-82 be the projection, given by
(> x2x3)) = (a(x'),a(x2),g(x3)), where S? is regarded
as the unit sphere in R>. Here S? can be covered by the two
open sets
U, =8*—77(00,1)), U_=82—7"%00,—-1),

both of which are homeomorphic to B }° via the maps ¥, :
U, —B7° defined as follows:

‘I’i(x‘,x2,x3)=( L+x ad

1T 7+ %)
14x° x? )
1Fx G+ 67/

The transition function ¢, o¥-":B%°— (0*%) ~1(0)
—»B%° — (6*°)~'(0) is the map
. z! z )

(=2 '_’( @+ @@+ @)
which is a & map. This proves that S is a De Witt super-
manifold of dimension (2,0). The second part of Proposition
5.1 is a consequence of the fact that $?, being De Witt, is a
locally trivial bundle over S ? with vector space fiber. ]

We also introduce the morphism

J:H?*(S2,Z) > H2pe (S2), (5.10)

which is induced by the morphism Z—B, of constant
sheaves over S? and by the isomorphism H jpg (S2)
~H"(S? B, ). The morphism j is injective since the exact
sequence of constant sheaves of §2,

0—>Z—>BL—>@/(1)X(BL)|—>O,

induces in cohomology a long exact sequence®? which splits
into several pieces, among which one has

v j .
0-H*(S%,2)-~H?*S?2,B,)

—H*X($%,% (1) X (B),)~0.

After this preparatory material, we are ready to prove
that ¢, (IT) #£0. The % (1) superbundle IT over S can be
identified with an element of the cohomology group
H'(S2,%,), where & , is the sheaf of ¥ maps S2 — % (1).
The exactness of the sequence of sheaves over S2,

0-Z- go—n?I -0,
where ¥, is the even part of the structure sheaf of $2, and
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the triviality of the cohomology of &, due to the fact that
S? is De Witt, give an isomorphism

SHY (S, F,)-HY(S2,Z)

[here we have used the canonical identification of ¥, with
the sheaf of germs of Y maps S2:(B)o(Ref. 23) ]. The ele-
ment 8(I1) in H2(S2,Z) is called the obstruction class of Il
and has the property?>’3¢

—jo8 (M) = [(i/2m)Q)spr =c,(IT). (5.11)

We wish to show that for the superbundle IT previously con-
structed, one has

(I = — (5.12)

[notice that H2(S2,Z) ~H?*(S3Z) = Z). Thus we have
the following result of the Gauss-Bonnet type:

J(1) = ¢, (ID),
which, together with the injectivity of j, proves that I1 is not
trivial.

Let £ S2-.52 be a global cross section of the bundle
S§2 .52 Thepullback f ~'Tisaprincipal fiber bundle on S ?,
with the structure supergroup % (1), and there is a bundle
map fif ~'II - II such that the diagram

fTi—=1
f

T (5.13)
§2e—e §?
i

commutes. Let o: % (1) - U(1) be the restriction of the
body map to % (1). Composing the transition functions of
S~ 'I1 with o one obtains a U(1) bundle Q over S 2, which is
nothing but a Hopf fibration. Taking the body of the pull-
backj_‘“  of the connection (2.8) one obtains a connection
over Q, which is a Dirac monopole of the lowest strength.
Therefore, the obstruction class of @is — 1. Then the result
(5.12) is a consequence of the following proposition.

Proposition 5.2: The bundles I1, £ ~'I1, and Q have the
same obstruction class.

Proof: First we prove §(IT1) = §(f ~'IT). This is equiva-
lent to the commutativity of the diagram

HY(8%),7) H2(S2,2)
‘;f' | f.Eq)._l’
HY(S3F) H?*(SZ)

where F, is the sheaf of smooth maps $2— U(1). The equa-
lity f* =" — ! follows from the fact that f2® is homotopic to
the identity map.

Moreover, the commutativity of the diagram

HY(S%.7)) H*(S2,Z)
o id
izl(sz,p,)——-iﬁ(sz,m

1mp11es 6([ - lII) = §(Q). Now, the connectmg morphlsms
3: H! (S? Fl)-»H 2(8%Z) and & ! (SZF,)-.H (S32)
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have the following form: If " = {¥_ } is a cover of $2 and
g= {gaﬂ}lsanelementh (¥ F,)orinH (¥ F,),then
3(8) = h={h,,}, with

apy = (1/2mi) (log 8,5 + log g, + log g, )-

Then the equality doo = d is equivalent to the following al-
gebraic result: If a, b, ce(C; ), with abc = 1,

log a + log b + log ¢ = log o(a) + log o(b) + log o(c).
|
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Space-time geometry of relativistic particles
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A three-dimensional space-time geometry of relativistic particles is constructed within the
framework of the little groups of the Poincaré group. Since the little group for a massive
particle is the three-dimensional rotation group, its relevant geometry is a sphere. For massless
particles and massive particles in the infinite-momentum limit, it is shown that the geometry is
that of a cylinder and a two-dimensional plane. The geometry of a massive particle
continuously becomes that of a massless particle as the momentum/mass becomes large. The
geometry of relativistic extended particles is also considered. It is shown that the cylindrical
geometry leads to the concept of gauge transformations, while the two-dimensional Euclidean
geometry leads to a deeper understanding of the Lorentz condition.

I. INTRODUCTION

The internal space-time symmetries of relativistic parti-
cles are governed by the little groups of the Poincaré
group."? The internal space-time symmetry group for mas-
sive and massless particles are isomorphic to the three-di-
mensional rotation group and the two-dimensional Euclid-
ean group, respectively. We have shown in our previous
paper® that the internal space-time symmetry of massless
particles is dictated by the cylindrical group, which is iso-
morphic to the Euclidean group. The cylindrical axis is par-
allel to the momentum. For the case of electromagnetic
fields satisfying the Lorentz condition, the rotation around
the axis corresponds to helicity, while the translation on the
surface of the cylinder along the direction of the axis corre-
sponds to a gauge transformation.*

The purpose of the present paper is to present a more
complete geometrical picture of relativistic particles. Since
the little groups for massive and massless particles are three-
parameter groups,' it is possible to construct a three-dimen-
sional geometry of internal space-time symmetries for all
relativistic particles starting from a sphere for a massive par-
ticle at rest. It was observed in Ref. 3 that the three-dimen-
sional rotation group can be contracted either to the two-
dimensional Euclidean group or to the cylindrical group.>”
In the present paper, we point out first that both the cylindri-
cal and Euclidean geometries are needed for the little group
for massless particles.>¢

We shall then show that the Euclidean geometry leads
to a deeper understanding of the Lorentz condition applica-
ble to massless particles and to massive particles in the infi-
nite-momentum limit. It is then shown that the cylindrical
symmetry is shared by all those particles, even without the
requirement of the Lorentz condition. This means that the
concept of gauge transformation can be extended to all mass-
less particles or massive particles with infinite momentum.

Also in this paper, we shall discuss relativistic extended
particles often called hadrons. It is not difficult to visualize
the symmetry of an extended particle as the three-dimen-
sional rotation group.” However, it is not trivial to construct
the geometry of a relativistic extended particle or hadron if it
moves with a speed close to that of light. We attack this
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problem by constructing the generators of the little groups in
differential form and the wave functions to which these oper-
ators are applicable.

In Sec. II, we discuss the three-dimensional rotation
group and its contractions to the cylindrical and the two-
dimensional Euclidean group. It is shown that both of these
contractions can be combined into a single representation. In
Sec. ITI, the generators of the little group are discussed in the
light-cone coordinate system. It is shown that these genera-
tors are identical to the combined geometry of the cylindri-
cal group and the Euclidean group discussed in Sec. II.

In Sec. IV, we show that the Lorentz condition is not a
prerequisite for the cylindrical symmetry and that the Eu-
clidean symmetry replaces the role of the Lorentz condition.
In Sec. V, the formalism developed in Secs. II-IV is applied
to the space-time geometry of relativistic extended hadrons.
It is shown that the relativistic hadron can be described in
terms of the parameters of the cylindrical group. Feynman’s
parton picture is discussed as an illustrative example.

Il. THREE-DIMENSIONAL GEOMETRY OF THE LITTLE
GROUPS

It is not difficult to construct the geometry of the little
group for a massive particle at rest.! It is the three-dimen-
sional rotation group whose generators L; satisfy the com-
mutation relations

[Li’Lj] =i£ijkLk' (2.1)

Transformations applicable to the coordinate variables x, y,
and z are generated by

0 0 O
Li=lo o —il],
0 i 0
0 0 i
L=l o o o], (2.2)
—i 00
0 —i O
L,=|i o o]
0 0 o
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In our previous paper,® we have shown that this group
can be contracted either to the cylindrical group or the two-
dimensional Euclidean group. In either case, we can start
from a sphere. The contraction to the two-dimensional Eu-
clidean group can be achieved through a plane tangent to the
sphere at the north pole.* The contraction to the cylindrical
group corresponds to the cylinder that makes contact with
the sphere at the equatorial belt.?

The Euclidean group is generated by L;, P,, and P,,
where

0 0 0 0 O
P =|0 O 0], P,={0 0 1i{, (2.3)
0 0 O 0 0 O
and they satisfy the commutation relations
[P,P,] =0, [L,;P]1=iP, [LP,]= —iP,.

2.4)
The cylindrical group is generated by L, Q,, and Q,, where

0 0 O 0 0 O
0,=]0 0 0O}, @=|0 O (2.5)
i 0 0 0O i O

These generators satisfy the same set of commutation rela-
tions as that for L,, P, and P, given in Eq. (2.4):

[Qth] =0, [Lsle] =iQ2’ {L3;Q2] = "in-
(2.6)

We achieve the contractions to the Euclidean and cylin-
drical groups by taking the large-radius limits of

P, = (1/R)B~'(L,)B, P,= — (I/R)B~'(L,)B,

Q,= — (1/R)B(L,)B ', 2.7)
0, = (1/R)B(L,)B ~,
where
1 0 O
BR=[0 1 0 2.8)
0 0 R

The vector spaces to which the above generators are applica-
ble are (x,y,2/R) and (x,y,Rz) for the Euclidean and cylin-
drical groups, respectively.

In differential forms, the generators of the rotation
group can be written as

oz dy x 9z
2.9)
I ( a 3)
3= —fx—=—y—
dy ox

apﬁlicab]e functions of x, y, and z. The B(R) transformation
applicable to these operators is

B(R) =exp(—pz-§—) , (2.10)
oz

where p = In(R). This operator commutes with L. The ap-
plication of this formula to Eq. (2.9) in the large-R limit
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leads to
P = —iai, P, = —iai.
5 Y ' 2.11)
Q=_i(_x_)_‘l Q=_i(1)_‘i_
! R/ dz’ 2 R/ o0z

Since P, (P,) commutes with Q, (Q,), we can consider the
following combination of generators:

F,=P+Q, F,=P,+(Q, (2.12)
Then these operators also satisfy the commutation relations:
[Fsz] = 0, [L3,Fl] = in, [L3,F2] = - iF].

(2.13)

On the other hand, this is not true if we add the three-by-
three matrices for P, and @, to construct three-by-three ma-
trices for F, and F,. This is due to the fact that the vector
spaces are different for the P; and Q; representations. We can
accommodate this difference by creating two different z co-
ordinates, one with a contracted z and the other with an
expanded z, namely, (x,y,Rz,z/R). Then the generators be-
come

0 0 0 i 0 0 0 0

0 0 0O 0 0 0 i

Pi=lo 0 0 o) =lo 0 o of

0 0 0 0 0 0 0 0
(2.14)

0 0 0 O 0 0 0 0

0 0 0 O 0 0 0 0

2=l: 0 0 o) Z=|lo i 0 o

0 0 0 O 0 0 0 O

Then F, and F, will take the form

0 0 0 i 0 0 0 0

0 0 0 0 0 0 0 i

BE=l; 0 0 o) 2=lo i 0 o

0 0 0 O 0 0 0 0
(2.15)

The contraction and expansion of the z axis are illustrated in
Fig. 1.

Next, let us consider the transformation matrix genera-
ted by the above matrices. It is easy to visualize the transfor-
mations generated by P; and Q,. It would be easy to visualize
the transformation generated by F, and F,, if P, commuted
with Q,. However, P; and Q, do not commute with each
other. Thus the transformation matrix takes a somewhat
complicated form:

1 0 0 3
. 0 1 0
exp( — i(§F, + nF,)) = £ g 1 (§2+77772)/2
0 0 O 1

(2.16)

If we make a similarity transformation on the above form

Y. S. Kim and E. P. Wigner 56



.

EUCLIDEAN

CYLINDRICAL

—

FIG. 1. Cylindrical and Euclidean deformations of the sphere. It is possible
to contract the z axis by dividing it by R. This contraction of the z axis leads
to the contraction of O(3) to the two-dimensional Euclidean group. If the z
axis is multiplied by R, then it becomes expanded. This expansion of the z
axis leads to the contraction of O(3) to the cylindrical group. The expand-
ing and contracting z axes are treated as different coordinates, and are called
the u and v coordinates, respectively, in Secs. III-V.

using the matrix

1 0 0 0
0 1 0 0
00 IV —IMI) 217
0 0 1InV2 1/WV2
then exp( — i(£F, + nF,)) of Eq. (2.16) becomes
1 0 —&MV2 EV2
0 1 —5/V2 n/v2
ENVE V2 1—(EP+9)/4 (EP+90)/4

W2 gV —(EP 4 /4 1+(§2+”2)f313

This form is readily available in the literature!* as the trans-
lationlike transformation matrix for the little group for
massless particles. In this section, we have given a geometri-
cal interpretation to this matrix.

. LITTLE GROUPS IN THE LIGHT-CONE COORDINATE
SYSTEM

Let us now study the group of Lorentz transformations
using the light-cone coordinate system. If the space-time
metric coordinate is specified by (x,y,z,¢), then the light-
cone coordinate variables are (x,y,u,v) for a particle moving
along the z direction, where

u=(z+1)/v2,

v=(z—t)/V2. (3.1)
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The generators of Lorentz transformations are then
0 0 0 0

J100——zz
“vwlo i o o}

0 —i 0 O

0 0 0

1Jo o o0 o
K=210 0 o of

i 0 0 O

0 0 i —i

1{o oo o
- , 32
szz—zooo (3.2)

i 00 O

0 0 0 O\

1{o o o i
k=%10 0 0 o)

0 i 0 O

0 —i 0 O 0 0 0 O
i 0 0 0 0 00 O
= ’K=
J30000 1o 0o i o
0 0 0 O 0 0 0 —i

For J,, J,, and J;, we can consider the three-by-three matri-
ces consisting of the first three rows and columns. Then they

are clearly the generators of the rotation group. The set of

three-by-three matrices consisting of the first, second, and
fourth rows and columns also constitutes the set of rotation
generators.

If a massive particle is at rest, its little group is generated
by J,, J,, and J;. For a massless particle, the little group is
generated by J;, N}, and N,, where

N1=(K1 “‘Jz)a N2= (Kz +J1), (33)
which can be written in the matrix form as
0O 0 O i\
N = 140 0 0 O
"“vzli 0o 0 of
0 0 O 0)
0 (3.4)
0 0
N — 1{0 0 O (1)\
v3lo i 0 o0
0 0 0 0/
These matrices satisfy the commutation relations:
[J3yN]] =iN2’ [JS’N2] = —iNb [NR,NZ] =0
(3.5)

Let us go back to F; and F, of Eq. (2.15). Indeed, they
are proportional to N, and N,, respectively:
N, = (1/V2)F,, N,= (1\/V2)F,. (3.6)

Since F, and F, are somewhat simpler than N, and N,, and
since the commutation relations of Eq. (3.5) are invariant
under multiplication of N, and N, by constant factors, we
shall hereafter use F, and F, for N, and N,.

In the light-cone coordinate system, the boost matrix
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along the z direction takes the form

1 0 0 0
01 0 0
= —ipK,) = , (3.7
B(R) = exp( — ipK;) 0 0 R 0 3.7
0 0 0 1/R

with p = In(R), and R = ((1 4+ 8)/(1 — 8))"/?, where B 1is
the velocity parameter of the particle. Under this transfor-
mation, x and y coordinates are invariant, and the light-cone
variables u and v are transformed as

u' =Ru, v =v/R. (3.8)
If we boost J, and J, and multiply them by v2/R, as
W.(R)= — Y2 B1,B !
R
0 0 —i/R? i
_ 0 0 0 0
- i 0 0 oy’
—i/R* 0 0 0
(3.9)
v2 1
W,(R) =—BJ,B
R
0 0 0 0
N 0 —i/R? i
1o i 0 oy’
0 —i/R? 0 0

then W,(R) and W,(R) become F, and F,, respectively, in
the large-R limit.

The algebra given in this section is identical with that of
Sec. II based on the three-dimensional geometry of a sphere
going through a contraction/expansion of the z axis. There-
fore, it is possible to give a concrete geometrical picture to
the little groups of the Poincaré group governing the internal
space-time symmetries of relativistic particles.

The most general form of the transformation matrix is

D(&m.a) = D(£,1,0)D(0,0,a), (3.10)

where

D(£,1,0) = exp( — i(§F, + 7F)),
D(0,0,a) = exp( — iat,;).

Here, D(0,0,a) represents a rotation around the z axis, and
does not need further explanation. In the light-cone coordi-
nate system, D(&,7,0) takes the form of Eq. (2.16). Itis then
possible to decompose it into

D(£,1,0) = C(EMEEM)S(Em), (3.11)
where
1 0 0 O
. . 01 0 O
C(&,m) = exp( — i€Q, — inQ,) = E 10 ’
0 0 0 1
(3.12)
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E(§m) = exp( — iEP, — inP,)

1 0 0 &

{0 1 0 9

=lo o ¢ ol (3.13)
0 0 0 1
1 0 0. 0
01 0 0

o 0 1 (€42 (3.14)
0 0 O 1

The matrix C(£,7) performs a cylindrical transformation on
the first, second, and third components, while E(£,7) isfora
Euclidean transformation on the first, second, and fourth
components. The matrix S(£,7) performs a translation
along the third axis and commutes with both C(£,7) and
E(£,m). As we noted in Ref. 3, both E(£,n) and S(£,7)
become identity matrices when applied to four-vectors satis-
fying the Lorentz condition which have a vanishing fourth
component.?

iV. CYLINDRICAL GROUP AND GAUGE
TRANSFORMATIONS

In order to illustrate the transformation property of the
vector to which the above matrices are applicable, let us con-
sider a particle represented by a four-vector:

AP (x) = Are o0, (4.1)
where 4 # = (A4,,4,,4;,4,). In the light-cone coordinate sys-
tem,

At = (A,,AZ,A“,AU), (42)
where 4, = (45 + A4,)/v2,and 4, = (4, — 4,)/V2. If it is
boosted by the matrix of Eq. (3.7), then

A= (A,A,RA,,A,/R). 4.3)

Thus the fourth component will vanish in the large-R limit,
while the third component becomes large.
The momentum—energy four-vector is

P*=(0,0,(k + @)/vV2,(k — w)/V2), (4.4)
which in the rest frame becomes
P” = (oyo,m/ﬁ’ - m/V?), (4-5)

where m is the mass. If we boost this four-momentum using
the matrix of Eq. (3.7), then

P'*(0,0,Rm/v2, — m/V2R). (4.6)

Here again, the fourth component vanishes for large values
of R, while the third component becomes large.

Let us go back to W,(R) and W,(R) of Eq. (3.9). If
W, (R) is applied to the four-vector A4 **, the result is

(4, —A,)/R,0A4,, — 4,/R?), 4.7)

which becomes (0,0, — i4,,0). When W,(R) is applied, the
result is (0,0, — i4,,0). Thus the i/R 2 factors in #,R 2 and
W,(R) can be dropped in the large-R limit. We can thus
safely apply the transformation matrix generated by F, and
F,.
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Since the fourth component of the vector vanishes or
becomes vanishingly small, the application of S(&,7) of Eq.
(3.14) on 4 '* and P '* will produce no effects inthe large-R
limit. The same is true for E(&,7) of Eq. (3.13). Thus,
among the three factors of the transformation matrix, only
the matrix C(&,7) given in Eq. (3.12) will produce a nontri-
vial effect. This is the cylindrical transformation discussed in
Ref. 3.

During the limiting process, the three-dimensional ge-
ometry consisting of the x, y, and v coordinates describes a
pancakelike compression of the sphere in which the v coordi-
nate shrinks to zero, as is indicated in Fig. 1. Because of this
contraction of the v coordinate, the Euclidean component of
the little group disappears. This is the content of the Lorentz
condition for massive particles in the infinite-momentum
limit. The three-dimensional geometry of the x, y, and u co-
ordinates corresponds to the expanding z coordinate, result-
ing in the cylindrical symmetry, as is indicated in Fig. 1.

Let us see the effect of C(£,7) on the four-vector of Eq.
(4.3). If we apply C(£,7) to the four-vector, then

1 0 0 0 4, 4,

01 0 O 4, _ 4,

E n 1 Ofy RA, | | R4, +84,+ 14,
0 0 0 1/\4,/R A,/R

(4.8)

This is not unlike the D(&,7) transformation applied to the
four-vector satisfying the Lorentz condition 4, = 0:

1 00 £ 4,
01 0 i 4,
& n 1 (E2+7)/2 ]| R4,
0 0 0 1 0
1 0 0 O\ /A4,
0 1 0 o} 4,
e v 1 o]l R4,
0 0 0 1 0
4,
4z 49
RA, + £4, + nd, (49)
0

As we noted at the end of Sec. 111, the Lorentz condition
eliminates the Euclidean component in the D(£,7,0) matrix.
It is remarkable that Eq. (4.9) is strikingly similar to Eq.
(4.8). The cylindrical transformation is quite independent
of the fourth component in both cases, and it produces the
same result for the first three components. Thus the elimina-
tion of the Euclidean component that led to Eq. (4.8) can
thus be regarded as an extension of the Lorentz condition to
all four-vectors.

V. LITTLE GROUPS FOR RELATIVISTIC EXTENDED
PARTICLES

We are now ready to discuss the symmetry property
discussed in Sec. III for relativistic extended particles or ha-
drons. Let us consider a hadron consisting of two quarks

59 J. Math. Phys., Vol. 31, No. 1, January 1990

bound together by an attractive force such as the harmonic
oscillator force. We use four-vectors x, and x, to specify
space-time positions of the two quarks. Then it is more con-
venient to use the following variables®:

=(x, +x,)/2, x=(x, —x,)/2V2. (5.1)

The four-vector X specifies where the hadron is located in
space-time, while the variable x measures the space-time
separation between the quarks.

In the light-cone coordinate system, the generators of
rotations applicable to functions localized in the four-dimen-
sional space-time of x are

] d d
g w0
1 7 y E» av (u+v) £

s (Z Y -wend). o
b= =ilx5-r5)

The boost generators are
(- D) 2)
K2=%(y(§;—%)+(u—v) aiy) (5.3)

These generators do not contain the hadronic coordinate
variable X, as transformations of the little group do not
change the hadronic momentum.

The boost operator along the z direction is

d d

B(R) =exp| — (u _—— ——)) .
(R) XP( P du Y )

If this boost is applied to J, and J,, as in the case of Eq. (3.9),

e 9 _, 9 _(1V(,9 _ i))
Wi(R) = l(xau vax (R)(uax xav ’
(5.5)

Wy(R) = — (y——”aiy—(%)z( %‘y;)))

In the limit of large R, W, and W, become F, and F,, respec-
tively®:

Jdu axl’ u '

(54)

F, =

The transformation operator is now

D(£73,0) = exp( —i(fx + ny) '—_’ (§_+ K 3))

dy.
(5.7
which can be decomposed into
D&m,0) = exp( — itgx +m) )
Xexp( m(§— +7 g ))
dy
. U 2 2
xexp( — i 2, 5.8
exp( — 12 (¢ +’7)au) (5.8)
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FIG. 2. Lorentz deformation in the uv plane. As the velocity parameter
increases, the distribution along the u axis becomes expanded while the v
axis becomes contracted, in such a way that the area remains constant. In
the infinite-momentum limit, the v distribution becomes like that of §(v),
while the distribution along the u axis becomes widespread. The translation
along the u axis becomes a gauge transformation.

as in the case of Eq. (3.11).

We are applying this operator on functions localized in
the four-dimensional space-time. As an illustration, let us
consider Dirac’s Gaussian form'’:

Y(x) = (I/m)exp(— (X* +y* +22+1%)/2).  (59)

This form is not invariant under Lorentz boosts, but under-
goes a Lorentz deformation when the system is boosted.>!!
If it is boosted along the z direction, the x and y coordinates
are not affected. We can therefore delete these transverse
variables, and concentrate on the Lorentz deformation prop-
erty of

P(z,t) = (1/m) " exp( — (1* + v*)/2), (5.10)

in the uv plane. The light-cone variables u and v are defined
in Eq. (3.1), and their Lorentz-transformation property is
given in Eq. (3.8). If this function is Lorentz boosted along
the z axis,

Yp(z,t) = (1/m)"? exp[ — ((u/R)* + (Rv)?)/2].
(5.11)

The width of this function along the u axis increases as R
becomes large, while the distribution along the v axis be-
comes narrow, as is described in Fig. 2.

This function illustrates the Lorentz-deformation prop-
erty of functions localized in the uv plane. The width of the v
distribution decreases as 1/R. When the v distribution is
very narrow, we can consider the transformation in the sub-

space where v = 0. Then the factors

exp( - iv(g‘—a— + ni)) and exp( —iZ (&) _8_)
ax dy 2 Jdu

in Eq. (5.8) for D(£,7,0) can be dropped. As a consequence,

D(£,1,0) = CXP( —i(éx+ny) _(9_) .
du
Thismeansthatthetermsv d /dxandv 8 /dyin Eq. (5.6) can

(5.12)
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be dropped, and F, and F, can be written

F, = —ixaiu, F,= —zy—(—;-?;.
These operators generate translations along the « axis. These
operators, together with the rotation generator J; of Eq.
(5.2), are the generators of the cylindrical group. The differ-
ential operators F, and F, are now the generators of gauge
transformations applicable to functions with a narrow distri-
bution in v (Ref. 9).

Here again, a complete description of the little group for
massive particles in the infinite-momentum limit requires
both the cylindrical and Euclidean components. The Euclid-
ean component can be deleted in the infinite-momentum
limit or in the v = O subspace. As we observed at the end of
Sec. IV, this is the Lorentz condition applicable to massive
particles in the infinite-momentum limit.

(5.13)
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The stochastic theory developed by the authors for the scattering from a random planar
surface is extended to the case of a random spherical surface, which is assumed to be a
homogeneous random field on the sphere, homogeneous with respect to spherical rotations.
Based on the group-theoretical analogies between the two, the formulation of the theory is
closely connected to the representation theory of the rotation group. The concept of the
“stochastic” spherical harmonics associated with the rotation group and their several formulas
are introduced and discussed at the beginning. For the plane wave incident on a random
spherical surface, the scattered random wave field can be expanded systematically in terms of
the stochastic spherical harmonics in much the same way as the nonrandom case, and several
formulas are derived for the coherent scattering amplitude, the coherent and incoherent power
flows, and the coherent and incoherent scattering cross sections. The power-flow conservation

law is cast into the stochastic version of the optical theorem stating that the total scattering
cross section consisting of the coherent and incoherent power flow is equal to the imaginary
part of the coherent forward-scattering amplitude. Approximate solutions are obtained for the
Mie scattering with a slightly random spherical surface where the single scattering
approximation is valid due to the absence of a real resonance, as shown in the previous work
on the two-dimensional case. Some numerical calculations are made for the coherent and

incoherent scattering cross sections.

I. INTRODUCTION

In a series of papers,'~® the authors have been studying
the scattering of waves from a random planar surface, by
means of a stochastic functional approach that is entirely
different from the ordinary scattering theories. It is to be
stressed that, in addition to the stochastic functional calcu-
lus due to Wiener and Ito,>!! the formulation of our theory
is based on the group-theoretic consideration associated
with homogeneity of the random surface, where homogene-
ity implies the probabilistic invariance under the group of
translational motions on the plane, and that this leads to the
“stochastic” Floquet theorem!*'~® as an irreducible repre-
sentation for the translation group.

The present paper deals with the problem of scattering
from a random spherical object, which is practically related
to, for instance, the light scattering by interplanetary dust
particles,'*"'> Raman scattering by microcrystalline parti-
cles,'®!7 radio-wave scattering by deformed rain drops,'®
diffraction by a rough planetary surface, etc. Although the
scattering by a random sphere has been treated in several
ways, assuming a suitable model for a random spherical sur-
face,'*'519 a theoretical formulation like the well-known
scattering theory for a nonrandom sphere® has not yet been
made for a random sphere. It is perhaps because of the lack
of the techniques to handle a random field on the sphere and
partly because of the intrincate manipulation of spherical
functions in the perturbation calculus. The problem, there-
fore, attracts our attention not only for practical reasons but
also for the theoretical interest aroused by it.

A preliminary study®' has been made on a simple two-
dimensional (2-D) model, that is, the scattering of plane
wave from a random cylindrical surface that is homogenous
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with respect to circular rotations. Since the rotation is only a
translational motion along a circle, the irreducible represen-
tation of the circular rotation group is again 1D, and the
group index is given by a Fourier exponential function, so
that the theory can be easily formulated in a manner analo-
gous to the case of random planar surface. The differential
cross sections for the coherent and incoherent scattering and
a stochastic version of the optical theorem have been ob-
tained. In the case of a planar random surface even if the
roughness is negligibly small, the multiple scattering has an
important effect causing the so-called anomalous scattering
(e.g., scalar wave with Neumann surface,’ electromagnetic
wave with perfectly conducting surface,? surface plasmon
mode®). In the case of random cylindrical surface, although
the multiple scattering can be treated by means of Wiener—
Hermite expansion in much the same way as the planar case,
it is shown that the multiple scattering does not create an
appreciable effect in the Mie scattering if the roughness is
small enough: This is due to the lack of a real resonance or of
a surface mode on the circular surface. Therefore, it is ex-
pected for the same reason that, if the roughness is small
enough, the Mie scattering from a random spherical surface
could be well treated based on the single scattering approxi-
mation for the incoherent part and the second-order approx-
imation for the coherent part.

In the present paper, the random surface is assumed to
be a homogeneous random field on the sphere, homogeneous
with respect to the spherical rotations. The scattered wave
field is then regarded as the stochastic functional of the ho-
mogeneous random surface, and at the same time it is expect-
ed that the random wave field reflects a group-theoretic
property associated with the rotational homogeneity. The
totality of spherical rotations forms the rotation group that
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we denote by G. It is to be noticed that the representation
theory of the rotation group?>?* plays an essential part in our
treatment of stochastic functionals associated with the ran-
dom spherical surface. A great difference from the planar or
the circular case lies in the fact that due to the noncommuta-
tive property of G the vector space for the irreducible repre-
sentation is finite dimensional, i.e., (2/ 4 1)-D, /= 0,1,2,...,
andits (2/ + 1)-D transformation matrix is given in terms of
generalized spherical functions??; this is to be contrasted to
the 1-D representation in terms of a Fourier exponential
function for the translational or the circular motion group.
With this difference in mind, we can formulate the scattering
theory for a random sphere in a manner analogous to the
planar case. Table I shows the analogies between the two
formulations for the spherical random surface, which will be
helpful in what follows to formulate the scattering theory for
a random spherical surface. The scattering from a cylindri-
cal random surface,?! which stands between the two cases, is
theoretically close to the planar case in view of its group
property, but physically similar to the spherical case with
respect to its scattering characteristics.

A brief summary on the theory of the rotation group and
related formulas for vector spherical harmonics are given in
the Appendix for reference in the text. Before dealing with
the stochastic scattering problem, we need to prepare some
mathematical tools in Secs. II-IV, which are indispensable
for manipulating the random wave fields arising from the
homogeneous random spherical surface. Section II gives a
new group-theoretic interpretation for the spectral represen-
tation of a homogeneous random field on a sphere. In this
connection, we introduce a concept of the stochastic repre-
sentation of the rotation group in a vector space of random
variables: it is a novel way of a group representation, since
the representation space has been usually taken as an ordi-
nary vector space or a function space. Section III deals with a
more general stochastic representation in the space of ran-
dom fields by means of the shift transformation associated
with the rotational homogeneity. In Sec. IV, a “stochastic

spherical harmonic” is defined as a homogeneous vector
random field in a (2/ + 1)-D vector space of an irreducible
representation. And in terms of stochastic spherical har-
monics, a “stochastic solid harmonic” is defined, which sat-
isfies the vector Helmholtz equation and which represents a
stochastic spherical wave belonging to the same invariant
vector space.

These mathematical definitions and formulas are conve-
niently applied to the theory of the wave scattering from a
random spherical surface in Secs. V-VIIL In Sec. V, the
formulation for the scattering problem is given in two steps.
First, the theory is developed for the spherical wave inci-
dence where the scattered wave field can be expanded in
terms of stochastic solid harmonics belonging to the same
invariant vector space with the incident wave: this corre-
sponds to the stochastic Floquet theorem in the case of a
planar random surface.! Then, in much the same way as the
ordinary scattering theory from a sphere,?® the scattered
random wave field for a plane wave incident on the random
sphere can be readily obtained by superposition in the form
of an expansion in terms of stochastic spherical harmonics
(i.e., an irreducible decomposition in the representation the-
ory of the rotation group). Once the stochastic wave field is
obtained, the statistical characteristics of the scattered wave
can be easily calculated by averaging, which are given in Sec.
VI, such as the coherent amplitude, coherent and incoherent
power flows, total scattering cross section, optical theorem,
and coherent and incoherent scattering distributions. Sec-
tion VII gives the method of approximate solution for the
expansion coefficients by solvintg the boundary condition on
the random spherical surface. The calculations are given for
the first-order (single-scattering) approximation for the in-
coherent field and the second-order approximation for the
coherent field. Numerical evaluations for several statistical
scattering characteristics are finally given in Sec. VIII for the
Mie scattering where the first-order approximation is valid
for small roughness parameter as shown in the case of a ran-
dom circular surface. The range of validity is checked using

TABLE L. The analogies between the two formulations for the scattering from a planar random surface and the scattering from a spherical random surface.

Scattering from a random plane

Scattering from a random sphere

Random surface 1’ homogeneous random field
on plane

Homogeneity 2' probabilistic invariance
under translations

Group representation 3’ stochastic representation of
translation group

Spectral 4’ Fourier integral type

representation

Analog of Floquet 5’ random field in an

theorem irreducible representation space
of the translation group

Stochastic wave field 6' integration of stochastic
plane wave

Incident wave 7' plane wave

Synthesized wave field 8’ superposition of plane waves;

stochastic radiation field for
a point source

1 homogeneous random field
on sphere

2 probabilistic invariance
under spherical rotations

3 stochastic representation of
the rotation group

4 expansion in spherical
harmonics

5 random field in an
irreducible representation space
of the rotation group

6 sum of stochastic solid
harmonics

7 spherical wave

8 superposition of spherical
waves;
stochastic wave field for plane-
wave injection
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the power conservation formula and the optical theorem.

It is to be remembered that, as often used in quantum
mechanics, a group-theoretic treatment based on the sym-
metry simplifies a great deal of manipulations for calculating
the solution, and in the same manner our stochastic group-
theoretic treatment based on the rotational homogeneity
again considerably simplifies the calculation as well as the
description of the solution. Otherwise, even in the single-
scattering approximation, the representation and the statis-
tical properties of the scattered wave field are much too com-
plicated to obtain by means of a conventional scattering
analysis, because of the coupling of three spherical harmon-
ics arising from the spectral representation of the random
surface, the expansions of the Green function and the inci-
dent plane wave all in terms of spherical harmonics.

The multiple-scattering correction will be required if we
go far beyond the Mie scattering range or treat the case of the
short wavelength limit in the diffraction theory. As in the
polar or circular rough surface, the multiple scattering can
be taken into account, if necessary, by introducing the sec-
ond Wiener kernel in the Wiener expansion of the stochastic
functionals. This involves the irreducible decomposition of
the tensorial products describing the second-order Wiener—
Hermite functional. To do this, however, implies a lot of
complication in addition to the present calculation, although
it was trivially easy in the planar case!? or the cylindrical
case?! because of the 1-D representation of the translational
or rotational group by means of Fourier exponential func-
tions. Therefore, we avoid this in calculating the approxi-
mate solution and limit ourselves to the Mie scattering with
small roughness due to the reason mentioned above. The
case of multiple scattering will be discussed in a future work
based on the present treatment.

Il. HOMOGENEOUS RANDOM FIELD ON A SPHERE

For the applications in the following, we briefly summa-
rize the mathematical definitions and formulas with concise
description about the derivation and theoretical meanings.

Let (02,4 ,P) denote the probability space (£} denotes
the sample space, % the Borel field on 2, and P the probabil-
ity measure), and let Y(w) denote a random variable ( %
measurable function), @ indicating the probability param-
eter denoting a sample point in , which will be often
supressed for brevity. Let L () denote the Hilbert space of
random variables such that (| Y |?) < o with inner product
(Y,Y,)q = (Y,Y,), () denoting the average over ().

Let a three-dimensional (3-D) vector r be denoted by
r=(7,6,p) in the spherical coordinates, and a 3-D spherical
surface by S, = (r,0,p) with radius » = 1. The rotational
motion g, which describes the transformation r—r' = gr,
forms the rotation group G (see the Appendix). Here, D,
denotes a (2/ + 1)-D vector space for an irreducible repre-
sentation of G with weight /. It is to be kept in mind that the
term “representation” is used in two ways in the following;
the representation of the rotation group and the representa-
tion of a random field, which, however, may not be confus-
ing for us.

Let f(r)=f(r,») represent a q.m. (quadratic mean)
continuous random field on S;. In this section, let L >(2)
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denote the sub-Hilbert space of random variables which is
linearly generated from f(r) (q.m. limit of linear transfor-
mation). In the present paper, the probability space
(2,4 ,P) is associated with the homogeneous random field
on S; describing a random spherical surface, so that a ran-
dom variable is considered as a stochastic functional of the
random spherical surface.

A random field on the sphere whose probability distri-
bution (correlation function) is invariant under arbitrary
rotations is said to be homogeneous in the strict (wide)
sense. More generally, a homogeneous random field is de-
fined with respect to the invariance under the group of mo-
tions in a homogeneous space.?*-26 For our purpose, we as-
sume f(r,») beahomogeneous Gaussian random field on S,
with mean 0, so that it is homogeneous in either sense. Since
the correlation function R(r,r,) = ( f(r;)f(r,)) is invar-
iant under arbitrary rotations, we have

R(ryr;) = R(gr,8ry), I,1€S; g€G, (D
from which follows that R(r,r,) is a function only of 6,
which denotes the angle between r, and r, [cf. (A19)], so
that we write the correlation function as R(8) =R(r,,r,).

We first show three forms for the representation of the
homogeneous random field f(r,») on the sphere:

f(re) =fleg,T* 'w), r=ge,, 2)

il
Mls

1
S YP(O@)FB(w) 3
= 1

I=0m= —

= [ 20+ 1
=2 + . FB Urw), r=ge, 4)
=0 4r

Equations (2) and (4) will be explained later. Equation (3)
is the classical form of the spectral representation®’-?® given
in terms of spherical harmonics and the orthogonal random
spectrum F;B, where B'=B{"(@w) denotes a Gaussian
random variable with mean O having orthogonal property:

(BTBYY={(BT(r)BY (X)) =848’ (5)

where the middle member in the equality will be explained
later. The spectral representation for the correlation func-
tion can be easily given using the addition formula for the
spherical function:

R(O) == 3 21+ D|F,[*P,(cos ), 6)
)

where @ is denoting the angle between two vectors r, and r,,
and we call |F,|? the “power spectrum.” Particularly, the
“white” spectrum |F;|? = 1(const) gives the delta correla-
tion for the white noise on the sphere: R(8) = §(8),6(8)
denoting the delta function on the sphere with the measure
dS=sin 6d0 dp.

The homogeneous random field on the sphere, f(r), can
be as well regarded as a random field on G by (A2);

flr)=f(g. &), r=g.e, g-eG, (D
where e, denotes a unit vector along the polar axis, and g,
denotes the rotation that brings e, into r. The scalar field (7)

is independent of the third Euler angle @, or of the rotation
around r.
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Let the rotational transformation S¢ of the homoge-
neous random field f(r) be as defined by (A4);

SE f(r)-fg”'r), geG. (8)

Then, the transformation S¢ on f{r) induces a transforma-
tion U# on random variables YeL ?({),

Ut Y(w)-Y (0)=U%Y(w), (9)

which we call the shift transformation. From the invariance
(1), U#is a unitary transformation in L}. The strict sense
homogeneity of f(r) implies that the measure-preserving set
transformation T4% 4A—-A4' = T34 is induced on (2, such
that P(T34) = P(4), A, A’'e% . For convenience, we write
this formally as a point transformation on ) without loss of
rigor”:

(10)

and we can write the shift transformation (9) in the follow-
ing manner:

U¥Y(w) = ¥Y(o') =Y(T*w), (11)

which is intuitively understandable because the sample point
o can be looked upon as if it is a coordinate parameter. As
easily demonstrated, the transformation 7°%, equivalent to
U8, has the group property:

T8T% = T&% [Tg] -1 Tg—I’ Te=1, (12)

which is also satisfied by U¥, in the same manner as S in
(AS5). Therefore, the group homomorphism g— 7'¢ (or U#),
geG, gives the representation of the rotation group in the
space L 7(Q).

Then using the shift operator 7%, we can write the ho-
mogeneous random field f(r,w) in the form (2):

ft,w) = fleg, T¥ '0)=U*®" fle,w), (13)

where g denotes the rotation that brings e, into r. Then, we
note that the scalar random field f(r) is invariant under
rotations around r:

U'f(r) = f(r), heH ;U"f(e,) =fley), heH, (14)

where H denotes the subgroup of rotations around the “po-
lar axis” e,; he, = ey, heH, and by H, the subgroup of rota-
tions around the vector r=ge,; Ar=r; Ah,
=ghg~'eH_, heH.

By the representation theory of the rotation group,
the representation space L }(Q) for 7% (or U®) can be de-
composed into the sum of irreducible spaces, and corre-
spondingly a vector f(e,) in L}(Q) can be decomposed into
the vectors of orthogonal irreducible spaces. For conven-
ience, we denote by D, (), I = 0,1,2,..., an irreducible space
of the weight-/ representation for 7% (U#).

We can show that the independent Gaussian variable

7'=B](w) in the spectral representation (3) is trans-
formed according to the operation 7¢ ' in such a manner as

T8 w-o'=T%, o,oed,geq,

r=ge,

22,23

B (rw) =B7(T* ')
!

-3

s= —1

T! Bj(w),

m (8) (15)

r=ge,

and its special case with m = 0 is written using (A8),
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41 !
Bor) = Y (O6,p)BT. 16
1 (1) 2]+1m=z_3 7(6.@)B] (16)
This implies that By, m = —,...,/, is the mth canonical

basis relative to the “north pole” e, in the (2/ + 1)-D vector
space of D,;(), which is subject to the transformation by
means of the unitary matrix T/, (g), that the canonical basis
B ought to satisfy the orthogonality (5), and that B *(r)
=B ['(r,®) in the left-hand member of (15) gives the mth
canonical basis relative to r = ge,, satisfying the orthogonal-
ity (5) as well.

Since by (14) f(e,) has only the Oth canonical compo-
nents relative to e, its irreducible decomposition can be
written in terms only of B¢,
> 2041

f( eO) - IZ':Q 4

If we apply U# ' (or T# ') on both sides, using (13) and
(15), we get the expression (4), which is the spectral repre-
sentation in terms of the moving canonical basis in D, (Q).
That each term of (4) or (17) has only Oth canonical compo-
nent implies according to (A27) that the homogeneous ran-
dom field f(r) is decomposed into the sum of isotropic /-
vector field in D,(€), which is a simple geometrical
interpretation for the spectral representation.

Substituting (16) into (4) we recover the spectral repre-
sentation (3) in the original form, where the random spec-
trum F; B " can be interpreted as the fixed canonical basis of
D, (1) at the north pole e,. Therefore, the simple spectral
representation (4) is a “coordinate-free” representation
while the original form (3) is a “coordinate-fixed” represen-
tation. Such a group-theoretic or geometric simplification is
greatly helpful when we deal with the random fields genera-
ted by the original homogeneous random field.

F,B®. (an

Ill. SHIFT TRANSFORMATION AND HOMOGENEOUS
RANDOM FIELDS ON A SPHERE

In what follows, we deal with a random field on the
sphere ¥(r,w) as a ( #¢X % measurable) function on
8§53 X £}, or more generally a random field ¥(g,») on G. For
the sake of practical applications we introduce the shift
transformation D ¥ operating on random fields using the
convenient notation 74, instead of U%. Define the operator
D*, geG, by

DéY(rw) =g~ ', TS ), (18)

D&Y(gow) = ¥(g™ 20, T% 'w). (19)
Writing r = gqe,, (18) is a special case of (19). From (AS)

and (12) it easily follows that D gives a representation of
the rotation group G:

Dé#D&=D%&, [D$]~'=D*, D=L  (20)

The operator D &, being a measure transformation on S; X 2,
can be applied to the random measure as well. The shift
operator D & introduced here is an analogy to the shift opera-
tor operating on stationary processes. '

It should be noticed that the homogeneous random field
(2) is invariant under D%, geG. More generally, if a random
field X(r,w) is D 2 invariant, that is,
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DEX(rw)=X(g~'r,T% '0) = X(r,w), @n

then it is shown that X(r,@) is a homogeneous (scalar) ran-
dom field on S; expressible in the same form as (2):

X(r,0) = X(e,, T* '0)=U® 'X(epw), rege, (22)

that is, the value at r = ge, can be obtained by applying 7%
to the value at the north pole, X(eq,w), which is a scalar
quantity invariant under rotations around e,,

More generally, using a random variable Y(w) (#
measurable) we make a random field on G;

Y(gw)=Y(T? 'w), geG, 23)

which is easily shown to be D2 invariant and hence is a ho-
mogeneous random field on G. A random field on S, like
(22), is a special case of (23) such that Y(T'w)
= ¥Y(w), heH.

Next, we consider an /-vector random field with compo-
nents,

Xr(ro), r=g.e,

which are transformed by D ¢ in the following manner:

m= —1..,1, (24)

i
DgX;n(r’a)) = 2 Tim (g)Xf(l’,w), m= — 19"-)1-
s=1

(25)

Such random field is said to be a homogeneous /-vector ran-
dom field. One of such /-vector random field can be repre-
sented in the following form:

X7r(rew) =T, (8)X,(rw), (26)

where X, (r,w), n = — I,...,I, represents a D ®-invariant sca-
lar random field of the form (22). In fact, the factor
T!.,.(g.) in (26) is transformed under D& or S¢ like (25)
according to (A16). Since by (A15) T (g.) is the mth
component of e, (r) in the fixed canonical basis, (26) can
be expressed in the /-vector notation as

Xpn (r@) = e, ()X, (r@). (27)

The l-vector fields, (27) with different n, is linearly indepen-
dent of (orthogonal to) each other. A homogeneous /-vector
random field can be generally written as a linear combina-
tion of (27) in #, examples of which will appear in the next
section. It is to be noted that the random field of the form
(26) or (27) is a rotational counterpart of the stochastic
Floquet theorem based on the translational motion.'?

m= —1..,l,

IV. STOCHASTIC SPHERICAL HARMONICS AND
STOCHASTIC SOLID HARMONICS

Let Z7 = Z (@) be a fixed canonical basis in D, (@),
and Z ["(r) = Z ['(r,w) be the moving canonical basis rela-
tive to r = ge,, such that

(Z7Z27)=(ZTMZT (1)) =84-8pms

1
Z Tsm (g)Zi’ rEgeO
s= —1
(29)
[cf. (5), (15)]. For comparison and reference it should be
noticed that the similar relations (A14) and (A15) do hold

for an /-vector canonical basis e ,, in D, and the moving
canonical basis e, , (r).

(28)

ZMr)=Z™(T '0) =
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We define the “stochastic /-vector spherical harmonics”
associated with Z * by the formula

P{;)n (l',d))
I
m= —1['
'+1
-5 e mzim (31)
Ll'=0,12,., L=min(}!'), n= —1L,..,L,

where P{,% (6,9) denotes the /-vector spherical harmonic
defined by (A29), and (30) is rewritten into (31) using
(A29), (29), and (A15). Since, by definition (29), Z }(r) is
invariant under D ¥, (31) is a homogeneous /-vector random
field of the form (27). The correlation function can be easily
calculated; we omit its details here.

Now we introduce the ‘“‘stochastic solid harmonics”
Ji;,. (;w) such that it is a homogeneous /-vector random
field on R; that satisfies the I-vector Helmholtz equation. We
denote the position and the wave vector by r= (r,6,¢) and
k = (k,u,v) in the polar coordinate, respectively, and let
them stand for the spherical coordinates (6,¢) and (u,v) as
well. Let us define the stochastic solid harmonic by the inte-
gral

Ji;)n (l‘;a))
= 1 If <Pl (k)dS, (32)
T~ IS
I'=012,, n=—L.,L, L=min(l".

That this bears the desired transformation properties under
D¢ easily follows from that of the integrand, or from the
following expressions. Substituting (30) into (32) and using
(A35), (A31), (A29), and (31), we obtain several expres-
sions for (32);

I ()
L
= Y Jin(krn6@)Z7: (33)
m= — L
L
= Y kNP, (re) (34)
t= —L
"4+ 1 L
= A+ z ]f,,’(kr)e(,,,(r)Z;,(r). (35)
47 t= —L

Since Z }(r) is D #invariant, (35) is the sum of the functions
of the form (27). The integral representation (32) is a sto-
chastic analog to (A35), and (34) is another analog to
(A31). Furthermore, substituting (34) into the left-hand
side of (32), and (31) into the right-hand side, we obtain the
formula analogous to (A36):

L
S Ju(kr)eg, (N Z . (r)
t= —L
1 n KT
=I1r—17—‘—’.L enn (K)Z7 (k)e* ds,, (36)
which is the tensor integral representation, where e,,, is a
canonical [-vector in D, and Z /. a canonical I’ vector in

D,. (Q)sothate,,, (k)Z . (k) gives an isotropic / X I'-ten-
sor field in D, X D,. () according to (A28).
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It is obvious from (32) or from (33) and (A33) that
3!}, (r,o) satisfies the /-vector Helmholtz equation;

(V2 + kI (yn (rw) =0 (37

analogous to (A33). The above-mentioned analogies would
justify the name of “stochastic /-vector solid harmonics.”
Similarly, we can define the stochastic solid harmonics
H{)! (r;0) by replacing J,, by H{)!" and j./(kr) by
h P! kr) in the right-hand side of (33)-(35), which repre-
sent the stochastic outgoing J-vector wave satisfying the
Helmholtz wave equation.

When Z [ is a linear functional of B 7’s, then Z " can be
replaced by B 7 on the above formulas. Otherwise it is to be
represented as a nonlinear functional in terms of the Wie-
ner-Hermite tensorial expansion, details of which will be
omitted here.

V. SCATTERING FROM A SPHERE WITH
HOMOGENEOUS RANDOM SURFACE

A. Random spherical surface

Let the random surface on the sphere with radius a be
described by

r=a+flrw), {(flrw))=0, (38)
where f(r,w) denotes a homogeneous Gaussian random
field on S; given by the representations (2)—(4) with the
correlation function (6). From now on, let r represent a
vector with length = |r|. The parameter describing the
roughness is given by the variance

P=(fire)) =-— 3 @I+ DIF (39)
4T =%

B. Wave equation and the boundary condition

The stochastic wave field scattered by the random
spherical surface has to satisfy the Helmholtz equation and
the boundary condition on the random surface (38) as well
as the radiation condition;

(V2 + kz)'ﬁ(r)w) = Oy (4’0)
Y(r,w) =0, r=a+f(r,, ) (Dirichlet), (41)
M:O, r=a+ f(r,,w) (Neumann), (42)

an

where V? denotes 3-D Laplacian, and r, a point on S; crossed
by the vector r. Assuming the roughness is small enough, the
boundary condition (41) or (42) on the random surface can
be replaced by the following approximate boundary condi-
tion on the sphere:

=0 (Dirichlet),

r=a

[¢ 1 "’ 43)

[?ﬁ —VﬁV¢+fa ¢] =0 (Neumann). (44)

At this point we note that the random wave field Y(ro)
as a function of w is regarded as a stochastic functional of the
random surface via the boundary condition, and according-
ly, all random quantities appearing in the following are con-
sidered as generated from the Gaussian variables B". We
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also note that the random surface (38), as well as the Lapla-
cian and the boundary condition, is invariant under the
transformation D% as in (21).

C. Spherical-wave expansion of a plane wave

As well known, the plane wave with the wave vector
k= (kup) is expanded in terms of spherical harmonics:

" =4 Z 2 i,(kr) YT (O,@) Y (uw)  (45)
I=0m= -1
- 120 (21 + 1)j, (kr) (e gy (k)€1 (T)). (46)

Here, (46) is a simple form using the inner product: The
parenthesis implies the (2/ + 1)-D inner product of two /-
vectors [see (A12), (A18)],and e, (r),m= —I,...,I, de-
note the canonical /-vector basis relative to r in the space D,,
which is related to the fixed canonical basis e, in such a
way that [see (A14), (A15)]

(e(l)m.e(l)n) = (e(l)m (r)'e(l)n (r)) = 6mn: (47)
1
€pm (X)) = T'(g, Yenm = 2 Tsl-m (g )ewns

s= —1
m= —1..,1, (48)

where (47) shows the orthogonality and (48) the transfor-
mation property under rotation [cf., (5), (15) or (28),
2N 1.

The expansion (45) or (46) in terms of spherical wave
should be compared with the expansion in terms of cylindri-
cal wave in the 2-D problem [Ref. 21, Eq. (24) ]. A spherical
wave with the quantum number / = 0,1,2,... is regarded as an
l-vector wave with (2/ + 1) components numbered with
m = —l,...,] while in 2-D cases the cylindrical wave is a
scalar wave with the quantum number m = 0,1,2,..., which
corresponds to / in the 3-D problem. As the 2-D scattering
problem was treated separately for each mth cylindrical
wave,?! in the present 3-D problem each l-vector spherical
wave can be dealt with separately since it is transformed
within the same vector space under the transformation D&,

In view of the relation (46), the wave solution for the
plane wave incident on a random sphere can be obtained in
the following manner: First, we find the /-vector wave solu-
tion for the spherical wave incidence, namely, the solution
for the primary wave of an isotropic /-vector field
2, (kr)e o (r) [cf. (A27)]; second, taking the inner prod-
uct of the l-vector wave solution with the /-vector e, (k)
and summing the inner products over all /, we obtain the
complete wave field for the incidence of a plane wave with
the wave vector k.

D. Unperturbed field (primary wave)

In the nonrandom case with ¢ = 0 (smooth sphere),
the unperturbed wave field for the spherical wave injection
can be written in the well-known manner in terms of spheri-
cal harmonics and spherical Bessel functions.’® According
to the remark made above, we will write this in the vector
notation:

'ﬁ?l) (")E'/’(()I) (reg= [jl(k") + a(l)h ;”(k’)]e(l)o (r)
(49)
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=3[hE (kr) + (P (kr) ] e (1) (50)
a®=ie®sin 6, = —j,(ka)/h (" (ka) (Dirichlet),
(51)
= —ji(ka)/h}"(ka) (Neumann),
(52)

where j,(z) is the spherical Bessel function, A {"(z) the
spherical Hankel function of the first kind, and the prime
denotes the differentiation; j;(z) = dj, (z)/dz. Here, a? and
&, are the so-called scattering coefficient and phase shift. The
l-vector e, (r) in (49) is the Oth canonical basis whose
2! + 1 components relative to the fixed basis are the spheri-
cal harmonics {see (A15), (A8)]. It should be noticed that
under the rotational shift D ¢ the spherical wave ¢, (r) giv-
en by (49) (independent of @) is transformed as an isotropic
I-vector field in the space D, [see (A23) and (A27)].

E. Perturbed wave field (secondary wave)

In the case of random surface (o*>0), let the total /-
vector wave field for the spherical wave injection be written

Yo, (10)=9¢0, (v) + ¥, (rw), (53)

where the second term is the perturbed wave field created by
the surface roughness. In view of the fact that the boundary
condition on the homogeneous random surface (2), as well
as the wave equation (40), is invariant under the transfor-
mation D¥, geG, and that ¢, is an isotropic /-vector field
[cf. (A27)], the perturbed random wave field also should be
an [-vector random field subject to the same transformation
as ¢7;, under D 3. That is, it is a homogeneous /-vector ran-
dom field transformed under D8 as in (25), and at the same
time it should represent an outgoing /-vector wave satisfying
the Helmholtz equation. To sum up, the secondary wave
should be expanded in terms of stochastic solid harmonics

H{}! (r,w), which satisfy the /-vector Helmholtz equation
(37) and which are given by Eqgs. (33)-(35) where

i (kr,6,p) and j.!(kr) are to be replaced by H{J!™
(kr,6,p) and h !} (kr), respectively, so that they express
outgoing waves corresponding to the spherical Hankel func-
tions. Such complication did not arise in the 2D problem
because the wave components are all scalar quantities and
can be readily expressed in terms of familiar functions [cf.
Ref. 21, (32)].

Therefore, our expansion can be written

= L 41
r,ow)=
Vo (r) ,Z' 20" + 1

A ”’H(l)n (kr’w)’

On= —L

(54)

w© L
=Ah{V(kr)ego () + Y Y HL(kr)

I'=0m= —-L
Xe(l)m(r)z;"'(r)w)’ (55)
where 4 ¥’ denotes the expansion coefficient, Z /% (r) are the
orthogonal random variables forming the moving canonical

basis in D, ({)) satisfying the same relations as (5) and (15)
[see (28), (29)], as we have put
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L
Hy(kn= 3 h@"(kn4Y, L=min(ll).

n= — L
(56)

Equation (55), a rewritten form of (54) using (35), corre-
sponds to the expansion in terms of the “stochastic spherical
harmonics” (31). Concerning the term with /’ = 0in (54),
we should notice the following. It should be noticed that,
although Z,(r,w) =2Z,(w) is a D 5invariant scalar, namely,
Zy(T?w) = Z,(w), it is not necessarily a nonrandom con-
stant. Thus the first term of (56) with coefficient 4 { denotes
the average part extracted from the term with /' =0, and
accordingly (Z 7"(r)) = 0 in the rest of terms.

The random variable Z | (@), which generally is a non-
linear functional of the random surface, could be expanded
in the Wiener-Hermite series of B * (Refs. 12 and 21). How-
ever, in view of the result in the cylindrical case,?! we can
assume that the multiple scattering due to the surface rough-
ness could be neglected in the Mie scattering range with
small roughness, since there is not real reasonance nor sur-
face mode on the sphere. Therefore, in such a case, the inco-
herent part of the scattered wave #¥* can be well represented
as a linear functional of the random surface or of the vari-
ables B . In the expansion of (55), accordingly, we replace
Z '(r,w) by B *(r,w) instead of a nonlinear Wiener expan-
sion.

F. Scattered wave field for spherical wave injection

To summarize the total wave field ¢, for the /-vector
spherical wave injection can be cast into the coherent (aver-
age) part i, plus the incoherent (random) part ¥}, with
mean 0;

Yo (o) =y¢2, (1) + ¥, (o) (57)
=¥ (1) + ¢¥5 (rw), (¥5) =0, (58)
where
Wi (1) = [y (kr) + ki {V (kr) ] ey (r), (59)
a,=af + 45, (60)
S, (1) =li0 s HY (ke (DBF (10,

(61)

%, gives the coherent (average) part and ¢, the incoher-
ent (random) part with mean 0. We call @, the coherent
scattering coefficient.

G. Scattered wave field for plane-wave injection

To obtain the scattered wave field for the incidence of
the plane wave (46), according to the procedure given
above, we simply take the inner products of the /-vector
eno (k) with the [l-vector fields (59) and (61), and sum
them up with respect to /: This corresponds to the irreducible
decomposition of the rotation group. In what follows, with-
out loss of generality, we take the plane wave progressing
along the polar axis, i.e., k = ke;, and use the formulas
(Al17), (A18), and (A8) to calculate the inner products.

Thus, the total wave field for plane-wave incidence with
the wave vector k= ke, can be written

H. Ogura and N. Takahashi 67



P(re)=¢°(r) + ¥(r,o) (62)
= ¢c(r) + '/’ic(rsw)) ('ﬁ‘c> = o, (63)
where
P = 3 A2+ Dle oK) 5, (1) (64)
I=0
= S #Q21+ D[i(kr) + ah (" (kr) | P,(cos 6)
=0 (65)
=3 i'(_ﬂ_zifﬁ [h®kr) + (&% +249)
I=0
X h {V(kr) | P,(cos 6) (66)
PErw) = 3 A2+ Dleg, ()5, (1)) (67)
I1=0

o [d L
=¥+ Y T HL(kNT(8)
=6 Zom=

(68)
the third Euler angle @, in T}, (g) (r=rge,) being canceled

by the term T, (g) in B} (r,w) [see (15)], and T}, (g)
being given by spherical harmonics [see (A8)].

XB 7 (r,m),

VL. STATISTICAL CHARACTERISTICS OF THE
SCATTERED WAVE FIELD

A. Coherent scattering amplitude

The coherent scattering part ¥ (r)( = ¥°(r) — ¢o(r))
arising from the second term of (65) has the asymptotic
form

$r) = 3 #20+ Dah (P (kr)P(cos6)  (69)
I=0
~(e®/PP(0), r-w (70)
oO)=- $ @+ Da,P (cos ), )
1 i=o

() is called the coherent scattering amplitude.

B. Power flow conservation

If we apply the Gauss theorem to a spherical region with
radius 7 surrounding the random sphere, we obtain the con-
servation law for the total power flow crossing the sphere:

— i TRY a'/'(l',a)) ]
0= A L3 Im [ Y(rw) __3r ds

- i Tl N 3¢(r,w)>
=7 L Im ( Y(r,w) B ds, a.s.

where the total power flow equals O with probability 1 (re-
gardless of random surface) so that it must be equal to its
average also, which is the last equality. Substituting (63)
into (72) we obtain

Lay [ 7D m] ds
s, ar

+ 2 (m ( (50) M} ds=0,
k or

Sy

(72)

(73)
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where the first term represents the total coherent power flow
while the second the total incoherent power flow, which we
denote S, and o, respectively.

C. Total coherent power flow

Since (73) is independent of r, the total coherent power
can be evaluated at 7 — oo, substituting (65):

Im [ Y¥F(r) 81//°(r)] ds

A —hm—

r— o

={71§o QI+ D[ =1+ |1+2a,?]

=37 S @+ D[Rea, + 2a,]']. (74)
I=0

The term arising from the second term in the bracket of (74)
gives the coherent power flow for the scattered wave which
we denote by o,.

D. Total incoherent power flow

Substituting (68) into the second terms of (73), and
using the orthogonality relations (5) for B " and (A21) for
T! . (1), we can evaluate the total incoherent power flow at
r—oo:

e = i - [ 1| 57 as
—4r z QI+1) ,Zo,n;_ulini
le[ HY (k) HY (k1) ] (75)
233 z @+ DIHLE (76

I=01'=0m= —
where the overdot denotes the differentiation and we have
used the asymptotic formulas for H" (kr) and b )" (kr),
k

H" (kr) ~ —k—H” RO kp)~=—h ro o,
an
L
H)= Y k14, L=min(l'), (78)
n= —L
141

b= %; i~ = 1)+ = ml'm|lI'L O)
L I

X (I —nl'n|lI’'LO). (79)

E. Total scattering cross section

The total power-flow conservation formula (73) can be
rewritten using (74) and (76):

4_’: > @2+ 1)[Rea, + |2a,)?
I=0

+3. 3

I'=0m= —L

|HY ,2] 0, (80)

where the sum corresponding to the second term in the
bracket gives the coherent power flow o of the scattered
wave and the third term in the bracket corresponds to the
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incoherent power flow o,.. The sum, therefore, is to give the
total scattering cross section S, that is,

417. o
S=ac +01C=F';0(21+1)

X[|2a,|2+2 S \mY |2] (81

=0m= —L

F. Optical theorem

In terms of (71) and (81), the conservation law (80)
can be cast into the well-known form of optical theorem:

= (4nw/k)Im ®(0), (82)

where ©(0) is the forward coherent scattering amplitude.
This is the stochastic version of the optical theorem for the
scattering from a random sphere: The total scattering cross
section consisting of the coherent and incoherent power flow
is given by the imaginary part of the coherent forward-scat-
tering amplitude.

G. Angular distribution of coherent scattering

(differential cross-section for coherent scattering)

In view of (70), the angular distribution o, (&) of the
coherent scattering can be given by

0.(6)dS = |®(6)|dS = —

i Q@+ ey

2
X P, ds, (83)

dS =sin 8 d6 dp denoting the spherical element.

H. Angular distribution of incoherent scattering
(differential cross section for incoherent scattering)

Calculating the average power flow of (68) using (5),
(77), and (AR), the angular distribution o;. (8) of the inco-
herent scattering can be given by

v

0. (6)dS = 2 Y

=0m= —1'

iL; P (cos )

(U+m
which depends only on 8 as expected. Integrating (83) and
(84) over dS gives o, and o,., respectively.

)

S QI+ DHY,

I1=0

dS (84)

VIl. METHOD OF APPROXIMATE SOLUTION FOR THE
BOUNDARY CONDITIONS

We deal with the boundary condition on the random
surface for the spherical wave incidence and calculate the

expansion coefficients 4¢ and 4 Y’ to obtain the scattered
wave field. As mentioned in Sec. V, the wave field is a homo-
geneous /-vector random field so that we can calculate only
the value at the polar point r=re,, putting e, (r) —e
and B7'(r) -» B in the equation: The value of the field at
arbitrary point r=rge, can be obtained from this by means of
the transformation (15) and (48). Since the /-vector field
has (2/ + 1) components, the number of equations for the
components arising from the boundary condition (43) or
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(44) increases with increasing /: Such complication does not
occur in the 2-D scattering problem since the cylindrical
wave field is a scalar quantity under circular rotations.”!

A. Dirichlet condition

Substituting (57) and (58) into (43), and using the
boundary condition for (49), the equation is first separated
into the two equations for the coherent (average) part and
the incoherent part:

s, (r,
[t//iz) (r) + <f(r,w) @P)] =0, (85)
. a
[1&‘&) (r@) + flr,o) —'ﬁ?‘%ﬂ] (86)

where (86) retains only the linear terms with respect to sur-
face roughness, the higher-order terms being neglected ac-
cording to our assumption, whereas (85) is the second-order
equation.

First, substituting (85), (49), and (61) into (86), and
putting G, =+/(27 + 1)/4xF, for notational brevity, we ob-
tain the equation

o

L
D H ., (ka)e,, BT

I"'=0tm=—L

+ k{p‘,’(ka)G,.e(,,oB‘,’,] =0, (87)

where the errdot denotes differentiation. Using (56) and
orthogonality relations (5) and (47), Eq. (87) turns into

H} (ka)= 2 b (ka4 )

n= —L
= — 8,0kG,. Y (ka), (88)

which is a set of linear equations to be solved for 4 %',
n= —L,.,L. From A" we obtain H" (kr) by (56),
which in turn gives us the incoherent part ¥, (r,®) in the
single-scattering approximation.

Next, substituting into (85) the expressions (4), (58)
and the incoherent part (61) so obtained, we get the per-
turbed term for the coherent scattering coefficient:

c 1 i’

Af= ——-——“) k) ,Zok G, H (ka),
which is the second-order quantity in G,. or F;. in view of
(88), and therefore is given in terms of the power spectrum
|F .

m= —1L,.L,

(89)

B. Neumann condition

In a similar manner, the boundary condition (44) can
be separated into the two equations for the coherent and
incoherent parts:

[‘%’ (V. fY05) + <fa;'f;‘c" )L% =0, (90)
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where (91) retains only linear terms in surface roughness.
Here, V, denotes the angular part (m = — 1,1) of the gradi-
ent operator V= (V_, d/dr, V) written in the canonical
basis (m = — 1,0,1), so that V_ is expressed as

V.=(V.V.)=(H_,H)/N2r (92)
(cf., Ref. 25) where H, (= — H_ ) aredifferential oper-
ators? such that

H_ Tﬁnn —B Tmn—l’ H-’-T{nn:B +1Tmn+l’

l=J+nmn(—n+1). (93)

Applying this to (15) and (48) yields the following rela-
tions:

H—e(l)n =Bfne(l)n-1’ H+e(1)n =Bfu+le(l)n+17 (94)
H_B}=pB,B;~', H,B}=f,,Bi", 95)

r and o being supressed here. In particular, from (7) and
(95), we have

vV, f=(V_ fvlf)=‘_ Z G,.(ByB'BB}),

r i"'=0
(96)
where we have again put G, =+/(2/ + 1)/4=F, for nota-
tional brevity in the formula.

First, substituting (49) and (61) into the incoherent
part (91) and using (94) and (96), we get

L .
> kH" (ka)ey BT

m= — L

_ Yitka)
24°

+ kzi}‘,’(ka)G,.B‘,’e(,,o] =0.

In the same manner as (87) we obtain

I"'=0

Gl'(ﬁ(l)ﬁﬂl(e(l) — IB I'_l + e(i)l'B ;' ))

(97)

L . , ,
HY (ko)=Y h{)" (ka)d;
n= —L
ﬂl

>ka )2,;»(

—kGl [(6 -1 +5m,)

—5mi/}?(ka)] ,

m= —L,.,.L, L=min(]l"). 98)
This is the set of linear equations to be solved for (2L + 1)
coefficients 4 7', n = — L,...,.L, from which we obtain the
incoherent field ¢¥, (r,&) through (56) and (61).
Next, substituting (49), (96), and the incoherent field
(61) so obtained into the boundary condition (90), and after
some manipulations using (92), (94), and (95), we finally
obtain the coherent scattering coefficient in the following
form:

c_ 1 1
A T ) zZok Gr [H" k) + 3 kar?
X [ﬂOﬁO(HII_I (ka) + HY (ka))
- 2(B6')2H{{'(ka)]] , (99)
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which is the second-order quantity in G, expressible in
terms of the power spectrum |F). |*.

VIIi. NUMERICAL EVALUATIONS FOR SCATTERING
CHARACTERISTICS

Once the approximate solutions are obtained for the ex-
pansion coefficients 4 # "and 4§ as in (88) and (89) for the
Dirichelt conditions and (98) and (99) for the Neumann
condition, then we can evaluate various scattering charac-
teristics using the formulas (69) to (84) with an appropriate
power spectrum for the random spherical surface. As well
known in the nonrandom case, the spherical wave expansion
of the type (65) and (68) is effective in the Mie scattering
range, so that we choose the Mie parameter tobe ka = 1 or2
in the numerical calculation.

There is no typical power spectrum known for a random
field on the sphere. So, as in the previous example for the
circular case,”’ we again assume the power spectrum of a
Gaussian form in / for the sake of numerical calculation:

‘Fllz = (0‘2/N)3—K212/2y [1=012,., (100)
where
1 L 272
N=—o 20+ 1 e—KI/Z 101
47 IZ'O ( ) (oD

is the normalization constant given as a Dirichlet series. The
correlation function corresponding to (100)

R(&) —%2;—1— i (21 + 1)e = X**/2P, (cos ),

4r o
0K, (102)

can be numerically calculated as a function of 6: Some exam-
ples are given in Fig. 1 for K = 0.2 — 1.0, where the param-
eter K( <) can be roughly considered as the correlation
distance (rad) on the sphere; as K -0, R(6) looks more like
a Gaussian form.

We can check the validity of the approximate solutions
by means of the power conservation law (73). It is to be
noticed that the conservation formula does hold also for

K=02 —
0.4 ——
0.6 ——
0.8 —--—
N\ 1.0 ——
\
AN
N
\\\_\ e |
0.5
l 1%0 180
0 60 8 deg

FIG. 1. Correlation function on the sphere ( 102), plotted as a function of
the angular distance. (0*=1, K=02—1.0). R(0) looks more like a
Gaussian form as K becomes smaller, X being a correlation distance.
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1.5
DIRICHLET
Pe? Pic
1.0 S —
p ———
ka = 2.0 ¢
=0
0.5 — K= 0.8
ic
0.0 ==
0.0 0.1 kg 0.2

FIG. 2. Power flow conservation for a spherical wave incidence versus the
roughness parameter ko (Dirichlet, / = 0, ka = 2.0, K = 0.8). Here, P, and
P,. denote the total coherent power flow and the incoherent power flow,
respectively. For a rigorous solution, P, + P, = 1.

each spherical wave injection. Then the power equality for
the / th spherical wave injection can be written

1= P54+ P¥, (103)

where in the present approximation the total coherent power
¢ and the incoherent power P can be written, using (74)
and (76),

Pi=142(a) + 45

) L
Pr=43 3 |HNP
I'=0m= —L

We can use (103) and (104) to check the validity of the
single-scattering approximation. An example for /=0 is
shown in Figs. 2 and 3 for the Dirichlet and Neumann cases,
respectively, where P$ + P is plotted against the roughness
parameter ko: The equality (103) is nearly satisfied within
the parameter range ko < 0.2 shown in these figures. It is
shown by numerical calculations that 1 — P, and P,; rapidly
aproach O for larger /, so that in the Mie scattering range, the
equality (80) consisting of the sum over / does hold for

(104)

1.5
NEUMANN
Pe* Pic
1.0 e
Pe
ka = 2.0
Lt =0
0.5 K =0.8
Pic -
0.0 B S
0.0 0.1 4 0.2

FIG. 3. Power flow conservation for a spherical wave incidence versus the
roughness parameter (Neumann, / =0, ka = 2.0, K = 0.8). Here, P, and
P,. denote the total coherent power flow and the incoherent power flow,
respectively. For a rigorous solution, P, + P, = 1.
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1.5

S/So DIRICHLET
K=0.4
1.0 K=0.8
0.5
ka = 2.0
0.0 T
0.0 0.1 Ko 0.2

FIG. 4. Optical theorem for a plane-wave incidence (Dirichlet, ke = 2.0,
K =0.4,0.8). Here, S denotes the total cross section calculated by (81) and
S, the right-hand side of (82) due to the imaginary part of the forward-
scattering amplitude. S /S; = 1 for rigorous solution.

plane-wave incidence. However, to check the power equality
in the plane-wave case, we can make use of the optical
theorem (82), namely, S = S,, S denoting the total cross
section (81) and S, the right-hand member of (82) due to
the coherent forward-scattering amplitude. Figures 4 and 5
show the ratio § /S, plotted against ko, which roughly equal
1 within the range shown in the figures.

We are then ready to calculate the angular distributions
of coherent scattering (83) for a plane-wave injection, which
are shown in Figs. 6 and 7 for the Dirichlet and Neumann
case, respectively, with k@ = 1.0 and 2.0. Correspondingly,
the angular distributions of the incoherent scattering calcu-
lated by (84) are shown in Figs. 8 and 9, respectively, which
show that the incoherent scattering is generally stronger in
the backward direction than in the forward in either case.
These characteristics shown in Figs. 6-9 are somewhat simi-
lar to those for the cylindrical case.?!

As mentioned at the beginning, the single-scattering ap-
proximation is valid in the Mie scattering if ko is small
enough,; this is due to the absence of a real resonance or a

1.5
$/S, NEUMANN -
1.0 --..________,..T__j:;_,_
0.5 -
ka = 2.0
0.0 |
0.0 0.1 4, 0.2

FIG. 5. Optical theorem for a plane-wave incidence (Neumann, ka = 2.0,
K = 04,0.8). Here, S denotes the total cross section calculated by (81) and
S, the right-hand side of (82) due to the imaginary part of the forward-
scattering amplitude. S /S, = 1 for rigorous solution.
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20.0
N DIRICHLET ka = 2.0
CACYIEN
10.0
c.0
0 40 120 180
deg
4.0
DIRICHLET ka = 1.0
ko = 0.2
o’c(e) ~
\ —— K =0.8

FIG. 6. Angular distribution of the coherent scattering for plane wave inci-
dent in the direction & =0 (Dirichlet, ka = 1.0, 2.0, ko =0.2, K =04,
0.8). The solid line shows the case of smooth surface with ko = 0,

2.0

o.(8)

o.(®

180
deg
FIG. 7. Angular distribution of the coherent scattering for plane wave inci-
dent in the direction 8 = 0 (Neumann, ka = 1.0, 2.0, ko = 0.2, K =04,
0.8). The solid line shows the case of smooth surface with ko = 0.

120 4
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2.0
DIRICHLET o
O’[(:(8) ka = 2.0 '/’/
kg = 0.2 '//x=oa
x10-! e -
1.0 e P
[ - K =0.4
P .
s
7
///
0-0 ‘ I
0.0 40 120 8 180
deg
8.0
DIRICHLET
°/1c(e) ka = 1.0
ko = 0.2
x10-2 e
4-0 "1 _/'/ k=10.8
- K=0.4
0.0 T T
0 60 120 ) 180
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FIG. 8. Angular distribution of the incoherent scattering for a plane-wave
incidence (Dirichlet, ka = 1.0, 2.0, ko = 0.2, K = 0.4, 0.8).
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Ic ka = 2.0 ////
1.0 Ke=o02 Vs
/./
x10°! K=0.8 /:/
'/'/ K= 0.4
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}"\ ,//
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0-0 I I
0 é0 120 180
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x10 K=u.23// _
- / <
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FIG. 9. Angular distribution of the incoherent scattering for a plane-wave
incidence (Neumann, ka = 1.0, 2.0, ko = 0.2, K = 0.4, 0.8).

H. Ogura and N. Takahashi

72



surface mode on a spherical surface. This fact is to be con-
trasted to the case of planar random surface corresponding
to the case ka— «, where the multiple scattering has a cru-
cial effect on the scattering characteristics even if the rough-
ness is negligibly small (Neumann surface,” perfectly con-
ducting surface,? surface plasmon mode®). In this regard,
when the Mie parameter ka is made much larger beyond the
Mie scattering range, the effect of multiple scattering has to
be taken into account in the formulas and calculations in a
manner similar to Ref. 21. This can be achieved in principle
by incorporating the second-order Wiener kernel in the cal-
culation for the approximate solution as remarked at the
beginning, which, however, would be much more involved
than the present treatment.
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APPENDIX: REPRESENTATION OF ROTATION GROUP
AND SPHERICAL HARMONICS

Some necessary definitions and notations concerning
the representation of the rotation group are briefly summar-
ized for reference and for indicating our choise among var-
ious definitions: Several formulas are given in convenient
forms for our applications. For details of the theory of the
rotation group see Refs. 22 and 23, and also the appendix of
Ref. 30.

Rotation group:

A rotation g=g(¢,,0,¢,) described by the three Euler
angles is defined by the successive rotations in the order: a
rotation g, about e,, g, about e, =g, e,,and g, aboute,

= goe,, (e,,e,,e,) denoting the 3-D unit vectors along x, y, z
axes, respectively. The rotations g (identity e, inverse g~ ')
form the rotation group G, and the rotation of a 3-D vector is
represented by the Euler matrix [g] = [g,, ] [g][8&, ]

Canonical basis:

We call the set of vectorse,,, m= — 1,0,1,i.e,

e=¢, er =[te —ie]/2, (A1)
the fixed canonical basis relative to e,. The Euler matrix is to
be represented in the fixed canonical basis. Let (e,,e,,e, ) be
the unit orthogonal vector basis for the polar coordinates
r=(r,0,p). The vector t=e, giving a point t = (1,6,p) on
the sphere can be written

t=e, =g.e, g =g(p+7/2,0,p,). (A2)

We define the moving canonical basis by the set of vectors,
e,(r)=g.e,,,m= — 10,1, namely,

e(r)=g.e,=e,,

e, (r)=ge, =[+e, +ie,]ex®’?

(A3)

which is the canonical basis relative tor or ¢.

Representation of the rotation group:

For the functions on the sphere ¥(t), teS,, or more gen-

erally the functions on G, ¥(g), g€G, we define the transfor-
mation S'¢ by
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S*P(80) =9(87'8): & 80<G, (A4)
which gives the representation of G:
SesE =588 [$8]"'=85, S°=1I (AS)

We denote by D, the (2/ + 1)-D invariant space of the irre-
ducible representation of weight /, of which the matrix of
unitary representation is written

T'()=[T,.(¢.09,)], —I<mn<l, (A6)
T, (@,0.@,)=e ™ P! (cos@)e e (A7)

where T/, (e) =6,, and T}, (8) =gmn.» & being the
Euler matrix relative to (A1). The matrix representation is
referred to the fixed canonical basis in D,, which is a set of
(2] + 1) orthogonal vectors of (2/ + 1) dimension, e,,,
n = —I,...,I: each being the eigenvector with the eigenvalue
e~ " for the rotation g around e,. In the present paper, we
deal with the representation of the integral weight I
{=0,1,2,... . The matrix element (A7) is called the general-
ized spherical function of order / (Ref. 22) and in particular
for n = 0, we have

41

T! ,0, = ————
mo (@1,0,97) I+ D)

"Y7(6@),  (AS8)

where Y 7'(6,¢) denotes the normalized spherical harmon-
ics:

2141 (I—m)! :
Yr(8e) = (— 1) P} (cos B)em.
() =( )\/ ar  (I+m) (cos B)e
(A9)

Vector and tensor:
A (214 1)-D vector with components a,,,
= — [,...,J, which is transformed by the matrix T'(g) upon
rotation g as

i
Apm = z Tf,,,,(g)a(,,,,, m= —1..,l

n= —1}
is called an J-vector in D;; hence, the ordinary 3-D vector
transformed by g,,, is a 1-vector. Similarly, a (2/ + 1)-D
vector transformed by the matrix T/(g) is called an 7-vector
in D, (the overbar implying the complex conjugate).
Further, we consider a tensorial quantity in a product space;
for instance, a tensor with (2/’ + 1) X (2/ + 1) components

af}y»" which is transformed under rotation g as

(A10)

I i —_—
Uy IG 1 1y’
a(l)r)x’l - z z Tmn (g) Tmn (g)aEI)n"
In= -1

n= —

(All)

is called for simplicity an I’ X! tensor in D,. X D,, where
the superscript refers to the component of an /'-vector in

D,.. The inner product of two /-vectors, a;, and b,,, , as well
as the contraction of a tensor, can be defined as
I

@by = 3 aumbiym (A12)
Properties of the matrix:
The unitarity of the representation matrix,
. .
S TL(T. @ =8, (A13)

s= —1

can be interpreted as the orthonormal relation of a set of
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(21 + 1) I-vectors ey, (r) with respect to the inner product;
namely

(eym (1) e (1)) =6, (Al4)
where we have put
€nn (l') ETl(gl' )e(l)n
!
= z T.{'n (gr )etl)s’ n= — 19""1’ (AIS)

s= —1

which is obtained from e, by rotagion g,: 7', (g, ) in the
right-hand side giving the 2/ + 1 components in the fixed
canonical basis of D,. The set of (2/ + 1) vectors (A15) is
called the moving canonical basis in D, relative to r, which is
reduced to (A3) for/ = 1. As (A14) shows, the coordinate-
free I-vector notation in the left-hand side of (A15) make
vector and tensor formulas considerably simpler than the
coordinate-fixed notation in the right-hand side.

The multiplicative law of the group representation can
be writtenas

I
T (8:81) = > T s (82T 0n (81),

s= —1

!
T (8 '81) = Y Th(8) T..(8)-

s= —1

(Al6)

The first equality simply shows that e;,, (r) is an /-vector,
having the property (A 10). The second following from the
first implies the addition theorem for generalized spherical
functions, which can be interpreted as the inner product of
two l-vectors:

T 1n (85 '81) = (€(ym (¥3) €043, (T2)), (A17)

where r,=g,e, r,=g,e; (Al7) reduces to(Al4) when
g1 = &. In particular, for m = n =0, (A17) gives the well-
known addition formula for the zonal spherical function;

Py(cos ) = (e(I)O (ry) "o (1y))

21+ 1 m;_l Y7(60,91) YT (059,)
(A18)

cos 8 = cos &, cos 6, + sin 6, sin &, cos(@; — @,).
(A19)

The integration over G has the invariance properties un-
der rotational transformation of the variable:

f fg)dg= f f(ggo)dg=ff(gog)dg=ff(g“)dg,
G G G G

&) =f(p.,0:p,), dg=dp, sin8dfdp,. (A20)

For the function f(t) on.S; (A20) implies the integral over
S, multiplied by 277. The orthogonality and the completeness
of the set of generalized spherical functions are written as

87
T =6,96,,908,, —, A21
J. T (g) (g)dg H'Ymm'Ynn 21+1 ( )
L3 v 3 @+) 7@ @)

- A ( + ) mn
877’212:0m=—1n=—1 &

=8(g—g'). (A22)
Vector and tensor fields:

Upon rotation g, an /-vector field on R, is transformed
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into a new vector field by the formula
1

ainm(r) = Z

n= —|{

Tﬁ,.,, (g)a(l)n (g—lr)a ’ER:;- (A23)

In a similar manner, a tensor field, e.g., an I’ X I-tensor field
is transformed according to

1)
a(;)mm (r)

1 [ _
= 2 z , T:»;nu (g) T (g)a(l):n (g_ll')
) ) (A24)

Isotropic vector field and isotropic tensor field:
When a vector or a tensor field is invariant under rota-
tions, for instance, when

(A25)
afi ™ (x) =alr (r), (A26)
hold for (A23) and (A24), then the /-vector field or the

I’ X I-tensor field is said to be isotropic. It is easily shown>®

that, when referred to the moving canonical basis, an iso-
tropic /-vector field has only the Oth canonical component
depending on » = |r|, that is

Aym (1)

Anm (X} =apm(r),

(A27)

and that similarly an isotropic /'X/-tensor field has the
components only for m' = m;

1
afim(r) =86

m= —1,..,l,

=08,0a(r), m= —1..1]

mm' arn ( r ) ’

= =10 (A28)
For the isotropic field on the sphere r = 1, the components
are constants.

Vector harmonic functions:

For reference in the text we summarize the definitions
and formulas concerning the /-vector spherical and solid
harmonics that are derived from the representation of the
rotation group.3®3!

Let an /-vector function on §; having only nth canonical
component be

P o=, [ED T e,  (A29)

n=—1.,11"=012,..m= —1'.,l.

in the coordinate-free notation. The /-vector function (A29)
is called the /-vector spherical harmonic and satisfies the
orthogonality relation,

f (P(l)n P:;)mn: )dS: 8n'n"6l'l"6m’m" ’

dS=sin0dfdy. (A30)
Let /-vector functions on R be defined by
(I)n(krs s¢’) Z ]n,,(kr)P(l),(0,¢) ’ (A31)

t= —|

which we call the /-vector solid harmonic, where j'; (kr) is
defined by

I+ 1
T (kr) = ; FHI(— 1)+ — mi'm|ll'L 0)
L="TT—r{
X (I — nl'n|llI’'LO)j, (kr), (A32)
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Jjo(kr) being the spherical Bessel function and

(I —ml'm|lil’'L0) denoting the Clebsch—Gordan coeffi-
cient.?>* Here, j%., (kr) defined by (A32) is called the gen-
eralized spherical Bessel function, having orthogonality
with respect to integration, and is derived from the matrix
element of the translation group in R;.3° The l-vector solid
harmonics are shown to satisfy the /-vector Helmholtz equa-
tion,

(V2 + kIG5 (kr8,9) =0, (A33)
and the orthogonality relation;
—i— J; ) (I (k'n0,@) iy (k "r,0,9) )dS P dr

= 8 Byt S [8(K" — K ")/ "] . (A34)

The following vector and tensor integral representations
hold for /-vector harmonic functions:

i (kr,6,0)
1

— ikerppl’
= .1'_1J e P (u,0)dS
47ri s,

L B —
S Jukryeg, (r) ey, (r)
t= — L

(A35)

1 T er
—_:ZT;I-——_IL en (K) €y, (K)e*"dS

(L =min(,]")), (A36)

where k= (k,u,v) in the polar coordinates and dS

= sin u du dv. These two are equivalent representations
with different interpretation; the first is written as the Four-
ier transform of the /-vector field over a sphere, while the
second gives the Fourier transform of an isotropic / X I’-ten-
sor field over the sphere.

Analogous to /4. and J{},)" given in terms of j, (kr) we
can define 4 ()™ and the solid harmonics H {})} " in terms of
spherical Hankel function 4 {"’ (kr). The l-vector solid har-
monic H{})''" satisfies the Helmholtz equation (A33) also
and has similar integral representations. The definitions and
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formulas for /-vector harmonics are reduced to the vector
case for / = 1 and to the familiar scalar case for / = 0.
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A way is found to trivialize and so deal with constraints in a gauge invariant manner.

I. CONSTRAINTS IN CLASSICAL THEORY

In the Lagrange formulation of mechanics (see Gold-
stein! and Landau and Lifshitz?) one has a scalar quantity
(the action L dt) from which the classical (Euler-La-
grange) equations of motion

d ( aL ) _dL
de\dg, ] g,
follow from an extremizing principle where, for the vari-
ation, the coordinates are treated as independent of each

other
If the motion is constrained to a surface,

¢m (q»t ) =0,
then the independence of the coordinates may be restored by
supplementing the Lagrangian:

L =LO+'{m¢m

and treating the Lagrange multipliers 4,, in the manner of
additional independent coordinates. Extremization with re-
spect to the A, then yields the constraints as equations of
motion. If a constraint is nontrivial (that is, alters the mo-
tion), then it follows that the associated 4, is determined.

When moving from the Lagrange to Hamilton formal-
ism,

aL
a4,

In addition to an imposed constraint, a similar but different

kind of constraint can arise (Dirac,> and references therein).
In the Hamilton formulation the equations of motion follow

from arbitrary variations of the ¢, and p, leading to

H(p’q’t) Ezann - L(q’Q»tL Pn=

g = JoH _ _oH
"op, T g,
or, in condensed notation,
g = {S,H } + a—gs
ot
where the Poisson bracket is defined by
af Jg af g
{ 2 }E - .
fe dq, dp. Ip. 94,

If the action has symmetries, then there exist relations

sum J L(g,q,n)dt=0,

which become the constraints (explicitly time-dependent
symmetry constraints are ignored for simplicity)

$..(pg) =0
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in the Hamilton formalism. These constraints that arise di-
rectly from the symmetry are called primary. To reinstate
the independence of the ¢, and p, the same technique as
before may be adopted to yield the supplemented Hamilto-
nian

H=H,+ Am ¢m ’

with the important distinction that these constraints are not
externally imposed but arise from invariances of the system.
In contrast to previously, where the constraints in general
alter the motion and the Lagrange multipliers are deter-
mined, here the Lagrange multipliers should be undeter-
mined. However, this is not the end of the story since there
are consistency conditions that must be satisfied for the con-
straints to be maintained for all times; namely,

S = {$,n,H} =0,
ie.,
{¢m ,Ho} + /1,( {¢m s¢k}"~'0,

where ~ means equality by virtue of the constraints (weakly
equal). These consistency conditions might imply further
(so-called secondary) constraints (to be attached to the
Hamiltonian with associated Lagrange multipliers and
which must also undergo the consistency conditions, so pos-
sibly leading to further secondary constraints). If all the
constraints are first class [commute (in the sense of zero
Poisson bracket) with the total Hamiltonian for all 4,,],
then the Lagrange multiplies are truly arbitrary (as they
must be for a symmetry constraint) and the system is in a
consistent condition. However, if the constraints are second
class (do not commute), then conditions are imposed upon
the Lagrange multipliers in contradiction to their undeter-
mined nature, and the Hamiltonian as it stands is therefore
inconsistent. Dirac showed a way to eliminate these second
class constraints via the now so-called “Dirac bracket,”?
which yields a first class (and so consistent) Hamilton for-
mulation of the system. But an alternative approach exists;
namely, to apply the Lagrange multiplier conditions to the
total Hamiltonian, which then also leads to a first class for-
mulation, albeit different from Dirac’s.

The restrictions upon the Lagrange multipliers fall into
two distinct classes: (I) A #£0, where the system is altered by
the constraint; or (II) A = 0, which is a condition selectively
removing the offending second class constraint.

Having applied these conditions to obtain a consistent
“pilot”” Hamiltonian (denoted by a prime)

H=H6 +/{'m‘¢m'9

it is easy to see that the now first class ¢, are generators of
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gauge transformations, since, for any f (g,p),
- af A
f= {f,H} + Et' = {f;HO} + b_t +'1'm'{f;¢m'}’

which includes an arbitrary part given by
6arb( f) = A‘m’ {f’¢m' }6t’

so that the ¢, generate arbitrary, nonphysical, changes;
each A4, choice corresponding to a particular gauge.

This procedure has a very nice interpretation; namely,
since a first class constraint is the generator of a gauge trans-
formation, and a second class constraint is indicative of
gauge fixing (leads to a particular choice of 4,, ), (this is the
reason why second class constraints come in even numbers;
since an invariance gives rise to one constraint and its gauge
fixing another), the presence of second class constraints in
an ungauged system is symptomatic of incompatible symme-
tries. The automated repair consists of removing the unin-
tentional gauge choice (which does not alter the equations of
motion) and restoring compatiblity by extending the sys-
tem.

In general, a second class formulation, be it so through
intentional gauge fixing or incompatible symmetries, is un-
suitable for quantizing. Path integral quantization is ob-
structed because one cannot integrate over Lagrange multi-
pliers that are not undetermined, while operator
quantization (which is itself ambiguous*)

{f.8}- (i/A) [f 8]
(where the hat symbolizes an operator), leads to a contra-
diction, since second class constraints, by definition, do not
commute, but are individually zero. Once a first class formu-
lation is achieved the system may be quantized without ob-
struction, where symmetries lead to another dilemma. Be-
fore discussing this new problem and its solution, the
technique developed above might be profitably illustrated
upon a minimal example.

Consider, therefore, the system characterized by the La-
grangian

L = q,4,.
The equations of motion follow as
=0, ¢,=0.
Now move to the Hamilton formulation
g2 o 2O
1—841 q>, l’z—aq2 y

which therefore has the primary constraints

$=p1—¢.=0, $,=p,=0,
which are second class (noncommuting) since {¢,,4,} £0.
This leads to the pilot Hamiltonian

H=2,(p) — q;) + A,(ps).

The consistency conditions read as

¢| = {¢1»H} = —4,=0, ‘l‘z = {¢2’H} =4,=0.
Applying these yields

H=0,
which, although leading to a first class system and reproduc-
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ing the correct equations of motion
l" 1= 0, ‘I 1= 0,
p,=0, 42 =0,
would seem not to regenerate the original Lagrangian

L=pg,+pg,—H

However, it should be recalled that the removal of sec-
ond class constraints indicates that the pilot Hamiltonian
possesses extended gauge freedom. This is confirmed by the
ability to pick the originally inconsistent constraints as the
gauge fixing conditions:

Pr=4q» p=0,
which then correctly leads back to the original Lagrangian

L = g,q,.
To avoid returning to a second class formulation, the
second class constraints should be applied as gauge fixing

conditions after quantization, where such troubles are avoid-
ed.

Il. CONSTRAINTS IN QUANTUM THEORY

Having obtained a first class formulation of the classical
theory one might quantize it via the Hamilion (g¢,p) path
integral formulation of quantum theory. Formally one
would need to deal with objects like

[ on [ pg[ 22
Xexp[% f pi — <H0+4¢>1dr],

whiere the labels on A, ¢, and p are suppressed. This is formal
in that the path integral depends upon the finite difference
scheme adopted in its time discretization as well as the end
point conditions. 3-° On top of this ambiguity the above inte-
gral is divergent, since the infinite number of integrations
over A, while imposing the constraint, overcounts by inte-
grating over equivalent systems (each choice of 4 corre-
sponding to a particular gauge). One way of dealing with
this is to pick a specific gauge in order to isolate and so dis-
card the overcounting factor'®'’ (this must inevitably in-
volve subtleties related to the obstruction to quantizing a
gauged classical Hamiltonian theory; the procedure is less
involved in the Lagrange formalism'?). It would be more
esthetically pleasing, however, to identify and factor out the
overcounting without recourse to a particular choice of
gauge.

Following the philosophy of Omnes,'* one might con-
sider dealing with a constrained system by transforming it to
an equivalent unconstrained one. A direct approach to
transforming away the constraint is not viable; for consider a
canonical transformation generated by F (g,P,t):

oF aF JF
k=a+(5) . p=(5), =(%),
+ ot /er P g/ p Q P/

If one calls upon this transformation to trivialize the
constraint ¢ (g,p,t) =0, then the generating function is deter-
mined from
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and so

F = determined function (g,?)

+ undetermined function (P,?).

Hence

p = function (g,t), @ = function (P,1),

which does not bridge the two spaces!

One might instead follow the Hamilton—Jacobi philoso-
phy' and require that the entire system with constraint be
trivialized. Starting with the general Hamiltonian with con-
straint

H(g,p,t) = Ho(g.p,t) + A(D)d(g,p;1),

and performing a Hamilton-Jacobi transformation based on
F(q,P,t), Fis determined (albeit not uniquely) from

OF OF
H, y —— I —_— ,P,t =0,
"(q g )+a+ ar b

/l(t)¢(q, QE ,t) = a9
dq

which is a generalized Hamilton—Jacobi equation, where ar is
to become an undertermined (although restricted) function
of P. This might be used to advantage on the Hamilton (¢,p)
path integral. However, up to this point, the discussion has
been based on canonical transformations in the context of
classical mechanics and formal expressions for the path inte-
gral. For this reason we must digress to a discussion of ca-
nonical transformations in the context of the path integral.

In classical mechanics a canonical transformation is de-
fined to be one that preserves Hamilton’s equations. A quan-
tum canonical transformation might analogously be defined
to be one that leads to a path integral representation &%'4-'¢
in the new variables if one existed in the old ones, i.e., formal-
ly, with the end points (a,b) in phase space held fixed:

P exp if [piJ—H]dt]
#J,

o« oo D
...D “ee
f_w qj_w 2k
j * - Dp
=ew| g —rolf oef %

Xexp[—;'— ftb[PQ —K]dt ]

(T = F— QP). |
<x,,,zb|xa,r,,>=Lf° dq,,fw dpy — f dq f dp
2mh J_ o, —w whi)_ o ) o
% 1
=

For the particular case of the trivializing (Hamilton-Jacobi) transformation this reduces to a double integra

f dQ j dPexp[——z-‘%-«x,,—<q,,+zp,,>)2+pi)]exp[%(r,,—m]

1

(Xpolp|X0sts) = 2

Xexp[ - ?lﬁ_((xa - (qa - ipa))2 +p¢22)]’

where the Hamilton-Jacobi analysis yields
9. (P,O,), p,(PQt,), T.(PQt,),
qb (P7Q9tb)’ pb (P9Q,tb); Fb (PsQ:tb)y
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It has been found'”'® that this formal statement be-
comes true for the Stratonovich'? (midpoint scheme) coher-
ent state path integral

(pb’qb’tb Ipaqata)

N—1
= lim H

o0 . ) dp-(]-))
d apy’
N— o 0 q(l)f—eo 217‘ﬁ

FEa R

;N

xexp|— ¥ Gk (g(k) — gk~ 1))
k=1

—HEO).G(k) & — 1/2)At)],

where the Hamiltonian is altered (which may give rise to
quantum anomalies that spoil classical symmetries that
might be present):

fi(azﬂ)
H=H + (%2
+ 4 apz p=0

PR =Y p(k) +pk— 1)), G(k)=Ug(k) + q(k — 1)),

Ar=(t, —t,)/N,

’

py=pN), p,=p(0),

2, =q(N), q,=q(0).

This understanding gives formal manipulations valid-
ity, and it is found that quantum canonical transformations
are, in fact, a proper subset of classical canonical transforma-
tions'® (scaling transformations, being normalization ruin-
ing, are disallowed).

Coherent states, it should be recalled, are not observable
(the reason why the end points could be fixed in phase space
without violating Heisenberg’s uncertainty principle), and it
still remains to convert the coherent state path integral to a
physical amplitude. For example, the position to position
amplitude

a

1 .
exp| — o ((x, — (g, + 7)Y +p§)]<p,,,q,,,t,, Lna,qa,ta>exp[ —2—‘ﬁ((x, — (g — PP+ pz)].

118

!
remembering to employ the altered Hamiltonian. This still

leaves a subtlety concerning the sequence of performing the
momentum and position integrals, a matter dealt with in the
Appendix.
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Returning, then, to the constraint case with the now
well specified representation of the path integral

[ woi[ e 22
- o0 — o - @ 27Tﬁ
xexp[%f[pq— '(Ho+»1¢>1dt] .

The above expression, being understood to be a coherent
state amplitude, has fixed g and p end points. It is convenient
then to also not include the end point A integrations in this
expression and perform all the end point integrations togeth-
er when converting to a physical amplitude. Trivializing this
object through the generalized Hamilton—-Jacobi transfor-
mation given previously yields:

exp[%(l‘,, - r,,)Uw DQJM

Xexp[-;— _[:"[P'Q]dt]f;

Here the infinite gauge factor (f DA, not including end
points) is isolated and may be factored out (abandoned) and
the path integral performed to yield

exp[ (i/A) (T, —T,)16(Q, — Q,)
X2 (P, — P,)6(Ay — A,).

The delta function in A follows from the delta function
in Q and P, since once the constraint is enforced at one end, it
is then automatically satisfied at the other. It still remains to
transform this coherent state amplitude to an amplitude
between physical states when the remaining end point 4 de-
pendence is integrated out.

Hi. AN EXPLICIT EXAMPLE

To illustrate the technique one might investigate the re-
parameterization invariant free massive point particle’®?! as
an example of a system with general covariance freedom.
This taking a “hammer to crack a nut” approach has the
virtue of illustrating the technique in an uncluttered exam-
ple, but suffers the penalty of seeming cumbersome.

Starting from the Lagrangian formalism,

a
4 9 dr.
ar Or
Following Dirac, this has a trivial Hamiltonian if Oﬁe

S=—m

o ) e

This generates
dF g, (2a m )
Pu=7= +——-49.9)
o g7

dF JF Jda ( 1 . [(
Q, =——=——=|—-arcsin
dP* Oda aP* oA a»i

Unravel to expose g, and p,,:
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o) arl- [k

fails to account for the primary constraint p, p* = m?; hence
the Hamilton formalism

H"‘ ;L(T) (pypﬂ m )9

, A
-

In this case the potentially anomalous term to be added
to the Hamiltonian when moving to the coherent state path
integral (see before) is just a constant and may be neglected.
Having only one constraint, this is a first class system and
there is no repair to be made.

Analyze this system under the trivializing scheme. A
subtlety arises for the Hamilton path integral in that it is, in
general, necessary to perform the momentum before the po-
sition integrations (see the Appendix). To relax this condi-
tion, consider instead the simple harmonic system

= (A/2m)(p,p* + m*o*q,q" — m?),
in the limit as @ —0, where momentum and position are then

further placed on an equal footing by performing the trivial
counterscaling canonical transformation generated by

F= (1/ymw)q,P*,
which yields

q,. —-q“/\/mw, Pu —»p,,\/mw,

and introduces an overall factor of vmaw into the position to
position amplitude. The system under consideration is then
characterized by

= (A/2m)(mwp,p* + mwq, g — m*)

and the generalized Hamilton—Jacobi equations determining
the generating function then read as

)=a,

F(q,a,7) = W(g,a) —a f dr,

dF F
= =0, A(r
a+a ()¢(q,‘aq#

which become

where W is determined from

A W W

—| mo — + mw m|l=aqa,

2m( dq, Jg* 99"~ )
Solving this [Gradshteyn and Ryzhik,”?> p. 86, from
2.271(3) ], yields

) o | —a o
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g, =n, 2_a+-r—n—s1n[w}£ (Q” a;u +J.d7')] ,

20 m

o= [t oo (0, 20+ [ )]

el il )] o 4 2
(T=F—Q,P"),

where n,, is the unit vector in the direction of the corresponding x,, (since ¢;; = x4, ¢ = x}). The phase space integral is thus
reduced to one canonical pair. Dropping indices therefore and exploiting the arbitrarinessin a tolet a — A (wa — m/2) leads
to

q=msin[Q£+winr], p=\/ﬁcos[Q£+w/1fdr],

F= asnn[Q—+wljdr]cos[Q—-—-+cwlfdr] +aQ-‘y—)—+m—'{fd

To determine the position to position amplitude, recall

o o 7)o f di f dQ f dP—exp[——((x,, (q,,+:p,,>)2+pi>]exp[—;—(r,,—m]

o _ ) 2 2
XeXP[ 2ﬁ((xa (9. — ip,)) +pa)]-

Substituting and transforming P, Q—a, 6, where #=Q dP /da (unit Jacobian) proves independence (in general) from
the functional form of a(P), a becoming a dummy variable. Further replacing @ = 7 leads to

Jmo
(ﬂ'ﬁ) 3/2
where

e 4ol f e[ )] Sl )
C, = i‘/zf‘; (x,, exp[ - i(e +ol f " dr)] —x, exp[i(0 ol J dr)]) ,

C,= — mo—aTX) (x2 +xb m/lJ. dr,

having included the \/mw factors stemming from the first trivial counterscaling canonical transformation.
Translating

0_.0——f dr — ;LJ.adT

leads to the simplification

r di fw rdrf" d8exp[C,(8)7 + C(8)r + Co(D) ],
— o 0 -

2 2
C,= — (1/%)(1 — e“*Tcos(20)), C,=i(V2maw/#)(x,e " —x,e¥)e T2 Cy= — ma)(x“—z_;{b—)-+ I mAT /24,

where
T=1, — T,

Let A~ AT (remembering that (x,,7,|x,,7,) = 0, for T <0), the T dependence then being lost as a result. The parametriza-
tion labels are then also dropped [ (x,,7,|x,,7,) = K(x,,x,) ]. Further transform these “cylindrical polar” coordinates to
Cartesian to yield

K(x,,x,) « ‘/’%/2 f dA exp[t— exp[ ————(x +-’Cb)]
Xf du CXP[——((I —e "2 4+ if2ma(x, —xb)e““’"zu)]
J dvexp[ —((14+e~ fwdyy? +\/_—(x +x,)e" wA72 )]
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but

f_: exp[ — ax® + fxldx = \/%T-— exp[%] .

Hence

KOxx,) f " __"?w___exp[,-_"z_a
o 2imfi sin(wA) 24

(X2 + x;)cos(wd) — 2x.,xb)]

sin(wA)

(the five-dimensional s.h.o. kernel integrated over the “fifth time” 4).

Taking the limit @ —0 leads to

0 ( xb )2
PR PR YA 5
% x")“Jo 2imid P 2% )
Take the four-dimensional Fourier transform
Kc:J. dzlexp[ p”p“ mi]o: ! ,
2m#i P —m—ic

which is the usual Klein—-Gordon propagator.

This then verifies that this technique is able to identify and eliminate the symmetry overcounting, while maintaining the

symmetry throughout.
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APPENDIX

In general, the result of performing the phase space inte-
grals depends on the sequence in which they are per-
formed.?*?* It is understood that if there is any ambiguity,
the p integrals are to be performed first.

To understand this ambiguity, study the basic integral

] ] |
I= d —(pAg — H(p,q,1)A
f_w qf_wzﬁﬁem ﬁ(p q (p,g,1)A)

=f dqf —g{;—(Coo(t)+Cm(t)p+Co.(t)q+---)

Xexplia(t)p® + B(t)pg + y(H PN,
having expanded all but the Gaussian terms in the exponent.

The presence of terms of the form p", for n > 2, leads to
an unhealthy theory and corresponding divergences in the
path integral.'® Canonical transformations leading to such
terms are then implicitly excluded.

The above integrals may be performed using

© b2
— 2 b = ‘z [_]9
J_mduexp[ au’® + bul J:exp "

Re(a) >0,
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I
and offspring stemming from taking derivatives with respect
to b.

Consider, then, performing the p integrals first. Conver-
gence requires that Im(a) > 0 and leads to

I CNE
+C10\/’—q+Cmq+ )

xXex —_ .
p 4a)q]

The further requirement that this second integral be
convergent leads to

Im (y — B%/4a) >0
and so the overall convergence requirements
v: — (20,88, —a;(B] — B ]/4|al*>0
and
a;>0,
where 8, =Re(8), §; =Im(J).

If the sequence of performing the integrations is re-
versed (g, then p), the criteria read

@, — (21.B8,8, — vi(B: — B31/4ly|*>0
and
¥:>0.

It then follows that the same solution will be obtained
regardless of the sequence, if it can be arranged that a = ¢,
since otherwise it becomes possible that the first set of con-
vergerice criteria are respected while the second are not, and
then the two results would, in general, disagree.

This equality can always be achieved via the trivial ca-
nonical counterscaling generated by
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F=(a/y)'*gP,
which yields ‘

g-(a/n)'*q, p-(y/a)'p.

This transformation introduces an overall factor of (y/

a) /% into the position to position amplitude; while generat-
ing the new Hamiltonian

H((a/y)"%q, (y/a)"*p,1),

which then permits one the freedom to perform the integrals
in any order, i.e., employ variable changes.

This ordering dependence was encountered for the ex-
ample performed in the main body of the text, and avoided
through the above counterscaling.
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It is shown that even in relatively nice cases the naive approach to the quantization of
constraints is not correct in general [i.e., the procedure that if f = 0 is a classical constraint
and 7(f) is the associated quantum operator, then the quantum constraint is 7(f) = 0]. An
explicit procedure for the quantization of constraints in the case of a configuration space with a
symmetry group is provided and proven, where the reduced configuration space is the orbit
space. It is not thought that the group acts freely, merely that all isotropy subgroups are

conjugated to each other.

1. INTRODUCTION

It is well known that, in general, quantization of con-
straints poses insurmountable difficulties. However, one
does not expect serious problems if at the classical level we
have the following situation: (i) a phase space (symplectic
manifold) (M,w) with a symmetry group G (acting as sym-
plectomorphisms) that admits an Ad-equivariant momen-
tum map J: M —g* (g the Lie algebra of G), and (ii) a re-
duced space (B,w,.q) which is obtained by the (classical)
constraints (J(*),£) = 0 V&eg. In such a situation the re-
duced phase space (B,w.,) is obtained as the quotient
B =J~1(0)/G (see Ref. 1). In this context, each observ-
able HeC* (M) that is invariant under the group action in-
duces in a natural way an observable H,,eC* (B) by re-
stricting H toJ ~'(0) C M and observing that this restricted
function descends to J ~'(0)/G = B.

Going to the quantum level we assume to have a Hilbert
space %, for the classical system (M,w)and a quantization
7 for the constraint functions (J(-),£ ) and the (invariant)
observable H as skew self-adjoint operators on &#%°,,. One
would expect self-adjoint operators, but we have absorbed a
factor 7 in the definition of the operators in order to avoid
factors i later on. Now we note that since Jis Ad-equivariant,
the constraint functions (J(-),£) are all first-class con-
straints, so nothing is more natural than to suppose that the
Hilbert space 575 for the classical system (B,w,.5) can be
identified with

Hrea = WXy |T({J()ENY=0 Véeg} (1)
and that the quantization 7(H,.4) of H,4 as a skew self-
adjoint operator on 5%, coincides under this identification
with 7(H) “‘restricted to” 7 ,4. Of course, one has to as-
sume that 7 maps brackets in g to commutators of operators
(ie., (), [EmD)) = [7(T(),E))({I(-),m))]) in or-
der to get a consistent description of 7,4, and one has to
assume that 7(H) commutes with all {{J("),£ ))in order to
get a well defined restriction of 7(H) to 5,4, but those
conditions are usually satisfied.

However, in their paper on BRS quantization,” Kostant
and Sternberg gave implicitly a slightly different definition
of .4 (in the case of a free action of G):

K rea = W0y |VEegr((T( )£ W = — Jtr(ad (£))9}
(2)

(see Ref. 3 for an explicit derivation of this formula). Their
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derivation uses super Poisson algebras, Clifford algebras,
and cohomological arguments, but no reference to any spe-
cific form of quantization. Now their formula might seem
strange, especially if one realizes that skew self-adjoint oper-
ators usually do not have real eigenvalues. Nevertheless, as is
shown in Ref. 3 and this paper, their formula for .., is
correct and the naive formula is not.

The outline of this paper is as follows. At the classical
level we consider the original phase space M to be the cotan-
gent bundle of a configuration space Q: M = T*Q, and we
suppose that there are symmetries at the level of the configu-
ration space, i.e., that a group G acts on Q (but not necessar-
ily freely). The typical example of such a situation is a gauge
theory in which Q is the configuration space of all connec-
tions on a principal fiber bundle and in which G is the group
of all gauge transformations. However, this particular exam-
ple is not covered by our finite dimensional manifold ap-
proach. The reduced space then is the cotangent bundle
B=T*(Q/G), where Q/G is the reduced configuration
space. Our quantization of the cotangent bundles 7*Q and
T*(Q /G) consists of taking the Hilbert space of square inte-
grable functions on their configuration spaces Q and Q@ /G
(with respect to a certain measure). Such a quantization of
cotangent bundles is natural and can be “derived” by various
quantizations, e.g., geometric quantization,* or Segal’s
quantization.’ Since our constraint operators have in general
a continuous spectrum, neither formula (1) nor formula (2)
will define a nonzero space #°,.,. Therefore, in order to
obtain meaningful results, we will interpret the Hilbert
spaces as the spaces of all C* functions on the configuration
spaces, instead of only the square-integrable ones (in the
main text we will use a correct language). This problem and
the related fact that one has to change the measure when
going from the original space #°), to the subspace 7,4 has
been noted by several authors (e.g., Refs. 6 and 7). The ap-
propriate setting would probably be a rigged Hilbert space
approach, but since we are interested in geometrical proper-
ties, we will ignore these questions. It is in this context that
we discuss the identification of #°p; with a subspace
H e CH 5y and the relation between 7(H .y ) on #°5 and
7(H) restricted to 77,4 .

We show that in general there is no intrinsic (i.e., in
terms of the group action) description of 57, as subspace
Hreq ©I 5y, but that there always is a (nonunique) identi-
fication for which 7(H..,) on 7, and 7(H) restricted to
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# o4 coincide. In special cases though, there is an intrinsic
definition of 5#°5 as subspace ;.4 C# 5. First if the ac-
tion is free, then formula (2) of Kostant and Sternberg ap-
plies. A naive explanation in the trivial case Q = G X Q /G is
as follows. Let i be a measure on Q /G, then the pull back to
Qis not a measure. If however s, is a measure on G then u s,
is a product measure on Q. The correction term stems from
the behavior of s, under the group action. As a second special
case, suppose G admits a bi-invariant metric, then formula
(1) applies. Note that if G admits a bi-invariant metric, then
G admits a bi-invariant measure (i.e., G is unimodular)
which implies that tr{ad(£))=0, so the two cases do not
contradict each other.

Since the quantization we use can be derived by geomet-
ric quantization, our results generalize a result of Gotay,?
either in the direction of nonunimodular groups or in the
direction of nonfree actions. However, our approach is quite
different since we impose the quantization of the reduced
space instead of deriving it from the quantization of the
original space. In the last section we give two examples: the
first one to show that for nonunimodular groups G the term
itr(ad(&)) is essential for 7(H, 4 ) and 7(H) to coincide and
the second one to prove that in general no intrinsic descrip-
tion of ¥’y as subspace #°,., CH#°,, can be given.

For the moment it remains a mystery how the algebraic
approach of Kostant and Sternberg without any reference to
a specific quantization relates to our geometric description
which makes in an essential way use of the specific structure
of 77,, and 7# 5. However, even if we are not in a situation
covered by this paper, the term jtr(ad (£)) proves to be essen-
tial.?

Il. THE CLASSICAL SETTING

Let the original configuration space Q be a manifold and
let the connected Lie group G act on Q smoothly and proper-
ly. We do not suppose that G acts freely, but we do suppose
that all isotropy subgroups G, : = {geG [g(g) = ¢} are con-
jugated, say to the subgroup HCG. It then follows (Ref. 9;
exer. 4.1M) that the reduced configuration space R = Q /G
(the orbit space) is a manifold and that p: Q— R is a locally
trivial fiber bundle with typical fiber G/H and structure
group N/H, where N is the normalizer of H in G, i.e,
N ={geG|gHg ' = H}.

Since we will need a more precise description of this
bundle, we introduce some notations. For geG we denote the
action of g on geQ by L, (q) tostress that we consider it to be
an action on the left. By abuse of notation L, will also denote
the canonical left action of G on G/H defined by
L, [k] = [gk], where brackets denote taking cosets. The
group N /H acts canonically on the right on G /H as follows:
if neN, [n] its projection in N/H, then R, [k] = [kn].
Obviously the left action of G on G /H commutes with the
right action of N /H.

From our assumptions it follows that each point #eR
admits a neighborhood U such that p~'(U)=U XG/H
where the G action on p~!(U) is just the G action on the
second factor G /H. Moreover, given two such trivializing
neighborhoods Uand U, they are related by transition func-
tions

84 J. Math. Phys., Vol. 31, No. 1, January 1990

U XG/H3 (u,[k 1~ (4,R 0, [k DEU'XG/H,  (3)

where [#]:UNU’'—~N /H gives the gauge transformations
related to these two trivializations.

We now go over to the phase spaces by taking cotangent
bundles with their canonical symplectic forms. Here, T *Qis
the original phase space with symplectic form
wg = dfy, 6, being the canonical one-form on T*Q; in the
same way (T*R,wg = dfy) is the phase space of the re-
duced system. The action of G on @ can be lifted canonically
to a symplectic action of G on T'*Q (which even leaves 6,
invariant) and this symplectic action has a canonically de-
fined Ad-equivariant momentum mapJ: T *Q—g* (g the Lie
algebra of G) defined by the following prescription. For £eg
denote by £, the associated fundamental vector field on Q
whose flow is L., _ ¢, ; for aeT 0, the value J(a) is given
by

(J(a),§)1=a(§g|q)- 4)
By abuse of notation J(£) will denote the function on 7*Q
defined by J(§) (@) = (J(a),£ ). Ifinlocal coordinates &, is
given by 2,£(g)3/(dq’) then J(£) is given by =,£(q)p;,
where the p; are the associated momentum coordinates.

With our hypotheses it is easy to show that Ocg* is a
weakly regular value for J, that the constraint set
J 71(0) = {eeT*Q |Véeg: J(£) (a) = 0} is a submanifold
of T'*Q and that the Marsden—Weinstein reduced symplectic
manifoldJ ~!(0)/Gissymplectomorphicto (T *R,wz ). We
refer the interested reader to Ref. 10 for the general case of
reduction for nonfree actions.

Iil. INTERMEZZO ON d-DENSITIES

Let Q be a manifold and F( Q) its frame bundle, a princi-
pal GL(n,R) bundle over Q with n = dim Q. The bundle
A“Q is the (real or complex) line bundle over Q associated
to F(Q) by the representation p: GL(#,R) -R* CAut(R),
(a;)—|det(a;)|“ and a d-density ¢ is a global section of
A?Q. In other words, a d-density is a map that assigns a (real
or complex) number to each (n + 1)-tuple (g;(ey,...,€,))
where geQ and (e,,...,e, ) =(e) a frame at (i.e., a basis of)
T, Q. Moreover, if (f},....f, ) is a different frame at 7,Q with
Ji = Z,a;€; then

Hag;(N)=Yg;(ae)) = |det(a;)|* Hg;(e)). (5)
Since any two frames at 7,Q are related by a matrix g,
¥(g;*) is completely determined by its value on a single
frame.

With an appeal to the transformation law of multiple
integrals, a one-density is just a measure on Q. Since the
pointwise product of a d-density and a d’'-density is a
(d + d')-density, it follows that the product of two }-densi-
ties is a measure on Q which can be integrated over Q, giving
rise to the Hilbert space #"/2(Q) of square-integrable }-
densities on Q. An elementary partition of unity argument
shows that A°Q is a trivial line bundle, hence the choice of a
nowhere vanishing d-density ¥Z identifies the set 2¢(Q) of
all smooth d-densities with the set C *(Q) of all smooth
functions by ¥ = fi5. In the particular case of }-densities,
the choice of a trivializing section ¥/? identifies #'/2(Q)
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with L %(g,|¢&/*|?), the space of square-integrable functions
with respect to the measure |42

Now let ¢ be a diffeomorphism of Q and yeQ?(Q), then
there exists a natural notion of pull-back #*y defined by

(B*P)g;(ey,-,)): = UP(@); (B ey, i8ue,)).  (6)
It follows that, given a vector field X on Q, there is a natural
definition of a Lie derivative . , ¢ given by

(Z x¥) g (erse,)): = %

o(¢?"/!)(q;(ep---,e,. ))

t=

d
= 'Jt'| o ¢(¢t (q);(¢t‘el!""¢t‘en ))’
(D

where ¢, is the flow of the vector field X. It is elementary
to verify that [.£4,Ly]|=L 0Ly —Lyo Ly

=f[X,Y].

IV. QUANTIZATION OF COTANGENT BUNDLES

If the phase space M of a physical system is a cotangent
bundle T*Q, it is quite natural to assume that the Hilbert
space 77, that describes this system in quantum theoryisa
L 2-space of functions on Q with respect to a certain measure
4 on Q. When no natural choices for u are available, it is
more convenient to interpret 5, as the space #/2(Q) of
(square-integrable) 1-densities on Q. The main problem of
quantization then becomes the problem of finding quantum
operators corresponding to classical observables.

For obvious reasons we will restrict our attention to ob-
servables H: T*Q—- R which are at the most linear in the
momentum variables. Let X be a vector field on Q, then there
is a naturally defined function H: T *Q - R which is linear
in the momenta: Hy (a) = a(X |,) foraeT }Q (recall that
the momentum map J is constructed in this way!). Vice
versa, every function on T *Q that is linear in the momenta is
of this form. It follows that we restrict our attention to obser-
vables of the form

with H,: Q- R, 7,: T*Q—Q the canonical projection and

X a vector field on Q. In local coordinates g on Q with asso-

ciated momenta this becomes H(q,p)=H,(q)
+ 2,£'(q)p, with X = £'(¢)(8/9q) .

For these observables there is a natural quantization as
skew self-adjoint operators on #°'/2(Q):

T(Hoomg + Hy)Y=iHp ¥ + L x¢. (9)
This quantization can be derived rigorously by geometric
quantization (for }-densities without additional assump-
tions; for 4-forms this result is guaranteed if Q is orientable),
but can also be found in Segal’s approach to quantization. In

the case @ = R" this quantization procedure is equivalent to
the usual prescription of symmetrization:
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f(Z ¢ ’(q)p.-)t/J(q)
-1 }l;(f"(q)ﬂ. + %(gi(q):ﬁ(q)))
-3 s @2+ {(sE D)o

(10)

It follows dlrectly from the formula [ £ x,.7 y] = % x v,
for d-densities that this quantization maps Poisson brackets
on commutators, i.e., if H, and H, are both of the form (8),
then 7({H,,H,}pp ) = [7(H,),7(H,)].

V. QUANTIZATION AND REDUCTION |

In the classical setup we had two phase spaces: the origi-
nalone T *Qand the reduced one T*R that is determined by
the constraint functions J(£), £eg. As we have seen in the
previous section, the associated Hilbert spaces are derived
from 0'/2(Q) and Q!/2(R). In this section we will try to
identify Q'/?(R) as a subspace of 2'/>(Q) determined by
the quantized constraints 7(J(£)).

Contrary to all didactical rules we will directly proceed
with the correct approach instead of presenting first the nat-
ural approach and then noticing that that does not work very
well. Our basic object will be Q'/2(R;G /N) of 1-densities on
R which depend smoothly on a parameter zeG /N. More pre-
cisely #eQ!/2(R;G/N) is a smooth function of a point
(u,z)eR X G /Nandaframe (e,,...,e, ) at T, R with the prop-
erty that if another frame (f; ) is related to the frame (e; ) by

the matrix a;, i.e., f; = 2;a;¢;, then

Pu,z;(N) = |det a;]"*Yu,z;(e)).
As with d-densities,
YeQV2(R;G/N)
C=(R XG/N).

The map gHg ™~ '~»g mod N is an isomorphism between
the manifold G /N and the set I(H) = {gHg~'|geG} of all
subgroups of G conjugated to H. Moreover, there is a natural
map #: Q—I(H)=G /N given by # (¢) = G,. With our
assumptions, this is a smooth surjective map given in a local
trivialization U X G /H of @by (u,[ k] )—k mod N (see Sec.
7 for a generic example of # ). We thus obtain a natural
surjectivesubmersionp X #: Q- R X G /N, explaining par-
tially our interest in the product R X G /N.

Let s, be a nowhere vanishing 4-density on G /H which is
invariant under the (right) action of N /H. A partition of
unity argument applied to the principal ¥ /H bundle
G /H - G /N shows that such s, exists and that two such dif-
fer by a nowhere zero function on G /N. Using this s, we will
define an injective map ®: QV2(R;G/N)-Q"*(Q). For
YeQV2(R;G /N) we define ®(¢) in a local trivialization
U X G /H of @ by the formula:

q’('/’)((u,[k]);(fmf[k] ))

: = Y(u,k mod N;( £,)) sk 1;( fix 1)) (12)
where ( f,) isaframeat T, R and f{, ,aframeat T}, ;G /H,
hence ( £, f{x 1) is a frame at T, (;, Q. Since ¢ and s, are }-

densities this formula defines a }-density on U X G /H. This
definition of ®(#) is independent of the local trivialization

(11)

a nowhere vanishing element
identifies  Q'Y2(R;G/N) with

1
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because the gauge transformations between two such trivia-
lizations are right actions of N /H and s, is invariant under
this action (i.e., V[rn]eN /H: R, *s, = 5,). That ® is injec-
tive is a direct consequence of the fact that s, is nowhere
vanishing.

In order to describe im () C Q!/%(Q) intrinsically, we
need some preparations. Denote by §) the Lie algebra of H,
then YneN we have Ad(n))CH, hence there is an induced
action Ad(n) on g/h. If G, is the isotropy subgroup at ¢
with Lie algebra g, and normalizer &, then as above VneN,
there is an induced action Ad,(n) on g/g,. Since G, is
conjugated to H there exists a geG with G, = gHg~". It fol-
lows that g, = Ad(g)h, N, =gNg~', and that Ad(g) in-
duces an isomorphism between g/h—g/g, which inter-
twines the actions Ad(n)and Ad,(gng™"). Wenow recall
that for £eg, §, denotes the associated fundamental vector
field on Q whose flow is L., _ ¢, - In the same way £, is
the fundamental vector field on G/H whose flow is
L., - ¢ ; since the G action commutes with the N /H action
on G/H we have R, ;. (§6,1) = £6,5- On the other hand,
for geG we have the characteristic property of fundamental
vector fields: L. (§5,5) = (Ad(g)£)¢,, and the same on
Q: L. (5p) = (Ad(g)£),. With these preparations we now
can state our main theorem.

Theorem 1: $Q'/2(Q) is an element of im(®) if and
only if

VgeQ VneN,: (L2$)(g,")

=|det Ad,(n)|"*9(g,") (13)
If geim (&) then ' (#)eR!/*(R;G /N) is given by
S~ (Dwz () = W Fob )V sol Lk LEem),  (14)

wherep(q) = u, £ (q) =z=kmod N, 7, any set of vectors
in T,Q with p_f, =/, a frame at TR, and £eg such that
(f.»€o) becomes a frame at T, Q.

Progof: We first show that ® (1) has the above property,
using a local trivialization U X G/H for Q. Now, N, .1,
= kNk ~'soif neN, ., then no=k ~'nkeNand L, [k ]
=Ry, [k ]. Since G acts transitively on G /H, the map
8— T4 \G/H, §—E&G, ul i | defines an isomorphism g/g;, ,
=T, ,G/H. Hence for each frame ( fi;,) at T, ,G/H
there exist (nonunique) éegsuchthat ( fix ;) = (¢ /m iz 1)-
Now L. ( fix ) =L, (§6,n) = (Ad(n)E)g, ) so by de-
finition of A_dq (n) the frame ((Ad(n)£)g 5 ) is related to
the frame (£, ) by the matrix Ad,(n). Finally,

(L3N, [k 1);(Sfs fiac D))
=®() (L, [k D fusLns (£c/)))
= t/v(u;(_ﬂ,))-so(R[,,u][k I;(Ad(n)E) /)
= |det Ad ¢, (x}, (M) *Wu;( £.,))
.SO(R[n"][k L€6/u))
= |det Ad 1), (M) PO LK D5 fon fix ),

which shows that elements in im () have the above proper-
ty. In order to show the rest of the theorem, it suffices to
show that the formula for &~ 1($) gives a well-defined ele-
ment of /2(R;G /N) if ¢ has the above property, i.e., that
the right-hand side is independent of the possible choices.
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First of all notice that a different choice of (§) does not
affect the right-hand side because both ¢ and s, transform as
i-densities. In the second place, a different choice for f, is
related to the original one by a 2 X 2 block matrix of the form
{(id,0),(2,id)) whose determinant is one, so again the right-
hand side does not change. If k' mod N =k mod N then
k' = knwith neN. It follows that [k '] = R,,,,[k ] and since
5o is N /H invariant (and because R,;+{g, 5 = £ 5 this
implies that the right-hand side is independent of the choice
of k. Finally a different choice ¢’ is related tog by ¢’ = L, ¢
with neN,, which implies that f =L, f is also a lift of the
frame f,, (use peL, = p). We then compute

(@ (Fik)) =V L.g(Flke)
= (LAY (g(FL -1 (€)DD)
= |det Ad, (n)|"3(g;( . AAd(n™")8)))
= P (a:(Jubo)),

where the last equality follows because the frames
(f“,(Ad(n_‘)é‘)Q) and (f,,,é’Q) are related by the 22
block matrix ((id,0),(0, Ad,(n™"))). QE.D.

As we said before, 2'/2(R;G /N) is the space of }-densi-
ties on R which depend smoothly upon a parameter zeG /N.
There is, however, a natural injection i
QV2(R)=>Q'*(R;G /N) describing Q!/2(R) as those ele-
ments of /2(R;G /N) that do not depend on this param-
eter. One might ask why we did not consider the composite
injective map ®oi: Q'/2(R)~>QV2(Q) directly. The reason
is the following. We have seen that, although ® itself de-
pends upon the choice of s,, im($P) does not. On the con-
trary, im(®Poi) does depend upon the choice of s, and hence
cannot, in general, be described intrinsically using only the
group action. However, we will describe two different cir-
cumstances in which im (®°/) can be described intrinsically:
(i) N = G and (ii) if s, can be chosen to be G-invariant.

If N = G'we can immediately draw two conclusions: (i)
the parameter space G /N is a point so / is a bijection and (ii)
H is a normal subgroup implying that there is an induced
free action of the Lie group G /H on Q. Moreover, one can
easily show that Ad(n) =Ad([n]) for neN=G and
Ad([~n]) the adjoint representation of G /H on its Lie alge-
bra g/}. In the following proposition we recover, in our re-
stricted cotangent bundle setting, the result of Kostant and
Sternberg as described in the introduction. It is a direct con-
sequence of Theorem 1 and the fact that G is connected.

Proposition 2: If G = N, then im($oi) =im(P) is char-
acterized by the conditions:

VgeG: L*3 = |det Ad([g])|"*P (15)
or equivalently by the conditions:
Véeg: £, = — jtr(ad(£ mod H)) 9. (16)

The second case we want to investigate is when, among
all allowed choices of s, there is one which is (also) invariant
under the left action of G on G /H; in other words, when
there exists a preferred choice for s,.

Lemma 3: There exists a Gand N /H invariant nowhere
vanishing }-density s, on G/H if and only if VneN:
|det Ad (n)| = 1. If it exists, s, is unique up to a nonzero
(real or complex) factor.
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Proof: Let s, be such a }-density. Reasoning as in the
proof of the theorem, we obtain (L ¥s,)([el,")
= |det Ad[,,(n)l” so([e],"). Since N= N|,, and hence
Ad [e;(n) = ‘Ad (n) it now follows from the invariance of
So under the left action that |det Ad(n)| = 1.

On the other hand, suppose VneN: |det Ad(n)| =1,
which implies that YneN|, ;: |det Ad, ,(n)| = 1 because
the isomorphism between g/} and g/g,, ; induced by Ad(k)
intertwines Ad (n) and H[ 1 (knk —1). Wenow construct
5, as follows. We first choose a 4-density s, at [e], i.e., a map
which assigns a number to a frame at T\,,G/H with the
correct transformation property under change of frames. We
then define s, globally by

sol [ L fix ]))1 =So([e];Lk —l‘(fik 1))-

What we have to show is that this is well defined and G and
N /H invariant. To show that it is well defined, choose §eg
such that (f, ) = (£6,x|x ;) and choose any heH. Then
[k] = [kh] and we calculate

Sollel;L cny-1+ (§G 1))
= so([el;(Ad(h ~ ' WAk ") 6/x))
= |det Ad.,(h)|"*s(le);((Ad(k ~1)E)g,x))
=so(lel;L, - (€c/n))

which shows that the definition of s, is independent of the
choice of k representing [k], i.e., that s, is well defined. A
similar reasoning, which is left to the reader, shows that this
S is invariant under both the G and N/H actions. The
uniqueness follows from the fact that the only degree of free-
dom in the determination of s, lies in the choice of the value
of s, at [e], which is uniquely determined by a nonzero num-
ber (nonzero to guarantee that s, is nowhere vani-
shing). Q.E.D.

Proposition 4: If s, used in the construction of ® is (also)
G-invariant, then QV2(R) =im(®oi) is characterized by
the conditions:

VgeG: L) =1 or equivalently Véeg: &, #=0.
(17)

Proof: According to Lemma 3, the above condition is
compatible with, but stronger than the condition in
Theorem 1. It follows directly from formula (12) and the G-
invariance of s, that ® () satisfies the above condition if ¢ is
independent of the parameter in G /N. On the other hand, if
|/l satisfies the above condition then it follows from the G-
mvanance of 5, and the reconstruction formula (14) that

&~ '(9) is independent of G /N. QED.

Remark 5: If G admits a bi-invariant metric, then each
homogeneous space G /H admits a G and N /H invariant
metric from which one deduces that there exists a nowhere
vanishing G and N /H invariant }-density. It follows that in
such a case Proposition 4 provides us with a nice intrinsic
description of Q'/2(R) as subspace of 2'/2(Q).

Remark 6: If we recall that the classical constraint J(£)
is given by J(§) =H,, then according to Sec. IV
(&) =2 g It follows that propositions 2 and 4 express
QY2(R)asa subspace of 2'/2(Q) in terms of the quantized
constraints. However, if the fibers G /H are not compact,
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then the only square integrable element in im (®©i) is identi-
cally zero. Hence in such a case this description does not
carry over to the Hilbert spaces. This negative result can be
stated in several positive ways of which we give one well
known example.

Corollary 7: If G is compact, then the unique positive s,
such that f,x|so|* = 1 makes ®o; an isomorphism between
the Hilbert space ##°'/2(R) and the Hilbert subspace #°,.4
CH#'*(Q) defined by the quantized constraint equations
J(§))y=0.

VL. QUANTIZATION AND REDUCTION II

In this section we will justify our approach of the pre-
vious section by showing in corollary nine that quantization
and reduction commute for all choices of s,. Let #: T*R-R
be an observable which is at the most linear in momenta
(Sec. 1V), ie., H= Hyomy + Hy, X a vector field on R.
Since T*R is obtained as a Marsden—Weinstein reduction:
T*R =J ~'(0)/G, we obtain a pull-back H of H to

J ~1(0) C T*Q, which is then by definition a G-invariant
function on the constraint set J ~ 1(0). We now suppose that
there exists a function H: T I'*Q— R which is at the most lin-
ear in momenta such that & ls-, = H and H is invariant
under the G-action on 7T"*Q. This implies that H= Hyorm,
+ Hjy with H, = Hzop and X a vector field on Q, invariant
under the G-action on @, which projects to X: p.X = X. In
the classical setting, the fact H ;- = H means that
HeC = (T*Q) represents, after reduction, the observable
HeC = (T*R). We will now show that our identification of
QY2(R) with a subspace of 2'/2(Q) commutes with quanti-
zation, i.e., that 7(H)o®oi = dojor( H). Since we will show
this by using Q!/2(R;G /N), we need to define .£ , ¢ for ele-
ments YeQ'/?(R;G /N) and X a vector field on R. But this we
do exactly as for ordinary }-densities on R, just by neglecting
the additional parameter zeG /N. It then follows automati-
cally that .¥ ,0i = io.¥ , (slight abuse of notation regard-
ing Ly).

Proposition 8: Let HeC *(T*R) and HeC (T*Q) be
as above, then

T(H)o® = dor(H). (18)

Proof T(H)Y=iHy §+ L3¢ and r(H)p = iHp ¢
+ .Z x¢. A glance at the defining formula for & and the fact
that H, = p*H, shows that Ho ®(¢) = (p*Hg) @ (¥)
= ®(Hg"¥), so it only remains to show that "3 ®(¢)
= ® (L x¢). Denote by ¢, the flow of X and by ¢, the flow
of X, then ¢,0p = p°d, (because p,X X), fop, =70
gbecause ¢, commutes with the G-action) and for £eg:
&..&o =&, (again because ¢, commutes with the G-ac-
tion). Using these facts and the notatiops (and conditions)
of formula 14 in Theorem 1, we get for ¥cim(®) the identi-
ty:
O~ (D) ().55(8,01.))

= WD, (@) (Dr-Fusbe £Vl 1K 156 )
By taking derivatives in f we find
Z @~ (N5 ()

= (L 3¥)g(€0)V/sl [k };(E6/2))

or in other words .Z x(®~'(§)) =~ (L3¥). QED.
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Corollary 9: For any s, used in the construction of ® we
have:

r(H)odoi = dojor(H). (19)

VIl. TWO EXAMPLES

In this section we give two examples to substantiate our
claims that (i) the term itr(ad(£)) in Proposition 2 is essen-
tial and (ii) im(9oi) cannot be described intrinsically in the
general case.

In our first example we consider Q= R>3(x,,2),
G = {((a,b),(0,1/a))|acR* ,beR} CSL(2,R) and the free
action of G on Q given by L., (x,y,2) = (x,y + loga,
az 4+ b exp(Ax — y)), where A is a fixed real parameter. In
this case the quotient R is the real line R=0 /G = R with
projection p(x,y,z) = (x). As basis for the Lie algebra g we
choose &, =((— 1,0),(0,1)) and &, =((0,— 1),(0,0))
whose fundamental vector fields on Q are given by

€10 =0, +29, and £, = exp(Ax — y)d,;
the momentum map J: T*Q—g* is given by

J(§1) (x.p,2,p, ’py’pz) =Py +2p,
and

J(&,) =exp(Ax —y)p,
and the “correction” terms itr ad are given by

jtr (ad(§,)) = — 1l and 5tr(ad(§2))_ =0.
We will identify the J-density spaces Q2'/?(Q resp. R) with
the function spaces C *(Q resp. R) using the nowhere
vanishing }-densities [dx dydz|, resp. |dx|, where

|

Vdx dy dz|(x.,y.z;(a;8,)) = |deta|*’* and /]dx|(x;ad,)

= |a|'/2. The squares of these trivializing }-densities are the
Lebesgue measures on Q resp. R, so they give us the usual
interpretation of the associated Hilbert spaces #°'/2 (Q resp.
R)=L?*(Qresp. R, d Leb). In order to compute the quan-
tum operators in terms of functions we need the following
formula (which can be obtained by a straightforward com-
putation) for a vector field X on Q resp. X on R:

L5 (|dx dy dz|'/?) =} div (X)-|dx dy dz|'?,

resp. Ly (|dx|"/?) =} div (X)-|dx|'/?, (20)

where the divergence of a vector field ¥ = 2,7/(»)d, is de-
fined as div(Y) = Z,(d;7). It follows that the quantized
constraints are given by

EN=3,9+23,9+1¥

and
()W = exp(dx — y)3, .

Proposition 2 now gives us im(®) =im(doi) CNV2(Q) as
im(®oi) = {$eC = (Q)|#h(x.y.2) = exp (/)¢ (x),
geC=(R)}.

One might be tempted to identify 1'/\/ = exp (3/2)gpeim (Poi)
with Jeﬂ 1/2( R), but this is incorrect. We must use the iden-
tification as given by ®! Since G acts freely, s, is completely
determined by its value at the identity and we choose
Sole; (£1,€,)) = 1. Theorem 1 now gives us the correct identi-
fication:

O~ !(P|dx dy dz|''?) (x;9, ) =D~ (exp (1/2)P(x)|dx dy dz|"'*)(x;0, )
= (exp (v/2)¥(x)|dx dy dz|"*Wx,p,2;(3,,£1,62) V5085 (£ 1,E2))
= (exp (9/2)(x) |dx dy dz|'/*Wx.y,2;(3,.,0, + 20,.exp (Ax — »),))
= exp (3/2)¢(x)|exp(Ax — y)|'/?

=exp (Ax/2)P(x)
&P~ (exp (1/2)P(x)) = exp (Ax/2)P(x).

In other words, the element 17; = exp(y/2 — Ax/2)¥(x) has
to be identified with ¥(x) by the map &.

In order to see what happens with quantized gbserva-
bles, we determine the G-invariant vector fields X on Q,
which are of the form

R =£(0)3, +gx)d, + (h(x)exp (»)

+ z(Af(x) — 8(x)))3;;

they project to vector fields X = p.:{’ on R as X = f(x)d,.
Again using formula (20) we find for the quantized observa-
bles:

T(Hy) = 7(fp, + gp, + (h exp(¥) + z(Af — g))p.)
=f9, + g9, + (hexp(y) + z(Af — 8))3,
+ 43N +Af—8)
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T(Hy) =7(fpx) =3, +4(3./).

With these formulas we can check Proposition 7:
T(Hz )P (Y) = 7(Hyz) (exp (/2 — Ax/2)(x))

= (f(x)3,¢ + L(3.NY(x))
Xexp (/2 — Ax/2)

= O(7(Hyx)Y).
This calculation shows that if we had naively identified
¥ = exp (3/2)P(x)eim(Poi) with PeQV/?(R), then we
would not have found 7(Hz )P’ = ®'or(H, ), where ' is
our naive identification.
To show that we really need the term } tr(ad($)) let us
see what happens if we do not use it. The subspace
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of Q¥ defined by the
I (&)Y = 0=1(J(£,)) is given by
{(x,p.2) = exp( — y/2)¥(x)}.
Computing 7(Hz ) on such an element we find
7(Hz)exp( —y/2)P(x)
= exp( — /2039 — g b+ A 9 +1(3NY)
which does not resemble 7( H ). We can get rid of the term

gzif{ﬁ by absorbing it in 17/: ;ﬁ(x) =exp ( —Ax/2)¢¥(x)
which gives:

T(Hz Yexp( — y/2 — Ax/2)¥(x))
=exp ( — y/2 — Ax/2)((7(Hy)Y) — g¥).

However, since g is an arbitrary function, we cannot get rid
of it by changing our identification (which should be inde-
pendent of the observable we want to quantize). It follows
that if we wish to have an identification which “commutes”
with quantization of observables, we cannot forget the term
} tr(ad(£)). _
As the second example we consider Q=R?
= R>\{(0,0)} and G = SL(2,R) with its natural action on
R2CR2 All isotropy subgroups are conjugated to
H={(} %) beR} whose normalizer is N = {(§ ,/,| a0,
beR which has two components. N /H=R = R\{0} with
ordinary multiplication as group operation and projection
(& \2.) +—a; the right action of N/H on Q is given by
R,(3) = (5). The space G /N of isotropy groups is S 'and
the isotropy map #: Q = G/H—G /N is given by 2—z/Z,
where z = x + iy represents (})€Q. Since G acts transitively
on Q, the reduced configuration space R is a single point.
Hence the question whether im(®oi) can be described in-
trinsically, using only the left action of G on @, now boils
down to the question whether we can describe a N /H-invar-
iant }-density s, on Q = B /H in terms of the left action of G
on G/H.

An elementary calculation shows that for
n= (25 )eN we have |det Ad(n)|=a"? which is not
identically 1 on N. Consequently there does not exist a G and
N /H invariant }-density on G /H, so Proposition 4 does not
apply. The right action of N /H on G /H suggests the use of
polar coordinates (r,¢) on G/H=R®> (x=rcos¢, y

= rsin ¢). We thus can identify }-densities s, on G /H with
functions faccording to

frnd) = so(r,¢;(c?,,a¢ ),
which is equivalent to saying that we use |dr dg|'/* as trivia-
lizing nowhere vanishing }-density on G /H (see the previous
example). The condition that s, is N /H-invariant then be-
comes (for a>0):

fr,) = s5o{r,$;(3,,9,))
= (R 2so)(:$;(3,,9,))
=solar,$;(ad,,3,))
= |a|'so(ar,$;(3,,94))
= a'*f(ar,$)

Sf(rg) =r "2 f(1,4).
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equations

|1/2

But, we should not forget the second component of N /H:

_f(",¢) = (R ._ 1so)(ry¢;(arra¢))
= so(r¢ + m(3,.9,))

=f(ry¢ + 77').

It follows that a NV /H-invariant }-density s, on G /H is com-
pletely determined by a function f; on the circle S by the
formula:

frd) =112 £,(28) 50 = r~ V2 fo(24) |dr di|'?,
@21

which is in complete agreement with our observation that
two allowed s, differ by a function on G /N since in polar
coordinates the isotropy map £ is given by (7,¢)—(24).
In order to see whether any such s, can be described in
terms of the left action of G on G /H, let us calculate the
fundamental vector fields on Q. We choose as basis for the
Lie algebra g the matrices £, = ( _93), & =(_974), and

& = (~ 89); for these we find:

§10 =0,
£,0 = sin (2¢)73, + cos (24)d,,
&30 =cos (2¢4)rd, — sin (24)3,.

Using formula (20), we compute the quantized constraints
(J(£)) as operators on functions f [formula (21)]:

7'(-’(51)) = a¢,
HJ(£;)) = sin (24)73, + cos (24)3,
+ J(sin (2¢) — 2sin (2¢))
=sin (2¢) (rd, — 1) + cos (2¢)d,,
T(J(£3)) = cos (28) (rd, —}) — sin (2¢)3,.

A simple exercise shows that there is no way to find func-
tions f(7,¢) of the form f(r,§) = r—/2-£,(24), using the op-
erators T{J(£)), without introducing “arbitrary” functions
on Q. For instance, the “natural” choice f(r,¢) =r—'/2is
determined (up to a multiplicative constant) by the equa-
tions ~{J(&,)Y =0 and 7J(&,)) = — sin (2¢)f. This ex-
ample also shows that, although im(®) can be described in
terms of the G-action only, it is not a very easy description
because the conditions (in their infinitesimal form PDE’s)
vary from point to point.
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The pure measurements of discrete physical quantities are characterized within quantum
theory of measurement and their unitary representations are given. Probabilistic aspects of
measurements related to the so-called strong correlation conditions and a probabilistic
characterization of the first kind measurements are examined. The problem of the
objectification of the measurement result is analyzed in terms of a classical behavior of the
measuring apparatus. As a by-product a generalization of the Wigner—Araki-Yanase theorem

is given.

I. INTRODUCTION

In this paper, we discuss the quantum mechanical de-
scription of the measuring processes of an abstract way and
determine the general form of the final state in the combined
system of the object system and the measuring apparatus.
The inputs for this determination are a probability reproduc-
ibility condition and an objectification requirement. The aim
of this paper is to clarify the connections between individual
physical requirements on the measuring process and the gen-
eral form of the final state satisfying such requirements.

In this paper we consider only the so-called discrete
physical quantities. This introduces drastic technical simpli-
fications. We believe that the complete characterization of
measurements of discrete physical quantities obtained here
justifies this assumption.

The usual Hilbert space formulation of quantum me-
chanics will be applied here. (For basic results in functional
analysis, see, e.g., Ref. 1.) Let us just fix some notation and
terminology.

The description of a physical system % is based on a
(complex, separable) Hilbert space #°, with the inner prod-
uct {-|*). We let .Z (5#°) denote the set of bounded linear
operators on 5¢°; 7 (5¢°) denotes the subset of .&" (#°) con-
sisting of the (orthogonal) projections. Any physical quanti-
ty of the system . is represented as (and identified with) a
self-adjoint operator A in 7. The spectral measure of 4 is
denoted by P: B (R ) - P (H#°), where B (R) is the Borel
o algebra of the real line #. Any state of the system % is
represented as (and identified with) an element T of
T (#°);" of positive normalized trace class operators on
7. The extreme elements of the (convex) set .7 (#°) ;" are
the one-dimensional projection operators P[@] on 7,
@, so that they may be identified, modulo a phase factor,
with the unit vectors @ of #°. We refer to the extreme ele-
ments of 7 (F#°){" (or unit vectors of 77°) as the vector
states of .. In the absence of any superselection rule the
vector states of % are exactly its pure states. The probability
measure P1: B (#)-[0,1], X—»PT(X): = tr(TP, (X))

® This paper is a revised version of a preprint by the authors circulated
under the same title.
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defined by a physical quantity 4 and a state Tis interpreted
as the probability distribution of the values of the quantity 4
in the state 7. (For further details of basic Hilbert space
quantum mechanics, see, e.g., Ref. 2.)

As usual in the quantum theory of measurement
(QTM), we restrict to measurements that preserve the iden-
tity of the object system .% and the measuring apparatus ..
In this way QTM can be viewed as a part of the theory of
compound systems with its own specific questions: which
kind of state transformations of the compound system
% + .# may serve as measurements of a quantity 4 . of the
subsystem ., and which kind of properties of .# allow us to
determine in an unambiguous way the value of the measured
quantity. In Sec. II we follow this approach, and we give a
definition of the concept of measurement. In Sec. III we
characterize all pure measurements of discrete physical
quantities and give their unitary representations. In Sec. IV
we deal with a characterization of measurements leading to
strong correlations. In Sec. 5 we study some properties of
measurements via the state transformations they induce. In
Sec. VI we face the objectification problem by investigating
the possibility of determining the value of the measured
quantity. The results of the paper lead also to a generaliza-
tion of the Wigner—Araki—Yanase theorem, which is given in
Sec. VIL

Il. PREMEASUREMENTS

Let 57 , be the Hilbert space of the measuring appara-
tus.#,and 4, theso-called pointer observable, i.e., a quan-
tity of .# that corresponds to the measured quantity 4 .. of
the object system. (Hereafter every symbol referring to . or
# will have the corresponding subindex.) Let 7, and T,
be the initial states of .¥ and .#, so that the initial state of
& + A is uniquely determined as T,- ® T, since we as-
sume that prior to the measurement . and .# are both
dynamically and probabilistically independent of each oth-
er. We write W(T, ® T ,) for the final state of .% + .#;
the final states of ¥ and .# will then be the reduced states
T, wand T , ,, respectively. Here, e.g., T, is defined
through
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where P,.e? (# ), and 1, is the identity operator on
x .

In order to qualify the four-tuple {# ,,4 ,,T , ,W) as
a measurement of the quantity 4. it is necessary that it
reproduce the basic probabilities P ATj via the pointer observ-
able 4_, and the final state T , ,, of the measuring appara-
tus. We take this probability reproducibility condition as the
defining property of the notion of premeasurement.

Definition 2.1: With the above notation, a premeasure-
ment of A, on .% is a four-tuple (¥ ,,4 ,,T ,,W) for
which

PY(X)=PL"(X),

for all Xe# (#), andforany T .7 ().

The additional requirement that allows us to go from
the notion of premeasurement to the one of measurement is
the objectification requirement. This is the requirement that
a measurement should lead to an unambiguous result, and it
is connected with the problem of justifying the subjective
ignorance interpretation for the final state T, ,, of the ob-
ject system % through that of the final state T, 5 of the
measuring apparatus .# . This question is put aside till Sec.
VL

One of the main results of QTM is that for each physical
quantity 4 . of % there are premeasurements. An explicit
example of such a premeasurement was already given by von
Neumann.? A result of Ozawa* shows that such premeasure-
ments exist also for continuous quantities.

We assume that the state transformation 7, T,
—-W(T, ®T,)induced by the measurement preserves the
convex structure of the set of states. In that case W can be
viewed as a trace preserving positive linear map on the state
space T(7 . ® 7 , ), the Banach space of the trace class
operators on %, @ % , . Furthermore we require that the
map T,eT,-W(T,®T,) preserves the extreme
points of the set of states of ¥ + .#,i.e., Wisapuremap. In
that case the premeasurement (%% , .4 ,,T ,,W) issaid to
be pure. Its form is significantly constrained by the following
result due to Davies.’

Lemma 2.2: Every pure positive linear map W: .7 (#°)
-9 (F) is of one of the following three forms:

(i) W(T ) =BTB*,

where Be.Z (5¢), and B * is the adjoint of B;
(ii) W(T)=BT*B*,

where B: 77— is bounded and conjugate linear;
(iii) W(T ) = tr(TB)P[£],

where Be.Z (7)), B>0, and £e77°.

Because of the linearity and continuity of the theory,
and because of the fact that the vector states determine all
the states of a physical system, we may assume, without any
loss of generality, that the initial states of ¥ and .# are
vector states ¢ and P, ie, T, =Plpland T, = P[P]
for some unit vectors g% . and Pe¥° . In that case

T,eT,=PlgpleP[®]=Plped]
is the initial state of ¥ + .#.
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Remark 2.3: Any measurement process (¥ ,.,4 .,
T ,,W) of a physical quantity 4, determines an instru-
ment3 (i.e., a state transformation valued measure) & Wt
B(R) - L(T (# ,)) through the relation

tr(S o w (X)(T,)P)

forall P,.eZ (# ,), Xe# (R),and T €T (5 ) . The
instrument .# _, - contains all the information on the mea-
surement (¥ , A ,,T ,,W) relevant to the object system
& . Tt gives the correct probabilities as

tr(TyPAJ, (X)) = tr(jll’W(X)(T_y )),
for all Xe#(#), T,eT(#.);,

and it gives the (non-normalized) final state
I o w(X) (T, ) of #, with the condition that the measure-
ment yielded a result in X. In particular, ., o (#Z)(T )
= T, y. The properties of a measurement, like the one of
being ideal or of the first kind, can most directly be studied
through the properties of their instruments (cf. Sec. V).

Ill. UNITARY PREMEASUREMENTS OF DISCRETE
QUANTITIES

Hereafter we restrict ourselves to discrete physical
quantities, namely, to those that are represented by self-
adjoint operators with pure point spectrum. The class of
measurements of discrete quantities ranges from the yes—no
measurements of the elementary quantities associated with
the properties (projection operators) of the system to the
measurements of discrete quantities with nondegenerate
eigenvalues, including the measurements of discrete ap-
proximations of continuous quantities. Let us also notice
that discrete quantities are characterized as those that admit
repeatable measurements.*

We shall work out the general form of a pure premea-
surement of a discrete quantity. Let 4 .. (in 77, ) be a self-
adjoint operator with a pure point spectrum. Let the distinct
eigenvalues of 4 . bea,, i = 1,2,...,N, where NeN (the set of
natural numbers), or N = «. Let n(7) be the degeneracy of
the eigenvalue a; {so that, again, n(i)eN, or n(i) = ] and
let {gp;| j = 1,...,n(i)} be an orthonormal basis of the corre-
sponding eigenspace. Then

{p li=1,.,N; j=1,..n()}CH#,
is an orthonormal basis, and 4,¢; =a,p; for all
i=1,.,N, j=1,..,n(i). The spectral projections of 4 .. are

P, ()= % >Plo;]

i(a;eX) J

For any pes7 .,
¢ = z Cii@Pij»
L7

with ¢; = (@;|@ ), and we have that p € dom(4 ) if and
only if the series

E |aicij|2
i

is convergent.
Let %, be any (complex) Hilbert space with dimen-

Beltrametti, Cassinelli, and Lahti 92



sion N (the number of distinct eigenvalues of 4. ). Let
{®,]i = 1,..,N}CF_, be an orthornormal basis. We define
A_, as the simple self-adjoint operator

N

z aP[P]

i=1
(in 57 , ) with the spectral measure

P,:X- Y P[®]

) i(a;€X)
and with the (nondegenerate) eigenvaluesa,, i = 1,...,N. Let
P be a fixed unit vector of 77, .

We shall first show that the form (iii) of Lemma 2.2 is
not a possible premeasurement map of a nontrivial discrete
quantity 4 ...

Theorem 3.1: If (¥ ,,A , ,P [®],W) is a premeasure-
ment of 4 .., then W cannot be of the form

W(Plge®]) =tr(P[pe P]B)P[£],
with Be.L (7, ® 5 ,), B>0, e, 05 ,.

Proof: Assume that W has this form. Then, by Defini-
tion 2.1,

(¢ |1Py, (XD )
={(pe®|B(ea®)) (|, 8P, (X)),
XeZ (R#).
For X = %, we have

1=(pe®B(pe®))I|E),
while for X = {a,} and ¢ = @, we get
1=(p,;®P|B(p,;@P)){£|(L, 0P [®: 1)),
for any j= 1,...,n(i). We conclude that

(£16)= (|0 eP[P.])E),
foranyi=1,.,N. AsZP[®;] =1, wealso have

€1E) =Y ¢, eP[®,])E).

Hence (¢ |(I, @ P[®;])§) =0, foranyi= 1,..,N, so that
either £ =0, or P[®;] =0 for any i=1,...,N, i.e, 4 , is
constant. O

In view of this result we use the notation
(¢ ,,A,,P,B) as a premeasurement of 4, whenever
de” , is a unit vector and B is a bounded linear or conju-
gate linear map on 7, ® 5, . The probability reproduc-
ibility condition of Definition 2.1 then takes the simple form

(p Py, (X)@ )
= (B(po®)|(I, P, (X))B(pe?)), (1N
for all XeZ (#) and g ., |l@|| = 1.

The next theorem characterizes all pure premeasure-
ments of 4 ;.

Theorem 3.2: A four-tuple (77 ,,A_,,P,B) is a pure
premeasurement of 4 - if and only if Bis a continuous linear
or conjugate linear extension on % ;. ® #° , of amap of the
form

g; 009,00, i=1,..N, j=1,.,n(), 2)
where {¢;: i = 1,...,N; j= 1,..,n(i) } is any set of unit vec-
tors (in 7 . ) that are orthogonal with respect to the second
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index, ie., for any i=1,..N, (¢;|¢) =25y, for all
Jok = 1,...,n(i). Moreover, B can always be chosen as a uni-
tary or an antiunitary mapping.

Proof: Let (5 ,,A ,,®,B ) be a pure premeasurement
of A, . From Eq. (1) we get | = ||B(¢ ® ®)||* for any unit
vector e ;. Putting X = {a,} and ¢ = ¢, ; we obtain

1=(B(g,;8®)|(I, P[P, ])B(p, ;o))
As B(@; ; ® ®) is a unit vector this shows that
(I,eP[D,])B(p,;©P)=B(p,;®P)
so that B(g; @ @) is of the form (2) with

1/;‘.]. = z (q)nm ®¢.|B(¢y ®¢)>¢nm 8<I)i'

The vectors ¥; are unit vectors, for

<¢y|¢q) = <B(¢7i,j e ®P) |B(¢’.',j ed)) =1
The orthogonality condition (¥, |¢;) = 8;, jl = 1,...,n(D),
is readily obtained from Eq. (1) when applied, e.g., to
the vectors ¢ = (1/\/5)(¢p,~j +@y), and @ = (1/42) (py

+ i@, ), respectively, with X = {a,}.

Conversely, assume that B is a continuous linear or con-
jugate linear extension of the map (2). Then a direct compu-
tation shows that (H ,,4 ,,®,B) satisfies the probability
reproducibility condition (1).

Since {@, ® ®} and {¢, ® ®,} are orthonormal sets of
7 . ® ¥ , they can be extended to orthonormal bases of
X . 7 ,. Any bijective mapping U between any two
such bases such that

Ulg, @) =¢,; P, for all { and j,

can be extended uniquely by linearity (conjugate linearity)
and continuity to a unitary (antiunitary) operator U satisfy-
ing the probability reproducibility condition. O

The nonuniqueness of the operator B in this theorem has
no consequence on the physics of the measurement process
which is completely determined by the map (2). In view of
this fact we consider a fixed unitary premeasurement
(F 44 ,,P,U)ofA,.

The final states of .’ and .# can be calculated from the
final state

N a®i)

PlUge®)]=P|S ¥ c,-,~¢,-,~®<l>,-]

i=1j=1
of & + 4. We get

N n()) n(d)

T, y= 2 2 z Ciculvha) (¥yl

i=1j=11=1
and
N n@i)

T,v= 2 2 kZ{:(Zi Eijckl('ﬁijwkl)‘q)k)((Di"

i=1j=1
We define
n(i)

vi=N"' 2 cij'/’ij’
i=1
with
2
Ni= zcu i =z|c,-j|2,
J J

whenever N, #0, and ¥; = 0 otherwise. Then
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N
T,y= ‘Z] N?P['}’i] 3
and
N N
T, v= i;l kgl NN Yilve) | 2P (4)

A particular choice for the set {y,} is {p,}. Let Vbe a
unitary operator on 5% . ® 7 , that has the restriction

Vig;99) =@, 09,

The four-tuple (#° ,,4 ,,®,V) is referred to as the von
Neumann-Liiders measurement of 4 ... The corresponding
final states of ¥ and .# will become

N

T,,=Y NiP[o], (5
=1
with
(i)
@; =N;! z ¢y, if N;#0,
=

while

@, =0, if N,=0,

and

N
Taw=3 NiP[4] (6)

IV. CORRELATIONS

In addition to the basic probability reproducibility con-
dition (1) there are other probabilistic aspects of measure-
ments especially important for the objectification of the mea-
surement result (Sec. VI). These aspects refer to the type of
correlations produced by a measurement.

In the Appendix the general definition of correlation is
given; here we recall only that for any P.eZ (5 .),
PP ,),and TeT(# , ® ¥ , ), the correlation
p(Py,P ,,T) can be written as

tr(TP, ®P ) —tr(T, P, )tr(T P ,)

P(Py’,P,(/,T) =

where T, and T, are the reduced state of 7. As shown in
the Appendix,

p(Py P, T)=1iff te(T,P,)=t(T,P,).

Let(H ,,A ,,,U), Ue% (7, ® % , ), beaunitary
premeasurement of A4 ... The strong correlations

pP[v:].P[®:].U(pe®))=1 (7
and
pP,, {a.h.P, ,({a,H,U(pe®)) =1, (8)

i=1,...,N, need not hold, in general, so that they may be
stated as further requirements on the premeasurement
(# ,,A,,9,U}, and either of them will imply substantial
restrictions on U. We shall now study these restrictions.

Assume first that N, =0, i.e,, (¢ |P,, ({a, @) =0,
for some i = 1,...,N. In that case

7’i=zcij 5 =0
J

asc; =0, for any j = 1,...,n(i), so that neither (7) nor (8)
can be required. Assume next that N, =1, for some
i = 1,...,N.Inthat case, ¢,; = 0, forany k #1i, so that the final
state P[U(p® ®)] of & + .# is the uncorrelated state
P[y,]@P[®P;]. The pointer observable 4 , now has the
value a; (with probability equal to 1), though the measured
quantity 4, does not need to have the value g, ie.,
(7:|P,, ({a;})7,) does not need to be 1; nor does P[y;]
need to be equal to P[¢].

The above considerations show that the strong correla-
tion conditions (7) and (8) can be required only for those
i=1,.,N, and ¥ ., ||@ | = 1, for which 0N, # 1.

Theorem 4.1: Let (% ,,4 ,,D,U) be a unitary pre-
measurement of 4 ... Then
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\/tr(TyP_,« Y1 —te(T o P (T, P (1 —te(T 4 P )) ’

PPy ].P[®:].U(pe®)) =1,

for any i=1,..,N, and @, |@| =1, for which
0#£N, #1, if and only if

{Wli= 1N, j=1,.,n()}CH,
is an orthonormal system.

Proof: We have

PP [7:.],P[®:],U(pe®))=1
if and only if

te(Ty yP[7:]) = te(T , P[P ]).
Moreover,

N
(T, uP[v:]) = 3 Nitr(P[v]P[7])
¥=1

=N?+ z Nl (vl

k(k #i)
and

tr(T , P [q)i]) = zzijcil (¢y|¢.1) = z Icij,2=N?'
i i

If
{Wyli=1,..,N, j=1,.,n(D}
is an orthonormal system, then
Flv)=Ng'N' Y Z Sycu¥ilvy) =0,
7
for all k #i, so that

p(P [Yi],P [q’,-],UUP@q’)) =1
(whenever 0# N, #1). To show the converse, choose, e.g.,

Q= (1/\/5)‘7’.',' + (l/ﬁ)lPkl: i#k.
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To obtain

pP[7:],P[®:].Upe®)) =1,
it is then necessary that |(;|¢,)|> =0, i.e., {¢;|¢x) =0.
The same argument can be repeated for any pairs (i, /) and
(k,l) such that i#k. Hence

{;li=1,..N, j=1,..,n(D}

is an orthonormal system. O
Theorem 4.2: Let (7% ,,A ,,D,U) be a unitary pre-
measurement of 4 ... Then

P(PAJ, ({ai}),PA',, ({a,}),U(¢p®<I>)) =1,
for any i=1,..,N, and ¢, |@p| =1, for which
0#N, #1, if and only if

W,li=1,..N, j=l..n()}CH,
is an orthonormal system with P, ({e,})y, =, for any
i=1,.,N.

Proof: As
P, ({ah =3 Plg;]
7
and
PA‘,/({a,'}) =P[<p,]’
we have

(143 P10,1)

n(i)
=N} 3 Krile)” + ; N Y vdeg) P,
o k(k i) J=1
te(7T, P [é:]) =Ni
Thus
pP,, {ahH,P, ,({a,1),U(pe®))=1

if and only if
ni)

2|<7’i|¢ij>|2=1 and (y:|@;) =0,
i=1

forany k #i. Thisisthecaseifand onlyif P, ({a,})v; = v..
As this is to hold for any i = 1,...,N, ¢ .., |l@| = 1, we
have that

{#;li=1,.,N, j=1,.n()}

is an orthonormal system. O

If the premeasurement (% , .4 ,,®,U) of A, pro-
duces strong correlations between the possible values of 4
and 4 .-, then it also produces strong correlations between
the final “component states” P [®,] and P [y;] of .# and
Z. As is well known, the von Neumann-Liiders measure-
ment (¥ ,,A,,P,V) of A, also has these correlation
properties.

V. INSTRUMENTS OF THE UNITARY MEASUREMENTS

The probabilistic aspects of (# . ,4_,,P,U ) donot ex-
haust the physics of the measurement process. The measure-
ments that produce strong correlations may differ from each
other in the transformations of the states they induce on the
object system .. Such differences can most directly be stud-
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ied by the instruments .# , ,, determined by the premeasur-
ements (¥ ,,4_,,P,U) of A, (cf Remark 2.3). We shall
now consider some properties of the instruments .# _, ;; that
serve to distinguish the von Neumann-Liiders instrument
# 4.y from those associated with other unitary measure-
ments.

Let us determine first the form of the von Neumann-—
Liiders instrument .# , .. Rewriting the final state T ,, of
F as

N
Tyy=3 N7P[w]

i=1

= z PAJ. ({a,})P [¢7 ]PAV./ ({ai}),
one sees that £, ;, has the following form:

Fur@@leD= Y P, {ahPlplP, ({a})
i(aeXx)

= Y NiPlo], (9)
i(agX)

forall Xe Z (# ), and for any g ., ||@ || = 1. This instru-
ment has the well known properties of being ideal, i.e.,

if t(F ., {a,H(Plp]))=1, for some i=1,.,N,
then j.,l,V({ai})(P e =Plpl (10)
and of the first kind, i.e.,
tr(F v {aH(Ple])

= tl'(f‘l,y({a;})mff.l.v(%)(P o D)

for any e ., ||@¢| =1, and for all i=1,..,N.

(11)

Consider next any  wunitary  measurement

(H A4, P,U)ofd, . Theformof # _, , canagain readi-
ly be extracted from the final state

N
T,v= 2 Nx?P['}’i]

i=1

= 2 2 Z [¥u) {@ul@ )@ |¢’g)(¢u|,

and we get
'/.I,U(X)(P e = 2 z Z |¢.‘1)(¢’ﬂ|P le ]|¢u><¢q|
i(a;eX) j
= > NiP[x], (12)
(a;eX)

for any Xe # (#), and for all ge ¥ .., ||@ || = 1.

The following theorem shows that the premeasure-
ments (#° , .4 ,,®,U) of A, that have the strong correla-
tion property (8) are characterized by instruments of the
first kind.

Theorem 5.1: Let (& ,,4 ,,P,U) be a uhitary pre-
measurement of 4., and let .#_, ;, be the corresponding
instrument. Then ., ;, is of the first kind if and only if

P(PA‘,‘ ({a,.}),PAJ, ({a,-}),U(¢)® P))=1,
for all i = 1,...,N, and for any ¢ .., || || = 1, for which
0#N,#1.
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Proof: By definition, .#_, ;, is of the first kind if and only

if
tr(l, o {a,H(Plp 1))

= tr(fj,u({ai})oj/,u(-%))([’ [¢7 D)
ie.,

tre(P [ ]PA_, ({a,})) = tf(Ty’_uPA/. ({a:1),
for any i = 1,...,N, and @5 .., ||@ || = 1. But we also have
(P 1P,, ({a ) =t(T , v P, ,({a;})),

for any e ., ||@ || = 1, and for all i = 1,...,N. This is ex-
actly the case when

P(PAJ. ({ai}),PAA/, ({a,}),U(qz ed®))=1,

for any i=1,.,N, and ¢¥ ,, |l¢||=1, for which
0#N,#1. a

The ideality of an instrument .# , ;, leads to a further
specification of U.

Theorem 5.2: Let (% ,,4 ,,9,U) be a unitary pre-
measurement of 4 .-, and let .# , ;, be the corresponding
instrument. If # , , is ideal, then U is of the form
Uw, ® D) = “V(w, ® ®), for any weP, {ahH(#,),
i=1.,N,andthus . , , =1,,.

Proof: Assume first that # , . is ideal, ie., for
any i=1...,N, J ,,({a,})(Plp]l) =P[p] whenever
te{l , y{a.H (Pl ) =1, ¢e¥ ., |@]| = 1. Now for
anyi=1,..,N,

tr(f.,.«,u({ai})(}) [?,,] )= <¢ij'PA‘,,({ai})¢ij) =1,
for all j=1,.,n()). Hence £ ,,({a;}) (Plg;])
=P{9,1=P[g;], ie, ¥, =¢"p,; 6,eR, for all
i=1,..,N, j=1,.,n0).

Applying the same argument for the vector states
@ = (1/V2)(@; + @) we see that, for any i = 1,..,N, P
= €% for all j, I=1,...,n(i). This shows that U= U’o}
=U, ol ,oV,withU, |y =cLs|p, |c;| =1, where M,
=P, {aH(F ). Clearly, £ , , =5 , . O

VI. OBJECTIFICATION OF THE MEASUREMENT
RESULT

It is implicit in the very notion of a measuring apparatus
that A , has an actual value in the final state of .# though
this value can be subjectively unknown. The objectivity of
A_, in the final state of .# is not coded in the notion of
premeasurement (% ,,4 ,,T ,,W) but it has to be taken
as an additional requirement. The stronger requirement of
A, being objective in the final state of % can then be de-
duced from the objectivity of 4 , via the strong correlations.

To discuss these highly interpretational items we intro-
duce first some appropriate definitions. We say that a dis-
crete quantity A4 is objective in a vector state ¢ if
(¢ |P,({a D)@ ) = 1, for some eigenvalue a, of 4, i.e., if @
is an eigenvector of A. This is the case exactly when 4 com-
mutes with P{g]. If 4 is objective in the state @, then its ideal
first kind measurement does not change the state of the sys-
tem since then & , . (Z)(Plp 1) =P[p ] Wesay thata
physical quantity is classical if it commutes with any other
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physical quantity of the system (cf., e.g., Ref. 6). The only
self-adjoint operators in 5 that commute with any other
self-adjoint operator are the constants al, ae%Z. Hence the
assumption that 4 is a (nonconstant) classical quantity im-
plies that there is no longer either the one-to-one correspon-
dence between the physical quantities and the self-adjoint
operators in 7 nor the one between the physical states and
the elements of 7 (7#°) ;" . In particular, a physical state cor-
responds to an equivalence class of 7 (5°);* and the pres-
ence of a one-dimensional projection in this equivalence
class does not imply that the state is pure. A vector state is
pure if and only if its equivalence class contains only one
element.>®

We assume now that the pointer observable 4 , is a
classical quantity. In that case the only pure states of the
measuring apparatus .# are the eigenstates P [®, ] of the
pointer observable 4 , . Moreover, the final state (4) of the
measuring apparatus .# reduces to (i.e., it is in the same
equivalence class as)

N
Tov=Y, NiP[®,].
i=1

We stress that a mixed state never has a unique decom-
position into the vector states.”” The assumption that 4 , is
classical implies that (13) is the only decompositionof T,
into pure states of .#. This also means that the subjective
ignorance interpretation can be adopted for the final state
T , v of the measuring apparatus: when .# is in the state
T 4.y, it is actually in one of the pure states P [®, ], the
coefficients N2 describing the degree of our knowledge on
the actual state of .# . The actual value of the pointer observ-
able 4 , can be read (by an ideal first kind test), without
changing the actual state of .#. In that state 4 , is clearly
objective.

The final state of the object system . is now

N

Tyu=Y NiP[v:]
i==1
This state is not directly affected by the assumption that 4 ,
is classical. But, if

pP[v:].P[P;],U(pe®))=1

holds true for each i = 1,...,¥ (for which 0#N, 1), then
the ignorance interpretation of T, ;, can be adopted for
Ty, too. According to Theorem 4.1 this occurs exactly
when {¢,} is an orthonormal system. Assuming that this is
the case, if P [ D, ] is the actual final state of #, then P [y, ]
isthe actual final state of . Then (¥, | P, ({a,})7,) isthe
probability that in the actual final state P [ 7, ] of the object
system % the measured quantity 4 ;- has the value ¢, . This
number needs not to be 1, however. If, in addition, the strong
correlation condition (8) is required, then y,’s are eigenvec-
tors of 4 .., and 4 is objective in the actual final state of ..

There is, however, a puzzling fact that arises from the
present approach, to which we shall now turn.

Consider again a unitary measurement
(¥ ,,A,,D,U) of the quantity 4 ... The pointer observ-
able A, can be interpreted through 7. ® 4 , as a quantity
of the compound system ¥ + .#. As the von Neumann
algebra L(# . ©# ,) of the bounded operators on

(13)
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., 0% , is generated by the operators of the product
formA® B, Ac.L (77, ), Be.L (#° , ) (see Ref. 8), we see
that if 4 , is a classical quantity of the measuring apparatus
#,then I, ®A4 , is a classical quantity of the compound
system . + .# . This fact has two interesting consequences.
First, the physical state represented by the projection opera-
tor P[U(p® ®)] is equivalent to SN;P[y,]®P[d;].
(Recall that this result also can be obtained as a solution of
the so-called consistency problem of the measurement theo-
ry.2) Second, the unitary measurement U, which can be giv-
en the form ¢, does not qualify H as a physical quantity
(like a Hamiltonian between .% and .#') of the compound
system. Indeed, if / is a physical quantity and 4 , is a classi-
cal quantity of .#, then

Pl®] _ pPlepe®] _ pPlUpe®)] _ pTru
PA.// _Pl,y"s"// _PI.V'QA.// _PA./ ’

for any unit vector g€ ., as U commutes with I, ® 4 .
In particular, this would imply that for any i = 1,..,N, and
for any vector state @ of .7,

(DD * =3 Ke;le) I,

J
and thus

P[®] =T [(®,|®)P[®,]

= 2 |(¢ij|¢>|2P [®:]1=T v
i, j

These results show that the following two assumptions are
mutually incompatible: (a) 4 , is a classical quantity, and
(b) U= e qualifies H as a physical quantity.

Such an incompatibility has been independently pointed
out by van Fraassen.’ :

We do not go deeper into this issue: we rémark only that
the inconsistency of assumptions (a) and (b) seems to be in
accordance with the ideas that the measurement evolutions
could be irreversible and thus nonunitary (see, e.g., Ref. 10),
or that, instead of a sharp objectification, only an unsharp
objectification might be realized. The latter proposal can be
justified, e.g., by the results of Ozawa* and by the fact that
the so-called realistic measurement of position, momentum,
and spin seem to define not sharp but unsharp quantities."!

J

(p; @ P|L(@y; ®P)) = (@y|L 1) + 84.6,(P|L , P)

VII. WIGNER-ARAKI-YANASE THEOREM

The quantum theory of measurement shows up some
limitations on the measurability of physical quantities. Com-
plementary physical quantities like position and momentum
cannot be measured together, i.e., none of the measurements
(in the sense of Definition 2.1) of complementary quantities
can be combined as a joint measurement of such quantities. '?
Continuous quantities, like position or momentum, do not
admit an ideal first kind measurement; in particular, none of
the measurements with a completely positive measurement
map (like a unitary one) of such quantities can satisfy the
(weak) repeatability condition.*

Another type of limitation of measurability of physical
quantities is said to arise from the existence of conservation
laws, like, e.g., the conservation of linear momentum or an-
gular momentum. This type of limitation was discovered by
Wigner'? and it was later cast in the form of a theorem by
Araki and Yanase' which, with our notations, would read
as follows.

Theorem 7.1: Let (%7 ,.,4 ,,®,V) be the von Neu-

mann-Liiders measurement of A4,. Let L=L,;
eI, +1,®L , bea (bounded) self-adjoint operator on
H . @5 ,. Assume that L is a constant of motion of
S + 4 with respect to V, ie.,, [L,V] =0. Then also
[L,.A4,]=0.

The results of previous sections suggest a formal gener-
alization expressed by the following theorem whose proof
includes, as a particular case, that of Theorem 7.1.

Theorem 7.2: Let (77 ,,4 ,®,U) be a unitary mea-
surementofd ... LetL=L, 1, + 1, ® L , beabound-
ed self-adjoint operator on 5% .- ® #° , . If L commutes with
U, then

L, commutes with 4 ., (14)
provided that either
PP[Y P[P ].U(pe®))=1, (15)

for any i=1,..,N and @c¥ ., || =1, for which

0#£N,#1,0r
L , commutes with A4 ,. (16)

Proof: As Uis unitary and L commutes with U we have,
for any pair of indices (7, j) and (k,]),

= (@; @ ®|U*UL(py, @ ®)) = (U(p; @ P)|LU(p,, ® D))
= (Y; 8 D, |L(Y1; @ D)) = (P |L o 0 )0 + (|01 (DL, D).

If (15) holds, then by Theorem 4.1 (y;| z/zk,.) =6y6,. If
(16) holds, then (®;|L , ®,) = g(a, )6, for some Borel
function g. In both cases we obtain

(¢ij Lo @) =i (‘77:1 Ly @Pra)s
for all ik =1,2,.,N.
Let P, =P, ({a,}), n=12,.,N. Then
(‘Pilean‘Pkl) — (¢ij|PnL.5"¢kl)
= (6 — 8,:)8, (¢ij ILy@u) =0,
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for any i,k,n = 1,2,...,N, independently of the indices jand /.
As{g;} is an orthonormal base of % . we thushave L ,. P,
=P,L,, for any n=12,.,N, ie, L, and 4, com-
mute. 0
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APPENDIX: PROPERTIES OF CORRELATION

Let A and B be commuting self-adjoint (not necessarily
bounded) operators in a (complex, separable) Hilbert space
7. Then 4 and B have a joint projection valued measure,
which we denote P, ;. We recall only that the spectral mea-
sures of 4 and B are related to P, , as follows:

PA(X) =PA,B(X><%)9 PB(Y) =PA,B(-@XY);
forall X,YeZ (#).

Let @ be any unit vector in the common domain of 4 and
B, and consider the probability measures P5!¢) and P5[%]
(on #) and PE¥! (on #?). Then we have the following
facts: (a) the function x—x? is both P5!?1. and P£§!®l-inte-
grable; and (b) the function (x,y) —xy is P% ¥ l-integrable.
By (a), the expectations & (4,¢) and & (B,p), the variances
7 (A,p) and 7 (B,p), and the standard deviations
o(4,9) = 7 (4,9)"? and o(B.gp) = 7 (Bg)'* of the
probability measures P5#1and P 5!%! are well defined. Fact
(b) assures that we may define the correlation of A and B in
the state @, denoted by p(A4,B,p), as the (normalized) corre-
lation of the probability measure P%¢). Explicitly

Sx — &(4,)y — & (B,p))dP,'$ (x.y)
0(4,9)0(B,@) '
To simplify the notation we define
A,=A—$(A,cp)1 B,=B—$(B,¢)I.
o(4,p) o(B,p)
Then, by the properties of the spectral measure P, 5, we have
p(4,B.p) ={(A'p|B'p).
Moreover, a quick calculation shows that the following three
conditions are equivalent:
p(4.B,p) =1,
74 /0(4,9) — B/a(B,p),p) =0,
A'9=B'gp.
Let f beabounded Borel functionon %#.1f4 ‘p = B g, then
fl4")p = f(B")@, and, in particular, P5'¢} = P£!®] since
A’ and B’ are commuting self-adjoint operators. The condi-

tion P4!®) = P£l®] s obviously also sufficient for the equa-
lity 4 ‘¢ = B’p. We may thus conclude that

p(4,Bp) =1 iff PEI#I=pElel

p(A,B,p) =

3

(A1)
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We remark that (A1) is the Hilbert space counterpart of a
classical result in probability theory that can be found, e.g.,
in Ref. 15.

In case 4 and B are commuting projectionsin 57, (A1) is
easily seen to take the form

In Sec. IV the previous results are used in the particular
context of the Hilbert space #° being the tensor product
KoK 4, WP eP(F,)and P,eP (5 ,), then
P,e®l, and I, ®P, are commuting operators on
.0 , and their correlation is well defined. If
TeT (K 5 7 4 ), then

EP,0Il,T)=8L,T,),
&UI,eP,T)=8(P,,T,),
7V (Py ol ,T)=7(P,,T,),
7(Iy,®P,,T)=7(P,,T,)

(where T, and T, are the reduced states of 7). Thus we
obtain the definition of correlation stated in Sec. IV, and
(A2) can be written as

p(Pyo0l, T, eP,T)=1

if €P,.T,)=¢P,,T,). (A3)
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A variational analysis of the spiked harmonic oscillator Hamiltonian operator

—d?*/dx* + x* + I(I + 1)/x* + A |x| ~ %, where a is a real positive parameter, is reported in
this work. The formalism makes use of the functional space spanned by the solutions of the
Schradinger equation for the linear harmonic oscillator Hamiltonian supplemented by a
Dirichlet boundary condition, and a standard procedure for diagonalizing symmetric matrices.
The eigenvalues obtained by increasing the dimension of the basis set provide accurate
approximations for the ground state energy of the model system, valid for positive and
relatively large values of the coupling parameter 4. Additionally, a large coupling perturbative
expansion is carried out and the contributions up to fourth-order to the ground state energy
are explicitly evaluated. Numerical results are compared for the special case a = 5/2.

I. INTRODUCTION

A general problem connected with the so-called spiked
harmonic oscillator (SHO) Hamiltonian — d?%/dx?
+ X%+ 11+ 1)/x* 4+ A |x| 2, where a is a positive con-
stant, has been thoroughly studied by Harrell." The name
spiked derives from the graphical appearance of the pertur-
bative term A |x| ~“. The quantity A is a positive definite pa-
rameter and measures the strength of the perturbative poten-
tial. The angular momentum term is represented by the
expression /(I 4+ 1)/x*. The spiked harmonic oscillator
problem is of practical importance as it occurs in both chem-
ical and nuclear physics.'~” In the elegant work reported in
Ref. 1, a modified perturbation series to a finite order is em-
ployed to obtain analytical expressions for the eigenenergies
of a SHO Hamiltonian for small values of A, and arbitrary
values of the exponent a. In this work, we report attempts to
solve the SHO problem, employing a variational procedure
and alarge coupling perturbative calculation. A short review
of the SHO problem is presented in Sec. II. The variational
approach is outlined in Sec. IIl. The large coupling expan-
sion is discussed and developed in Sec. IV, and a summary of
the results and conclusions is found in Sec. V.

li. BACKGROUND

To compare our results with those reported by Harrell,'
we concentrate ourselves on the zero angular momentum
case. The Hamiltonian associated with the SHO then reads

2

H =
(ad) ”

x2

+x*+A|x| " =Hy,+ AV, (2.1)
where H,, is formally equal to the simple harmonic oscillator
Hamiltonian, and ¥ = |x| ~ %. The sum of H, and A ¥ must
be understood to be the Friedrichs extension of the quadratic
form defined by Eq. (2.1) on the domain of the Schwartz
space with the boundary condition #(0) = 0, with «(x) de-

29 J. Math. Phys. 31 (1), January 1990

0022-2488/90/010099-06$03.00

noting a solution of the Schrodinger equation for the simple
harmonic oscillator. The latter condition is necessary since
not all functions in the domain of H, are in the domain of V.
Therefore, when A -0, « fixed, the operator H(a,A) con-
verges to an operator formally equal to — d 2/dx? + x?, but
supplemented by the Dirichlet boundary condition (DBC)
that all functions in its domain vanish at x = 0. This opera-
tor is H, With this definition, the family of operators
H(a,A) isboth analytic for A > 0, and continuous for A - 0.

The spectrum of H|, consists of the (two-fold degener-
ate) simple harmonic oscillator eigenvalues, whose eigen-
functions vanish at x = 0. Since one purpose of the present
work is to consider the perturbation expansion of the eigen-
values of H(a,A), all operators will be restricted to the space
L?[0,00], with the DBC u(0) = 0, to avoid problems stem-
ming from the degeneracy of the spectrum.

As has been pointed out elsewhere, the perturbation V'
considered in this article is singular."* The series expan-
sion for the eigenvalues E, (a,4) of H, + AV, calculated by
means of the Rayleigh-Schrddinger procedure, yields diver-
gent expressions for the second- and higher-order perturba-
tive corrections. Harrell' has thus utilized an improved per-
turbation scheme to obtain corrections for order greater
than unity for the eigenvalues. For instance, his expression
for the SHO ground state energy and for @ = 5/2 reads,'

5 2r(1/4)
E°(?/l) =t Tam ?
16
Ir'(1/2)
In the expression above, we have corrected for a misprint in
the sign of the log term.
The presence in Eq. (2.2) of an explicit term between
first and second orders in A should be mentioned. This equa-

tion, valid for small values of the coupling parameter A, is
strikingly similar to the expansion for the ground state ener-

=+

A?lnAd +0(1?). (2.2)
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gy per particle for a boson system.® An alternative scheme
will be employed in the present work to obtain corrections to
Ey(a,). The methodology followed here is well known and
is briefly presented in the next sections.

Hil. THE VARIATIONAL APPROACH

In the variational approach, the first step is to choose a
complete set of basis functions. Although in principle one
can employ an arbitrary basis of sufficiently smooth func-
tions, in numerical practice the rate of convergence for sin-
gular problems depends a great deal on how the basis is cho-
sen. The more clever one is in choosing a set of functions, the
faster the convergence of the method. In this article, we take
the basis set constructed with the normalized solutions of the
Schrodinger equation for the linear harmonic oscillator with
a DBC, i.e., the harmonic oscillator eigenfunctions u#(x)
normalized in the interval 0<x < o0, with the prescription
that #(0) = 0. As is well known, these energy eigenfunc-
tions are essentially the product of Hermite polynomials of
odd degree with a Gaussian function. We write

(x|ny=u,(x) =4, **H,,, (x), n=012,.,
(3.1)

A, being a normalizing factor. The functions u, (x) define a
complete orthonormal set of solutions of Hj, in the interval
0<x< 0, with

A7 =4"Q2n+ 1HIT(1/2). (3.2)
Now, let ¢(x) be an eigenfunction of the SHO Hamilto-
nian (1), and let us expand @(x) in terms of u,, (x), namely,

px) = i a,u,(x). (3.3)
n=0

Next, we want to minimize the eigenenergies of (2.1), with
respect to the variational parameters a,, n =0,1,...N — 1,
in the finite dimensional subspace spanned by the N func-
tions ug,u,,...,4_ . This variational problem is equivalent
to diagonalizing the Hamiltonian (2.1) in the chosen basis
representation. By varying the dimension ¥, we get the trend
of the method.

All weneed is to evaluate the matrix elements of H(a,4 )
in the basis (3.1). They can be separated into two contribu-
tions (f= — a),

H, 1 ni1 (a, ) E<m|Ho|n) +4 (m|x”|n),

m,n=0,1,..N— 1. (3.4)

Since H,, is diagonal in the chosen basis, we see that the
first term on the right hand side of Eq. (3.4) is simply the
expression for the energy eigenvalues of the harmonic oscil-
lator with DBC, that is,

{m|Hy|n) = (4n + 3)é6,,,, mnr=0,12,. .N—1.

(3.5)
Alternative procedures exist for deriving the matrix ele-
ments of the operator x© appearing in (3.4). A direct way we

develop here is to use the following representation for the
odd-degree Hermite polynomials,
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(—1D"2n+ DIT(1/2)
n!

H,,, ,(x)=

n ( 1) ( n ) x2m +1
X - e
The desired result, which involves finite double summations,
reads

(m|x®|n) =T, T,T(3/2)

<8, 5,0 (3)(7)

(3.6)

k=01=0
Llk+1+ (B+3)/2] (37)
Ck+3/2)TU+372)° ’
with
T,=(-1)V(2s+ 1)1/2%! (3.8)

Equation (3.7) is simple enough to be used in practical
applications. However, it may be still reduced by carrying
out explicitly one of the sums, e.g., the sum over /. The rel-
evant terms for this sum are

§=% (-1 '(”)————”Hu) :
Igo( ) 1/ TWU+3/2)

where u = k + (8 + 3)/2. Now we note that the binomial
coefficient can be expressed as

('I‘)=(—1)’(—n),/l!,

where ( —n), is the Pochhammer symbol.® Moreover,
'(!+2) =I'(z)(2),, so that (3.9) is the same as
_ e 1 (=m@), (3.10)
[(372) /S ! (3/2),
As n is integer, the sum in (3.10) corresponds to the hyper-
geometric function ,F, ( — n,u;3/2;1) which has a very sim-
ple known expression.® Thus we can write (3.10) as

(3.9)

Clk+ (B+3)/2]0(n—k—f/2)

S= (3.11)
'(n+3/2)T'(—k—-B/2)
Finally, the matrix element of interest is given by
(ml_xﬁln> = Tm T’l —F_(_3/2_).__
I'(n+3/2)
X3 (— 1)*("’)
k;o k
L+ (B+3)2]10(n —k—B/2)
L(k+3/)T(—-k—-B/2) '
(3.12)

where the sum can be shown to be a polynomial of degree
m + n in B. A case of particular interest is the matrix ele-
ment {0|x? |n) which, after some trivial algebra, reduces to

1 C[(8+3)/2]

{0|x?|n) =
J@Cn+ '(3/72)
XBB—-2)(—-2n+2), n=12,..
(3.13)

Equation (3.12) is an exact closed form expression for
the matrix elements of the operator x? in the simple harmon-
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ic oscillator representation supplemented by DBC. Explicit
forms of the first few matrix elements of x# are given in the
Appendix. The same procedure leads to similar closed form
expression for the matrix elements of x? in the regular har-
monic oscillator representation.

IV. LARGE COUPLING EXPANSION

The idea behind the large coupling expansion is to con-
sider the potential

Vix) =x*+Ax—¢ (4.1)

and Taylor expand it around its minimum. Let x,, and ¥, be
the values of x and V(x), respectively, at the minimum. It is
easy to see that

X, = (la/z)l/(a+2) (42)
and
Vm — /l 2/(a+2) [ (a/2)2/(a +2) + (Z/a)a/(a + 2)]. (43)

Let z=x — x,,. The expansion of V(x) around z=0
can be written as

: . )
V@)=V, +(@+2)7+ Y (— 1)"% (@) 2%

¥ kY’
(4.4)
where (a), is the Pochhammer symbol® and
u=(2/Aa)/=+2, (4.5)
Now let us rewrite the Schrédinger equation as
—d? 4
[=5+v -5 (4.6)

The zero-order contribution to E is given by

E=V,=(1+2/a)u"? 4.7

and the next contribution comes from a harmonic oscillator
in z, characterized by the energy parameter

o=\a+2. (4.8)
Thus, in the large coupling expansion method we have

E)=(1+2/a)u 2+ (a+2)"?

+ higher-order terms in . (4.9)
For the particular case @ = 5/2, we have
E(A) 2 ( > )4/9/1 a/9 ( 2 )V2 4.10
=5\ + ey + . (4.10)

Numerical results for several values of A are displayed in
Table L.

The higher-order contributions can be obtained through
a special perturbation expansion as shown in the following
discussion. Consider

H=H,+ 3 w'H,,

n=1

(4.11)

with,

g2

dz?

where, as before, z=x —x,,, and V,, and w are given by

(4.3) and (4.8), respectively. In (4.11), H, is given by
H, ,=(-D"2/a)(a),, (z"/m!) (4.13)

with u, defined in (4.5), playing the role of a coupling con-

stant.
Now, as usual, set

E(u) = Eg+pE, + W’Ey + -

+R 4V, (4.12)

0=

(4.14)

TABLE 1. Ground state energy eigenvalues of the spiked harmonic oscillator for @ = 5/2. The superscripts in the energy E denote the dimension of the
harmonic oscillator basis set (supplemented by Dirichlet boundary condition) employed for diagonalizing the matrix of the energy operator defined by Eq.
(3.4). Also shown are the energies obtained from Eq. (4.10) and from fourth-order large coupling perturbative calculation Eq. (4.33). For comparison, the
values obtained from Ref. 1 and from numerical integration of the corresponding Schrodinger equation, labeled “Exact,” are also tabulated. All energies are

displayed in arbitrary units.

Large coupling 4th order

A EW E®? E"® expansion perturbation Ref. 1 Exact
0.001 3.004 091 3.004 086 3.004 078 3.004 075 3.004 028 3.004 022
0.005 3.020 455 3.020 346 3.020 148 3.020071 3.019 259 3.019 142
0.01 3.040910 3.040 475 3.039 701 3.039 409 3.036 753 3.036 729
0.05 3.204 553 3.193 800 3.177 840 3.172753 3.136 946 3.152 429
0.1 3.409 106 3.366 866 3.316 061 3.302 485 2.835 650 3.201 251 3.266 873
0.5 5.045 531 4216 199 3.919 691 3.882 167 3.581992 3.860 533 3.481 265 3.848 553
1 7.091 062 4.688 097 4.354 247 4.329 449 4.108 987 4.323 602 4.317 311
5 23.455 313 6.304 223 6.297 319 6.296 712 - 6.185 725 6.297 553 6.296 472
10 43.910 626 7.951 033 7.735 637 7.735 136 7.652 122 7.735 582 7.735 111
100 412.106 269 36.802 319 17.541 891 17.541 890 17.511 104 17.541 916 17.541 889
1000 4094.062 688 324.897 482 44.967 048 44.955 485 44.944 307 44,955 486 44,955 485
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P(p) = o+ pth + i + (4.15)
From
Hy(u) = E, ¢(u) (4.16)

and collecting terms in powers of i, we get
S Hotpm= D EnVom» n=012... (4.17)
m=0 m=0

To solve this hierarchy of equations, let us project on the
complete basis |V ) generated by the harmonic oscillator
eigenvalue problem

—d?
Hy|N) =(7+m222)|1v)
=ey|N), N=0,1.2,.. (4.18)

The solution to (4.18) is well known and given by

1 Y20\ _oon
|N>=(Nl2N) (7) ¢ Hy o),

(4.19)

with
ey =20(N+1/2), (4.20)

where H), is a Hermite polynomial normalized in the inter-
val — o0 <2< «. Moreover, Eqs. (4.17) are to be supple-
mented by the following orthogonality conditions

(¥o|¥o) = 1 and (¥p|¢,) =0, forn>0. (4.21)

The energy expression is obtained by projecting (4.17)
on |fo> =|0>. In doing so, we get

n—1

E,= 3 (0H, ,|¢,), n=12,... (4.22)
m=0

From parity considerations, it can be seen that E, (as
well as any E,, | | ) vanishes. So, the first high-order contri-
bution comes from £, and is given by

E, = (0|H,|0) + (O|H,|¢,) (4.23)

with H, and H, given by (4.13). The first contribution to E,
is easily calculated. To evaluate the second one, we need to
express |1,) in terms of the basis functions |V ). To do this,
let us first project (4.17) on |N ). From

n

Z (N |Hm —Emll/’n—m) =0;

m=0

it is straightforward to obtain that (N #£0,n = 1,2,...)

-l 3 -
N1 = 3 B AN IEy — Holp)oltn),
(4.25)

where p runs over the complete set (4.19). For n = 1, we get

(4.24)

_(a+Da+2)
(N¢y) = (N|Z|0),

which tells us that the only possibilities for NV are N =1 and
N =3, asin (4.26) we have harmonic oscillator matrix ele-
ments. These can be easily obtained through direct calcula-
tions. The results are

(0]2|1) = (9/80%)'/?, (4.27)
{0|2%|3) = (6/8w*)"/2. (4.28)
Thus, from (4.26) and the results above, we obtain

(4.26)
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WE, =

1
oy =S (;;Z)T,f’ [911) +6[3) ).

Going back to (4.23), we see that to get the contribution
E, we need the following harmonic oscillator matrix ele-
ments

(O|H,|0) = (@ + 1)(a +2)(a +3)/16w% (4.30a)

OH 1) = —(a+ 1)(a+2)/(8x°)"%,  (4.30b)

(0|H,|3) = —6(a + 1)(a +2)/3(8a%) /2. (4.30c)

Thus, using (4.8) we get the total second-order contri-
bution

WE, = (2/Aa)Y TP (a + 1)(8 —a)/72. (4.31)

The calculation of the next correction is quite involved,
because of the long emerging expression to be manipulated.
We have used a (deceptively simple) algorithm using the
symbolic manipulation package SMP'? to get the next E,
correction. We ran out of memory when trying to evaluate
E,. The contribution is given by

(a+ D(a—2)(a?—a~—T4) ( 2 )4/(a+2)

17282 + )2 Ao

(4.29)

€

(4.32)

and putting everything together we finally obtain, for «
=5/2,

9 5/1 4/9 9 172 77 4 4/9
=33+ () )
“) 5\4 + 2 + 288 \ 54

1967 (2\'%f 4 \*°
2 )
Numerical results for several values of A are displayed in
Table L.

To go further we must abandon algebraic methods and
use some kind of seminumerical algorithm. The hierarchy of
equations (4.22) and (4.25) can be quite easily coded in
FORTRAN, in order to obtain the value of the amplitudes
(N |¢,) for a given value of @ and subsequently the corre-
sponding energy corrections E, , , in a chained way. Note
that in order to obtain -E, , ; we require all wavefunctions
Yo t1se-s ¥, Dut to obtain (N |, , ,) we need the value of
E, . . The calculation does not involve any approximation,
aside from rounding errors. The values of the first twenty
coefficients of the expansion corresponding to @ = 5/2 are
displayed in Table II. The notation is such that the energy
E(A) is given by

(4.33)

TABLE . Coefficients for the large coupling perturbation expansion equa-
tion (4.34), for a = 5/2.

n E,
2 0.267 361 111
4 —0.033 537 785
6 —0.017 395 489
8 0.011 679 410
10 0.001 109 577
12 — 0.006 825 514
14 0.002 542 598
16 0.008 178 874
18 —0.011 093 142
20 —0.014 427 769
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9 5/1 4/9 9 )1/2 ( 4 )2n/9
EQ) === = -
w=2(3)"+(3) "+ 5.

(even)

(4.34)

Here, E, behaves quite erratically with n, and probably
this is not a well behaved series expansion. When A is large
enough, say larger than 2, one can expect to get very precise
results from the expansion. However, A = 4/5 is certainly
outside the convergence radius, if such radius exists.

One can try to understand this strange behavior. The
large coupling perturbation method expands both interac-
tion and wavefunction around the classical minimum of the
potential, extending the new coordinate z = x — x,, to the
full real axis. Certainly the region ( — «,0] is spurious be-
cause of the mere statement of the problem. When A is large,
the minimum is placed at a large value of x, so that the har-
monic oscillator wavefunctions centered at x,, will not pene-
trate too much into the forbidden region. Obviously this is
not the case for small A. Probably the proper way of control-
ling this unwanted characteristic is to change variables to a
new coordinate extending along the full real axis and carry
out afterwards the large coupling perturbative expansion.

V. NUMERICAL RESULTS AND CONCLUSION

Since it is of some interest to have an idea of the relative
size of the ground state spiked harmonic oscillator energies
as the potential parameter increases, we have numerically
integrated the Schrédinger equation. The exponent a was
fixed at 5/2 to compare with Harrell’s result Eq. (2.2). The
energies so obtained are displayed in Table I under the entry
“Exact.”

From the computational point of view it resulted in a
quite complex problem. First of all, because of the singular
character of the potential near the origin, we could not use a
small error integration formula, like, e.g., Numerov’s meth-
od.!! Instead, we had to use the lowest order approximation
to the second derivative

D?*=5%h?,
where 87 represents the second-order centered differences,
and 4 is the mesh spacing. Nevertheless, the results could be
improved and tested by means of the Richardson extrapola-
tion algorithm. To give an idea of the numerical difficulties,
let us mention that to obtain the energy for A = 0.001 with
six decimal places, we had to use a mesh with 80 000 points.

From Egs. (3.4), (3.5), and (3.7) and the results given
in the Appendix, it can be readily seen that the first vari-
ational approximation (subspace of dimension 1) to the
ground state eigenenergy of the SHO is

EY = H, = (0|H|0) =3 +/1r[ (’3: 3) ]/r(s/z),
(5.1)

which coincides with the 0(A) correction of Harrell, Eq.
(2.2).

When N = 2 the diagonalization can also be easily per-
formed analytically, via the secular equation approach, and
we have
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go=1 [ 10+——,17

2425 /2
16 —,1 2220 ) ] 52
+ ( + + %2 (5.2)

From this expression, we notice that when the spikelike per-
turbation vanishes (1 = 0), the two eigenvalues become 3
and 7, as expected.

For higher values of N we have to resort to numerical
diagonalization procedures and we employed the known Ja-
cobi method. Table I shows the convergence of the results for
the ground state energy of the SHO, for selected values of 4,
as the dimension of the basis set is increased.

To analyze the results of the variational calculation it is
convenient to distinguish among three cases, corresponding
to a) large values of the coupling constant (1>10); b) small
values of A( <0.1); and ¢) medium values (1 ~1).

For large A the calculations involving few basis states
are definitely poor, but very good results are obtained when
the basis space is enlarged (dimension 10 or more). In this
region of A, the variational method converges quite rapidly
to the exact results.

In the case of very small A, one can get the wrong
impression that the variational method behaves properly.
Just to clarify the previous statement let us consider the
number 3.004 075 which appears in the column labeled E 2
corresponding to A = 0.001, in Table I. That number is actu-
ally 3 4+ 4.0914 — 164 %, where the first term is the unper-
turbed energy, the second is the first-order perturbation cor-
rection, Eq. (2.2), and the third is the contribution of all
remaining nineteen states. The coefficient of A 2 varies very
slowly with the number of states of the basis: adding more
figures, it changes from — 14.97 for N=10to — 16.16 for
N = 20. Certainly, the energy eigenvalue decreases when in-
creasing the number of basis states, but very slowly. This
behavior is a direct consequence of the abnormal properties
of the perturbation, as pointed out by Harrell in Ref. 1.

It is interesting to study this point more closely. Assume
a very small A and solve the matrix eigenvalue problem by
expanding the determinant in powers of A up to and includ-
ing A 2. Asitis well known, we end up with the perturbation-
like formula

N 2
E=E,+ O[04 —42 3 %, (5.3)
n#0 n = &0

with the difference that the sum in the A ? correction is limit-
ed to the chosen number of basis states. Analyzing this sum,
we will understand the slow variation of the matrix eigenval-
ue problem solutions.

Using (3.13) for 8 = — 5/2 there results

1€0|x#|m)|?
n#0 n—EO
1 Q2+ 4+H? Qn+d)?®
B i T e ment )’
(5.4)
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where y=T[(8 +3)/2]/T(3/2) and the factors
(2n+ 1)! and B(B—2) (B —2n+2) have been or-
dered in a special form. The ratio of the (# + 1)th and nth
terms of the sum in (5.4) is

O|x#|n+1)*/(E,  , — Ey)
(0|xP|n)*/(E, — Ep)
n (2n+2+14)°
TR 12+ )(2n+3) e
so that successive contributions to the coefficient of 4 2 are of

the same size. Moreover, each of the grouped terms in (5.4)
is bigger than 1, i.e.,

2k +1/2)/2k(2k+ 1) > 1

and each term of (5.4), apart from a global constant, is big-
ger than the corresponding term of the harmonic series
2 (1/n) which is known to be divergent.

Thus, the standard perturbation theory, Eq. (5.3) for
N - o, makes no sense, and our variational method will give
a ground state energy which converges very slowly when the
number of basis states increases. Note finally that Eq. (5.3)
is no longer an upper bound formula, and it is only valid for
N sufficiently small.

The variational results are somewhat poor for small A
and quite good for large 4. At small A the non-power series
expansion of Harrell' is appropriate, as well as at large A our
large coupling perturbation expansion gives a proper de-
scription of the ground state energy.

Finally we have the region of intermediate A(~1). In
this region, the best method is the variational one. By using
sufficiently large basis one could obtain the correct value of
the energy, but no definite statements about the speed of the
convergence can be drawn from our results.

In conclusion, it seems that the appropriate method to
deal with this class of potentials is to use a nonpower series
expansion for small coupling constant, and a large coupling
perturbative expansion for large 4. Both expansions should
be an appropriate extension of the presently known forms.
Moreover, it would also be of interest to find a connection of
both expansions for intermediate values of the coupling con-
stant.
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APPENDIX

A program has been written in BASIC for symbolically
handling the evaluation of the matrix elements of the opera-
tor x2. A listing of the program can be obtained from the
authors on request. The first ten matrix elements of x° run as
follows; where

xB. . =(m—1|xf|n — 1),
X =y=T (%)/r(w),

x‘xgz =B?’/‘/-3_!,
X3 =B(B—2)7/5,
x5, = BB —2)(B—4)y/T,
x5, = (B*+ 2B+ 6)y/3,
x5 =B(B* + 2B+ 12)y/315),
x5, =B(B> + 148 — 36)y/ 3T,
x§y = (B* +4B8° + 3687 + 648 + 120)y/5,
x5, =B(B* + 48> + 5687 + 1048 + 360)y/ 517,
x4, = (B + 6B8° + 1068+ + 4548°
+ 166082 + 39688 + 5040)y/7\.
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Some remarks on the Feynman-Kac formula
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A simple necessary condition for the existence of the representation of solutions of partial
differential equations is found. This condition is applied to obtain the known results on the
Schrodinger equation and the Dirac system in a unified way. Applications for further
equations are also possible (Weyl’s equations are discussed).

1. INTRODUCTION

The aim of this paper is to find a necessary condition for
the existence of the Feynman—Kac representation for the
solutions of evolution equations or systems of equations in
terms of their fundamental solutions; the condition does not
seem to be far from sufficient (see Remark 1). This global
condition can be applied to many systems of equations, in-
cluding Schrédinger and Dirac. Thus we are able to obtain in
a simple way the result of Zastawniak.! Moreover, that con-
dition can be expressed in a very simple way: in order that the
Feynman—Kac measure does exist, the fundamental solution
K(¢), being a priori a distribution, should be a finite (matrix
valued) Borel measure.

In recent years a growing interest in finding representa-
tions of solutions to some evolutionary systems by the so-
called Feynman—-Kac formula in terms of some vector val-
ued measure, which we shall call the Feynman-Kac
measure, has been observed. Such a representation for a two
space-time dimensional Dirac system was found by several
authors in different ways (see, for example, Ichinose,> Zas-
tawniak,>* Ichinose and Tamura,® and Blanchard et al.%).
However, until recently such a representation for other sys-
tems (including the four space-time dimensional Dirac sys-
tem) had been unknown. It was observed by Ichinose? that
the existence of the Feynman-Kac measure for the two
space-time dimensional Dirac system does not seem to gen-
eralize easily to the four space-time dimensional Dirac sys-
tem for the lack of an L* estimate. It was Zastawniak' who
first proved that such an L= estimate does not exist and
therefore the Feynman—Kac measure does not exist either.

For a long time it has been well known that solutions to
parabolic equations can be represented in terms of the Feyn-
man-Kac formula (see Kac’ and Reed and Simon®). It is
also known that one cannot represent solutions to the Schro-
dinger equation in terms of that formula; this fact was first
observed by Cameron.®® As was observed by Zastawniak,’
the corresponding proofs of nonexistence for the Schro-
dinger equation and the Dirac system are completely differ-

ent, although both rely on showing the nonexistence of L=~

estimates for solutions to the corresponding Cauchy prob-
lems.

QOur approach unifies in a certain sense the Schrodinger
equation and the Dirac system. It also explains the difficul-
ties with constructing the Feynman-Kac measure, and it
may prove useful in the future.
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Il. THE MAIN RESULT

Let us consider on R” a system of m differential opera-
tors with constant coefficients acting on C™ valued func-
tions. We denote that system by 4(d, ). Let us consider the
following Cauchy problem:

% =A(d,)u(tx), t>0, xeR’,

(2.1)
u(0,x) = uy(x), xeR".

We assume that there exists a fundamental solution of (2.1),
ie., a Z'(R",C"*™) valued function {K(#)},,, such that
for any u,cZ (R",C™) the unique solution u to problem
(2.1) is given by

u(t) = K(t)*u,. (2.2)

Definition 1: If, for any ¢>0, there exists a measure
space (2,3,u), where ) consists of R” valued paths y(s),
0<s<1t, ¥(0) = 0, while g is a C"*™ valued measure, such
that for any u,eZ (R",C™) the unique solution « to (2.1)
can be represented by the Feynman-Kac formula

u(tx) = L du(p)ugly (1) + ), (23)
then we say that problem (2.1) possesses a Feynman-Kac
measure.

Proposition 1: Assume that problem (2.1) possesses a
Feynman-Kac measure. Then for any ¢ > 0 there exists C> 0
such that, for any 4,2 (R",C™),

lu(te)f, <Clug|, - (2.4)

Proposition 1 can be easily deduced from the fact that
the variation ||} of the measure y is finite (see, also, Ref.
10).

Now we are ready to state our main result.

Theorem 1: Assume that the Cauchy problem (2.1)
possesses a fundamental  solution {K(1)},,,
K(H)eZ'(R",C™™), for 0. Assume that problem (2.1)
possesses a Feynman-Kac measure. Then K(¢) is a finite
C™>*™ valued Borel measure on R".

Theorem 1 follows immediately from Proposition 1 the
following propositions.

Proposition 2: If a distribution TeZ’(R",C™>™) satis-
fies |T+$|,<C|é|, for some constant C>0 and any
¢ (R",C™), then Tis a finite Borel measure.
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Proof of Proposition 2: For ¢eZ (R",C™), T+disa €~
function defined by (T+p)(x) = T(r,,,¢), where (7,4)
») =P —x), P(») = ¥( — — ). Hence
|T(8)].. =|T(7ed)]. =|(T*$)(0)|,<Cld|,,. (2.5)

We conclude the proof by applying the Riesz Representation

Theorem.
Let us also observe that Proposmon 2 can be also de-

rived from Proposition 5.20 in Ref. 11.

Remark I: In the future the author will investigate the
problem of sufficiency of the condition in Theorem 1, i.e., the
existence of the Feynman—Kac measure under the assump-
tion that the fundamental solution is a finite (matrix valued)
measure, of course, with some additional technical assump-
tions. This should be a straightforward corollary from the
Kolmogorov-Jessen Extension Theorem.

Also some applications to hyperbolic systems will be
considered. In that case we may consider problem (2.1) with
the operator 4(d,) perturbed by some “nice” potential
function ¥(x), i.e.,

RO — 4@t + VU,

t>0, xeR"
xeR”,

(2.6)

u(orx) = uo(x),

Then we are interested in representing a solution « to (2.6)
in the following form:

u(tx) = J; du(y)uyy(t) + x)

XCXPU Ay (s) +x)dSI . 2.7
0

The precise meaning of the above expression will be given.

The problem of continuity of paths should be discussed
also. For example, it is known? that almost all paths of the
underlying Feynman-—-Kac space for the two space-time di-
mensional Dirac system are continous (in fact, they are zig-
zag functions).

Remark 2: Once one knows that the fundamental solu-
tion K(¢) for the system (2.1) is a finite (matrix valued)

Borel measure, then, under some additional assumptions,
one can infer that the same is true for the following system:

du(t,x)

= A(9,)u(tx) + Bu(tx),
at

t>0, xeR”, (2.8)

u(0,x) = uy(x), xeR”,

where B is a linear differential operator satisfying a certain
growth condition with respect to 4 (for example, one can
take as B, u—»miKu, where meR, KeC™*™ are fixed,
? = —1). Indeed, if problem (2.1) generates a £, semi-
group on X: = C,(R",C™), then under the assumptions con-
cerning the operators 4 and B (these assumptions are satis-
fied when B is of the form miK as above) we get, by standard
theory on %, semigroups (see Ref. 12, Chap. 1II), that
problem (2.8) generates a ¢, semigroup on X. Thus by
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Theorem 1 we conclude that the fundamental solution for
(2.8) is a finite (matrix valued) Borel measure.

Ili. SOME EXAMPLES AND APPLICATIONS

Example 1: Consider the Cauchy problem for the fol-
lowing first-order equation:

du(t,x) + Ju(t,x) =0, t>0, xeR,
ot I (3.1)
u(0,x) = uo(x), xeR.

As the fundamental solution is given by K(¢) = §,, it is not
difficult to show that the Feynman—Kac measure does exist.

Example 2: For the two space-time dimensional Dirac
system

gu(,x) +A¢9u(t,x) = miKu(tx), t>0, xeR,
ot ax

u(0,x) = uy(x), xeR, (3.2)

where the 2 X2 matrices are given by
N 0 ] - [0 1]

A—[o -1l k= 1 ol’

the fundamental solution E(¢) is given by
aD(t) D) ’ imD(t)
E(1) = at dx
imD(1), aD(¢t) n aD(1)
at dx

Here D(¢) is the fundamental solution to the Klein—-Gordon
equation. It is given by the following formula;

D(t’x) =§Jo(m\lt _; )l(_x,x) (x)’
Here J,(2) is the Bessel function of zeroth order:
J,(2) = (@*T'(n + 1)) " (2/2)"

t
XJ‘ % (1 —£2)" 12 dE, zeR, neN.
—1

By direct calculations we find that both dD(z)/dt and
3D(t)/dx are finite Borel measures, and so is E(¢). There-
fore (see Remark 1) we get Ichinose’s result on the existence
of Feynman—Kac measure (cf. Ref. 2).

Remark 3: Using the ideas described in Remark 2 one
can also derive the existence of the Feynman-Kac measure
for the system (3.2).

Example 3: The fundamental solution K(¢) for the
Schrédinger equation in R” X [0, c0 ) has a density

K(tx) = (4mit) ~ "2 exp(i|x|?/4t).

Thus, although K(?) is a locally bounded Borel measure, it is
not a finite Borel measure and therefore the Feynman-Kac
measure for the Schrédinger equation does not exist.

Example 4: Consider the four space-time dimensional
Dirac system (in Weyl representation)

au(t,x) 2 c?u(t,x) — miKu(tx) =0,
i= J
t>0, xeR3, (3.3)
u(0,x) = u,(x), xeR>
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where the 43X 4 matrices 4;, K are given by

P BT B £
”‘=[1 (1)] '[O 1] 7= [o —1]

and m >0 denotes the mass. In order to write down the fun-
damental solution of (3.3) let us introduce the distribution
D(t) defined by the following formula:

D(t)($) =-— f $(ty)do(»)
4m Jiy =1

the unit sphere in R?, and J, is the Bessel function of the first
order. Then the fundamental solution E(¢) for the Dirac
system (2.3) is as follows:

E(H) = aD(’)1+ mik D(t) + 3 43 92
j=1 8xj
=92W | ik Dy + S (— 14, 228
a j=1 X

Observe that a matrix valued distribution E(¢) is a finite
measure iff all the entries of the matrix E(#) are finite com-
plex Borel measures. Since the entries on the main diagonal
of the matrices 4; dD(¢)/9x; vanish (due to the form of the

2 T (mtT = matrices 4;) and miKD(t) is obviously a finite measure, in
- Ln;—f $(1y)~ (m 1) dy, order to show that E(¢) is not a measure it is enough to show
T Jii<t V1 -1yl that neither is dD(t)/dt. For ¢eZ (R>,C) we have the ex-

where g2 (R?), do(p) denotes the Lebesque measure on  plicit formula

]
aD(t 1 Ji(mey1 —
2D () = f $(19)do(y) — (V(ty) ) 2V = D)
il “ar Jyiar N

_m ¢(t;v){2"""’“"”' ) tmJy (mtNT=T )]dy+:‘;r-fl _ (8@)do).
y| =

4 iy <1 VI—yF

Since the last term in the above expression, contrary to the
others, is not a measure, the proof that dD(¢)/dt is not a
measure is completed. Therefore, in view of Theorem 1, the
Feynman-Kac measure for the four space-time dimensional
Dirac system does not exist (see, also, Zastawniak).!
Example 5: Now we consider the so-called Weyl equa-
tion, i.e.,
du(t,x)
at
u(0,x) = up(x), xeR” (3.4)

where o is a 2 X2 matrix with complex entries satisfying
o* = I, V stands for the gradient operator, and the unknown
function u takes values in C2.

The form of the fundamental solution E(#) for (3.4)
depends on n, the dimension of the space R". Indeed,

+oVu(tx)=0 >0, xeR”

En =220 1 (o»vyD),
at
where
D(tx)=41_,,(x), forn=1,
1 1
D(tx) =—————1_,,(|x]), forn=2,
2 TP (=0

D) = ﬁ times the Lebesque measure
ar

supported on S(0,2), the
sphere of radius ¢, for n = 3.
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Once again, by direct computation, we infer that E(?) is a
finite Borel measure for n = 1,2, while E(¢) is not a measure
(thus not a finite measure) for n = 3. Hence the Feynman-
Kac measure should exist for n = 1,2 and does not exist for
n=3.
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Singular anharmonicities and the analytic continued fractions.

Il. The potentials (r)=ar24+-br—4+4+cr—¢
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The ¢ = O results of Paper I [J. Math. Phys. 30, 23 (1989)] are extended. In spite of the
presence of an additional coupling constant, the Laurent series solutions of the Schrédinger
equation that are obtained remain similar to Mathieu functions. Indeed, the recurrences for
coeflicients preserve their three-term character, their analytic continued fraction solutions still
converge, etc. The formulas become even slightly simpler for ¢#0 due to a certain symmetry of
the equations to be solved. An acceleration of convergence is better understood and a few

numerical illustrations of efficiency are also delivered.

I. INTRODUCTION
For the class of potentials

Vir)=arr +br*+cr % a>0, ¢>0, (1.1)
the radial Schriidinger bound-state problem
Lld+n ]
— Vi E ,
dr2 = + V(r) |¥(r) = EyY(r)
I=0911-"’ ¢€L2(0»°°), (1-2)

may easily be solved numerically, by some standard (say,
Runge-Kutta') method. Indeed, in both the threshold and
asymptotic domains, the required logarithmic derivatives
have a simple WKB form:

W (r)/9P(rg) =24r5 > + O(rg 1),
/1=§\/E>0, rokl, (1.3)
and
Y )/Y(r,)= —2ur, +0(7")
(1.4)

17 =i\/—a—>oy L >1’
respectively. Nevertheless, a few extremely interesting fea-
tures of the interaction (1.1) emerge after its deeper non-
numerical analysis.

(A) The finite polynomial interpolation between r = 0
(1.3) and r = « (1.4), namely,

N
U(r) =riexp( —urr —Ar?) Y k.7 (15)
m=—M
may coincide with the exact bound states for certain values
of the couplings.’

(B) In the infinite “polynomial-approximation” N — e
and M- o limit, the Laurent-series Ansatz (1.5) remains
useful: It converts our second-order differential equation
(1.2) into its second-order difference-equation counterpart:

Au+1hn +Bn+lhn+l +Cn+lhn+2 =0,
A =2u@n+2%+1) —E

Byoi=—Qn+x+1)2n+x+2)+1I+1) + 8ud,
Cpoy= —24(4n+ 2% +5) + b,
n=.,—10,1,.. (1.6)

This motivated the present paper: In the spirit of its preced-
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ing part I (Ref. 3) [devoted to the ¢ = O special case of (1.1)
where only property (B) holds], we shall show how our
transition to (1.6) simplifies the original problem (1.2). In
Sec. II, we relate the “redundant” n— o boundary condi-
tions to the “Floquet” parameter® x. In the improved nota-
tion of Sec. III, we then define the continued fraction solu-
tions to (1.6) and describe a new type of acceleration of their
convergence. Finally, we illustrate and summarize the re-
sulting bound-state prescription in Secs. V and VI, respec-
tively.

Il. THE DIFFERENCE SCHRODINGER EQUATION

A. The r—1/r symmetries

The form of our differential equation (1.2) remains un-
changed after the reflection of coordinates -7, ¢ ¢, i.e,,
say,

F=1/r, P(F) = p(r)/, (2.1a)
which implies merely the change of notation
I=1, a=c, b= —E ¢=a, E=—b (21b)

The related interchange of asymptotics (1.3) and (1.4) may
be characterized by an introduction of the “capped’ symbols

A=A A=p (2.1¢)
Moreover, we may put # = — n, denote

Aﬁ = Cn, B?\ =Bn, Ch =An, (2_1d)

;C =1- X, kh = hn,

and extend the same formal symmetry to our difference
Schrédinger equation (1.6). As a consequence, a transition
n— — n may formally be interpreted as mere “capping”
transformation of the parameters.

B. The |n| - « asymptotics
The leading-order asymptotical form of (1.6) reads
8unh, — 4n*h, , —8Anh,, , =0, |n|®»1, (2.2)

and admits the two independent “Jost” solutions A {”,
i= 1,2, with

(89 (1)
hn+l hn

and

=2u/n + O(n~?) (2.3)
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hA,/h3 + —n/2A+0(1), |n|»1. (2.4)
Obviously, the “large” C(n'™) components contradict the
M, N- « convergence of our Laurent series (1.5), so that
we must demand

h,=h®, n>l,
and

h_,,=h®,, m>l (2.6)

The latter two boundary conditions do not replace the
physical requirements (1.3) and (1.4): In light of the Flo-
quet theory,* they merely fix the values of the “additional”
free parameters x.

2.5)

Iil. SCHRODINGER EQUATION AS RECURRENCES
A. The improved asymptotics

An insertion of the asymptotics (2.3) and (2.4) in the
difference Schrédinger equation (1.6) or (2.2) recovers its
asymptotical degeneracy to the two-term recurrences. Thus,
for the positive or negative large n, respectively, the third or
first item in (1.6) or (2.2) represents just a small correction
of the order O(n~2).

In the former case, the Ansatz

Qu)T(n+a+1) P
T(r+B+ DI (n+y+ 1"

n+1 —

a.1)

with .

U?=(1+1)*+ 8u4,
improves the first boundary condition (2.5) by a few further
corrections. It also simplifies the difference Schrédinger
equation which, in the new notation, acquires the form

Pot = Pn =PnPnsis

n+a+1)(n+d

@, = 4ud ( )( ) : ,
(n+B)(n+y)(n+B+D(n+y+1)
S=lx+3i—b/8A. (3.3)
Similarly, the second boundary condition (2.6) finds an

adequate gamma-function representation in the alternative
Ansatz

3.2)

ho = )" (m+s+1) 4 (34)
Fm+v+DI'(m+w+ 1)
with the parameters
s= —lx+3+b/84, wy= —Ix+3;+41U (3.5)
Obviously, the related new difference Schriodinger equation

Am—-1 —94m =¢mqm+l9

¥, = 4ud (m+s+1)(m+e) ’
(m+vy(m+w)(m+v+1D(m+w+ 1)
€= —ix+1+ E/8u, (3.6)
remains related to (3.3) by the capping transformations
(2.1), with

ﬁn =4 Qm =Pm> é’n =¢n’ 'Zm =@Pms

3.7)
and
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A

a=s, B=v, (3.8)

Thus, without any loss of generality, we may work with one
of the two limits |7|— oo only.

y=w, d==e

B. The initial values

Strictly speaking, the boundary conditions (2.5) and
(2.6) need not necessarily be postulated in a capping-sym-
metric manner. Indeed, both these respective requirements
are easily seen to represent just the conditions p,, ~const and
4., ~const for n and m% 1. In light of Egs. (3.3) and (3.6)
we may replace them immediately by an alternative require-
ment

Prni1=0, g1 =0, Now, M- . 3.9)

Equation (3.9) admits arbitrary normalizations (say,
py’ = 1and ¢ = 1) and we may then use Eqgs. (3.3) and
(3.6), respectively as recurrences. In such an interpretation
(see, also, Paper 1), the respective alternatives (3.3) (with
n»0) and (3.6) (with m>»0) are equivalent to the n>0 and
n< — 2 rows of our original Schridinger difference equation
(1.6), and define the “asymptotically correct” (equivalent-
ly, “Jost-like”) sequences p§’ .,pP5%) 2, P, and

a2 1,42 ,,....4%,, respectively. The remaining n = — 1
oW,

Ah D, /R 4+ By + Coh (V7R ED =0, (3.10)

may be employed as a matching condition for the two recur-
rences. Computationally, the latter equation restricts only
our freedom in choosing parameters: In what follows, we
shall use it as a definition of »’s for each choice of energy E.

IV. THE ANALYTIC CONTINUED FRACTIONS AND AN
ACCELERATION OF THEIR CONVERGENCE

We may introduce the quantities

f;nzpn/pn—l’ gm=qm/qm-—1’ (41)

and rewrite our Schrédinger equation [recurrences (3.3)
and (3.6)] in the form

L=V 4@ foii) 8n=VU+Y,8,,1) (42)
In combination with (3.9), they represent the standard ana-

lytic continued fractions®~’
1
fo= 7 —,
1+o, .
l + ¢n +1
| I+ (4.3)
E&m = ]
1+ 49, I
" e,
Vms1 T

With the finite truncation parameters and initial values

fN+1 =0, 8M 41 =0, (4.4)

our recurrences (4.2) still define good approximants since
the - corresponding coefficients are asymptotically very
small,

@, =0(1/n%), ¢, =0(1/m?). (4.5)
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Numerically, it is therefore reasonable to define our solu-
tions (3.1) and (3.4) as products, with

pn =fll.f;l— 1" .fno+ l'pn,,’ qm =gmgm— 1" .gm.,+ lqmo!

(4.6)
where p, and g, represent the two alternative normaliza-
tions.

In general, the continued fractional convergence may be
accelerated by means of the fixed-point technique as de-
scribed in Paper I. An alternative rearrangement will be de-
scribed now—it seems to be much more efficient for the par-
ticular form of our recurrences (4.2) [with the small
parameters (4.5)]. For the sake of brevity, we shall recall
the capping symmetry (3.7) and restrict our attention to f,,’s
in what follows.

Starting from the slightly modified form of Eq. (3.3),

— 10 (0)
Proivt =Xns1Pn —Pn+1Pns2s
(0) 0)

Yot1=1 @ai1=@uirs
we shall eliminate p, , , from Eq. (3.3). We get the j=1
formula

4.7)

Pn =Xt({)pn——l _¢g)pn+j+1s (4-8)
where
X“)= xSlO) = 1 »
1+92x% 1+¢. (4.9)
P = — PPt _  PaPais
" 1+ 0%, 1+ g,

Next, we modify the preceding j = 0 and j = 1 formulas,

— 4,(0) (0)
Pni2=Xn+2Pn+1 —Pni2Pnyss

— (D (1)
Prni1 =Xns1Pn —Pni1Pnsas

eliminatep, , , and p, , , from (4.8) withj = 1, and get the
explicit j = 2 form of the latter prescription, with

() Xl(ll) 1+¢n+1

4.7

X e XD, 14 +@rrr
PP = —p PitatXnta@Pri _ PrPrs1Pat2
" Tl 14 @+ Pass
(4.9')

For the subsequent j ’s, the coefficients may also be found in
the same manner.

In combination with definition (4.1), our relation (4.8)
implies that

Lo=xP7A 4+ @0 fasi fosz Srorjer) (4.10)

These recurrences have the structure of the “extended” con-
tinued fractions® and degenerate back to the ordinary con-
tinued fractions and Eq. (4.2) for j=0. Since
@ ¥ = 0(n~%2?) is extremely small for large n’s, even the
drastic truncations of (4.10), e.g.,

S =xP(1 + 0(1/n¥+?))

=¥/ + @ PxPs 1 x4 O+ O(1/n¥ %)),
(4.11)

etc., represent the extremely efficient approximants.
The first nontrivial formulas (4.11) may already be de-

110 J. Math. Phys., Vol. 31, No. 1, January 1890

rived from the explicit equation (4.10),

H=VA+@, —0.@u i iSuiiSri2) (4.12)
Its simplicity is, surprisingly, preserved also by the higher-
order formulas

-0
f;, - "+an+1 , (4.13)
(Q,?’— | (—¢mfm+1))
where
Q- V=Q©W=1 (4.14)
and
QI =00, +@. Q0 j=01., (415

in general. The proof by induction is a simple consequence of
the identity (a+b) " '=a " '+a " 'b(a+b)"". A rear-
rangement

. I22
QP =140, + Y Puy111QP, j=23,., (416)
I=0

of (4.15) quickly gives the final algorithm for each reasona-
blej.

V. THE PHYSICAL BOUND STATES
A. An imposition of boundary conditions

In a way paralleling Paper I, we may pick up two roots
%,(E) and x,(E) of the “Hill determinant” [Eq. (3.10)] or
of its equivalent continued fractional (or extended contin-
ued fractional) form

1+9¢_18+@_1fo=0. (5.1)
The corresponding pair of the Laurent-series solutions
¥ 2(r) = ¥(rx,), i = 1,2, may be then used in a superposi-
tion

P(r) =d () + dyp?(r) (5.2)

and defines the general solution of our differential equation
(1.2) of the second order. We have to avoid the cases where
the two functions ¢‘”(r) are linearly dependent (e.g., for
%, = %, + an even integer).

In accord with the standard oscillation theorems,* the
number of nodes (zeros) of ¢(7) may only increase with the
increasing energy E. As a consequence (see, also, Paper I),
all the binding energies may be characterized by an asympto-
tic emergence of a node in ¥(r),

Y(r) =0, ¥(r,)=0, ry€l, r >1. (5.3)

In the limit r,— and r_ — 0, such a pair of equations will
specify the exact binding energies and coefficients d, in (5.2)
in principle. Thus an insertion of (5.2) gives

dﬂ&m("o) + dz'ﬁm(’o) =0,

d(r, ) +daf?(r,) =0, >4
and the related secular equation
¢(I)(ro) '/,(2)(’.0) )
d""(zﬁ‘"(rw) 9] =° -9

defines the spectrum of energies.
In place of the simple-minded requirement (5.3), we
may also employ our knowledge of the more precise asymp-
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totics (1.3) and (1.4). This leads to a pair of equations simi-
lar to (5.4),

did;o+ drAy =0,

da,, +dA,, =0, 46
where

Aij= i hm(x=x,.)r2m+x"(2m+x,- +Aj)’

1= 1,2’ j=0)w9 (5.7)

and the constants A; represent the explicit second-order
WKB corrections

Ao= —3—b/4A, A_=}—E/4u. (5.8)

The energies may also be computed as roots of the modified
secular equation

A 10 AZO )
det ( 4 4 =0
in principle.

(5.9)

leo 20

B. Numerical examples

For a given set of couplings in our Schrédinger equation
[(1.1) and (1.2)], we may employ Eq. (5.1) as an implicit
definition of functions x,(E) and x,(E), and determine nu-
merically the binding-energy root from Eq. (5.5). The for-
mer procedure resembles a search for solutions of quadratic
equations: We have chosen our examples in such a manner
that the two roots happen to be complex conjugated,

%1, =Rex + iw(E).

We have also scaled r—const X r in such a way that a = 1.
Then, we have employed the purely numerical Runge-
Kutta' algorithm (cf., also Paper I) and determined the
“reference” exact energies E,,,.,. Their sample is listed in
Table I for ¢ = 0.8 and for a few different values of b. For our
choice of the matching points (quite close to the semiclassi-
cal turning points: r$V%® =0.74 for E = 4.8, and r{V¥®
=0.66 for E = 9.44, etc.), the ground-state precision is al-
ready quite satisfactory. For the first excited state, high pre-
cision is not yet achieved.

The first comparison of roots E of Eq. (5.5) with E,,,
is displayed in Table II. Again, very good precision is

TABLE L. The convergence of energies with 7,—0 and 7, — « (the stan-

dard Runge-Kutta method, a = 1, ¢ = 0.8): (A) ground states, (B) the.

TABLEII. A comparison of present results [ E from Eq. (5.5)] with E,,,
of Table I. (A) E — E_,,,, ground states. (B) E — E_,,.,, the first excited
states.

b 1.00 1.02 1.04 1.06
"o T E- Eeml
(A) 03 35 0.00730 0.007 34 0.007 39 0.007 43
025 4.0 0000370 0.000373 0.000376 0.000 379
02 45 0000016 0.000016 0.000016 0.000016
(B) 03 35 0.063 0.520 0.185 0.021
025 4.0 0.023 0.023 0.023 0.023
02 45 00013 00013 —0.0005 —0.064

achieved for ground states, and good results also appear in
the excited states. An exception (the last excited-state col-
umn) may immediately be understood after an inspection of
Table ITI where the corresponding x’s are listed: Close to the
real axis, the values of w (E) remain still strongly sensitive to
the variation of r, and r _ . This represents one of the imman-
ent limitations of the method—in a way analogous to the
theory of Mathieu functions,® a modification of the Ansatz is
needed at the singularity @ (E) —0. Because of the worsen-
ing of convergence as observed above, such a situation is less
interesting in the present context; vice versa, the increase of
|@(E)| becomes reflected by an improvement of precision—
this may be illustrated by a comparison of Tables II and III
in the ground-state cases (A).

A priori, an improvement of the boundary conditions
[equal to a transition to the secular equation (5.9)] should
also improve the rate of convergence. In practice, it is not
always so—this problem appears even in implementations of
the Runge—Kutta method sometimes. Here, an explanation
is quite easy—the differentiation worsens the rate of conver-
gence of the expansions (5.7). As a consequence of the relat-
ed rounding errors, Eq. (5.9) is not always superior to Eq.
(5.5) in the numerical sense. A typical illustration of this
ambivalence is presented in Table IV. Again, the position of
singularities is relevant—in accord with Table V, the
ground-state root », (E) moves towards the real axis during
an increase of the coupling & from the value 0.8. In fact, the
complex conjugate roots meet [reach w(E) =0] some-
where in between the values of & = 0.904 and 0.908. Table V
illustrates also the further movement of x,(E)—presum-
ably, it reaches the value », =l at b= 1.

TABLEIIL Parameters x, , = 0.5 + i [ = roots of Eq. (5.1) ] pertaining

first excited states. to Table II.
b 1.00 1.02 1.04 1.06 b 1.00 1.02 1.04 1.06
To ’ee Eeucl < 0 r o @
(A) 03 35 487670 4.883 68 4.890 63 4.897 54 (A) 030 35 0.66042 0.678 22 0.695 15 0.711 30
025 40 487598 4.882 95 4.889 89 4.896 80 025 40 0.66058 0.678 35 0.695 24 0.711 35
02 45 487593 4.882 94 4.889 86 4.896 77 020 45 0.66059 0.678 35 0.695 25 0.71135
(B) 03 35 94414 9.448 7 9.456 0 9.463 1 (B) 030 35 0.568 0.651 0.490 0.305
025 40 93787 93857 93926 9.399 5 025 4.0 0534 0.469 0.383 0.253
02 45 93736 9.3806 9.387 5 9.394 4 020 45 0525 0.458 0.367 0.137
111 J. Math, Phys., Vol. 31, No. 1, January 1990 M. Znojil 11



TABLE 1V. A comparison of results for the simple and WKB boundary
conditions [Eq. (5.1) for x,, = 1.5 £ iw(E) and the respective Eqgs. (5.5)
and (5.9) for energies]. (A) The ground state witha = ¢ = 1 and b = 0.8.
(B) The first excited state witha=c=1and b= 1.

Boundary
conditions Simple WKB
r I w(E) E—E_.. o(E) E—-E,,..

(A) 03 35 044435 0.007 75 0.459 0.044

025 40 044105 0.000 44 0.452 0.029

02 45 0.44088 0.000 14 0.447 0.016
(B) 03 35 11702 0.200 1.142 49 0.0641

025 40 11445 0.258 1.14125 0.0049

02 45 11413 0.002 1.141 17 0.0004

Vi. CONCLUDING REMARKS

In a way that resembles the use of the exact Mathieu
solutions for potentials ¥~ 1//* (see, e.g., Ref. 10 or the
review by Newton'!), we have described here the quasi-ex-
act construction of bound states in the potential (1.1).

A core of our construction lies in the use of continued
fractions. In this respect, our method and, in particular, the
related new technique of acceleration of their convergence,
might prove relevant in a broader methodical context. In
conclusion, let us mention at least the following three possi-
bilities.

(a) In a number of papers, we may find an analytic
continued fraction rearrangement of the three-term recur-
rences that resemble our Eq. (1.6) even by their power-series
origin. In the underlying spectrum of technical problems, we
may distinguish between the mathematically “safe” vari-
ational tractability of the potentials derived from

4P/ +gr*) 6.1)

(seee.g., Ref. 12), and the straightforward (so-called “Hill-
determinant”) treatments of the forces of the type

ar* + bt + c° 6.2)

(see, e.g., Ref. 13). Both these techniques lie very close to
our present construction: The acceleration of the continued-

TABLE V. The first ground-state root x,(E) of Eq. (5.1). An example of
its transition in the complex plane (a=c=1).

Yo 0.30 0.25
r. 3.50 4.00
b Re x, Im »x, Re x, Im x,
1.00 1.0005 0.0 1.0000 0.0
0.98 1.0705 0.0 1.0699 0.0
0.94 1.2259 0.0 1.2251 0.0
0.92 1.3331 0.0 1.3319 0.0
0.908 1.4639 0.0 1.4590 0.0
0.904 1.5000 0.1035 1.5000 0.0843
0.90 1.5000 0.1383 1.5000 0.1247
0.88 1.5000 0.2438 1.5000 0.2367
0.80 1.5000 0.4443 1.5000 0.4410
0.60 1.5000 0.6686 1.5000 0.6669
0.20 — 0.5000 —0.8731 — 0.5000 — 0.8721
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fractional convergence plays an important role in it.

(b) Formally, a very broad class of applications of con-
tinued fractions has been inspired by the Lanczos ideas'*
related to the theory of moments.>~” For a sketchy illustra-
tion, we may recall, e.g., the diagonalization of the so-called
chain models in the condensed-matter physics'® or the ex-
tensive Lanczos-type computations in nuclear physics.!®
Also, we may mention here the closely related rearrange-
ments of the divergent Born series'” or the whole rich do-
main of the nonequilibrium statistics,'® etc. Often, an accel-
eration of convergence remains an open problem in this
context.'®

(c) Whenever we interpret continued fractions as a spe-
cial case of the Padé resummation,”® we immediately get in
close contact with the perturbation theory.?! In this setting,
an acceleration of convergence is of extreme importance?
and, presumably, new inspiration could stem from the pres-
ent results. Unfortunately, this question already lies too far
beyond the scope of the present paper.
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One of the distinguishing features of soliton equations is the fact that they can be written in
Hamiltonian form in more than one way. Here we compare the different quantized versions of
the soliton equations arising in the AKNS inverse scattering scheme. It is found that, when
expressed in terms of the scattering data, both quantized versions are essentially identical.

In 1975, one of the present authors® showed how to ob-
tain the quantized levels of the nonlinear Schrédinger equa-
tion using the action-angle variables (canonical coordi-
nates) of the AKNS scattering data. The symplectic form
used to effect the reduction to canonical coordinates was
based on the standard Hamiltonian structure for the nonlin-
ear Schrodinger equation. The method used was a nonlinear
generalization of one of the standard methods for the second
quantization of the electromagnetic field. As presented in
the textbook by Schiff,> one takes the classical electromag-
netic field and decomposes it into normal modes (Fourier
components). The key idea in this approach is that the clas-
sical electromagnetic Hamiltonian will decompose into a
sum of noninteracting classical Hamiltonians, each of which
has just two degrees of freedom and is easily quantized by
itself. This method of quantization bypasses all the inherent
difficulties of fully quantizing the system, including the fac-
tor-ordering problem, defining the quantum field operators
for the fundamental fields, etc.? It is fundamentally based on
the symmetries of the classical system, and reduces the prob-
lem to one of quantizing noninteracting particles.* In this
way, the original difficult second quantization problem is
reduced to a simpler set of noninteracting problems. The
advantage of this simpler solution is tremendous when one
considers the information that one can glean from it. First,
one can obtain the spacings of the energy levels. One also
discovers which quantum variables will commute, and
which modes will have a particle-like behavior. Of course,
for a full quantum theory, one still has to deal with a number
of remaining difficult problems, including finding a consis-
tent factor-ordering for the quantum operators, evaluating
matrix elements, etc. Unfortunately, the solution to this
larger quantization problem may well be multivalued.’
However, in the meantime, one has been able to immediately
isolate the above mentioned important features of second
quantization, and, very importantly, those quantities which
would have the same common solution for every possible
consistent second quantization. Thus, any difficulty which
would be found at this level would also be present in any
quantum field theory. And a study by this method can pro-
vide valuable insight into the structure of the more thorny
parts of the second-quantization problem.

The symplectic form used in Ref. 1 to effect the reduc-
tion to canonical coordinates was based on the first Hamilto-
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nian structure for the nonlinear Schrédinger equation. In
1978, Magri® showed how many soliton equations, including
the nonlinear Schridinger equation, could be written as bi-
Hamiltonian systems, meaning that they have two distinct,
but compatible, Hamiltonian structures. Indeed, his funda-
mental result showed that, subject to some technical hypoth-
eses>® any bi-Hamiltonian system is completely integrable in
the sense that it has infinitely many conservation laws in
involution and corresponding commuting Hamiltonian
flows.

From the viewpoint of quantum mechanics, the exis-
tence of more than one Hamiltonian structure for a given
classical mechanical system raises the possibility of there
existing more than one quantized version of this system,
even at the level of quantization considered in Ref. 1. The
resulting ambiguity in the quantization procedure raises se-
rious physical doubts as to the mathematical framework of
quantization. However, the main result to be proven here is
that, for AKNS soliton equations,’ both quantized versions
are essentially the same. We demonstrate that, in terms of
the respective canonical coordinates on the scattering data,
the two Hamiltonians have identical expressions, and hence
identical quantum versions. Indeed, we conjecture that this
phenomenon is true in general: qguantization does not depend
on the underlying Hamiltonian structure. (The results of Do-
donov et al.,® in which an ambiguity in the quantization pro-
cedure for certain finite-dimensional bi-Hamiltonian sys-
tems is supposedly demonstrated, are erroneous, since they
fail to incorporate the important topological properties of
phase space properly in their picture. Indeed, their ambigu-
ity is just a version of the ambiguity inherent in the quantiza-
tion of two-dimensional Hamiltonian systems, which we dis-
cuss in detail below.) Moreover, we will see that for the other
members of the associated hierarchy of soliton equations the
only difference in the quantum versions is in the choice of
weighting factor for the quantum operators corresponding
to the continuous spectrum, the weight being determined by
the classical dispersion relation, and the replacement of the
bound state Hamiltonians. Thus, the effect of quantizing dif-
ferent members of the soliton hierarchy will only be signifi-
cant for the bound states/solitons.

Our presentation relies heavily on the notation and re-
sults in earlier papers by Kaup and Newell’*'° on the clo-
sure of the squared eigenfunctions for the AKNS scattering
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problem. The key to our result is the well-known fact that the
recursion operator, which is built out of the two Hamilto-
nian operators for the system™® is essentially the squared
eigenfunction operator. Since variations in the potential for
the AKNS scattering problem are expressed in terms of the
squared eigenfunctions, the second symplectic form can be
simply written down in explicit form. In terms of the scatter-
ing data, it differs from the first symplectic form only by a
weighting factor in the continuous spectrum, and a change
in the discrete components. However, the corresponding dif-
ference in weighting factors for the two Hamiltonians exact-
ly cancels out the weighting factor for the two symplectic
forms, while the discrete components reduce simply to the
quantization of a two-dimensional Hamiltonian system,
based on different symplectic structures. Thus, the entire
quantum ambiguity reduces to the simple matter of an ambi-
guity in the quantization of two-dimensional Hamiltonian
systems, a problem that is easily handled.
Our notation is as follows. Hamilton’s equations are

3,0°=J"®9,H, 1)
where Q = {Q"} are the dynamical variables (the p’s and
the ¢’s), J = [J*#] is the Hamiltonian operator, which de-
termines the underlying Hamiltonian structure of the phase

space, and H is the Hamiltonian function or density. For
instance, for a harmonic oscillator, one would take

Q=(Z), J=(_(1) (1)), and H=}(p*+¢").

When Qs a function of a continuous variable, the sum over
the dummy indices in (1) is understood to include the ap-
propriate integration, and the partial derivative is under-
stood to be a functional derivative instead. The Poisson
bracket determined by such a Hamiltonian operator has the
form

{F, G} = (3, F)J** 346, (2)
which requires the symplectic two-form to be
0 =1d0*AJ 5'dQ”. 3)

For the harmonic oscillator, this reduces to the familiar ca-
nonical form

QN =dpAdg. 4)

Therefore, the operator J needs to be skew adjoint, and satis-
fy the additional condition that the Poisson bracket (2) sat-
isfy the Jacobi identity, which is equivalent to the require-
ment that the two-form Q can be closed.®

Before presenting the main results, we discuss a simple
but crucial fact that any two-dimensional Hamiltonian sys-
tem has a unique quantized version, even though it has many
different Hamiltonian structures. In terms of the standard
Hamiltonian structure prescribed by the canonical two-form
(4), Hamilton’s equations take the classical form"!

P - 4, =" (5)

In R% any nonzero two-form A(p, ¢)dpAdg is always
closed, and hence determines a Hamiltonian operator
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0 -1

J=l1 A

A 0

It is easy to see that (5) can be written in Hamiltonian form
using this second Hamiltonian structure if and only if A is a
function of the Hamiltonian H. In this case, the new Hamil-
tonian function is

H,(p.g) = P[H(pg)],
where ®(£) is any nonvanishing scalar function, and
2, =P'[H(p,q)1dpAdg (6)

is the second symplectic form. Re-expressing {1, in canonical
form will lead to new canonical variables p, g, and an ostensi-
bly different quantized version. However, provided this
transformation does not affect the phase space topology, it is
not hard to see that these two quantized versions will end up
being identical, at least in the semi-classical limit, and so
there is no ambiguity in the (semi-classical) quantization of
two-dimensional Hamiltonian systems.

We now turn to our problem at hand. For simplicity, we
will consider the general nonlinear Schridinger equation

iqt = —xx + 2"72, (73)

ir,=r, +2q7, (7b)
in detail. However, our arguments will work equally well for
any other soliton equation associated with the AKNS spec-
tral problem’; see the remarks at the end of the paper. For
r= + ¢*, (7) reduces to the single equation

g, = — 9. £2(¢* 9 q, (8)
which is the form of the nonlinear Schrodinger equation in
which all physical constants, e.g., #, m, etc., have been set

equal to 1. According to Magri,’ the nonlinear Schrédinger
equation can be written as a bi-Hamiltonian system

\Ilt =JlaH1=J2(9H2. (9)

The first Hamiltonian can be identified with the (signed)
energy

Hl= :tE—_—J' (qxrx +q2’2)dx’

while the second Hamiltonian is the field momentum

o0

(10)

H,=P=j (rg, —gqr.)dx. (11)
The two Hamiltonian operators are given by
0 - 1)
h=a=(0 7). (12)

J2=—0'lax +

2 [ o]
- q r r
— - (13)

(In our notation,® we have omitted the delta functions used
by some authors.) Moreover, these Hamiltonian structures
are compatible, in the sense that any linear combination
¢/, + ¢,J, is also Hamiltonian. Therefore, according to the
theorem of Magri the operator

1 qf_wq _qf_a.,' a_(o 1)
* YT\ o
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R=J,J! (14)

is a recursion operator for the general nonlinear Schrédinger
equation, leading to an infinite hierarchy of mutually com-
muting bi-Hamiltonian flows.

To determine the two quantized versions of the nonlin-
ear Schridinger equation, we need to introduce canonical
coordinates and momenta, which will be found among the
scattering data for the associated eigenvalue problem. We
begin by recalling how this was done in Ref. 1 for the first
symplectic form. The general nonlinear Schrédinger equa-
tion can be solved using the AKNS eigenvalue problem’

Vi +vy=quy Uy, (15)
We let
_ v:)
+=(;
be the solution to (15) satisfying the boundary conditions

_af1 a(é)e““")
- i6x — — - e d
d—e (0), X w0, ¢ (b(;)eig" y X— 00,

-_— i;vz =I’U1 .

for Im £ > 0. Similarly, let

()

be the solution to (15) satisfying the boundary conditions
— {0
""’e—@‘( 1)’ ==

- (b({)e '5")
¢ (—a(g‘)e'gx X 00,

for Im § <0. This serves to define the scattering coefficients
a, b, a, b, which also satisfy

a(f)ag) +b(Hv(6) =1. (16)

Theratiop(&) = b(£)/a(£), & real, serves to define the con-
tinuous spectrum of the scattering data for (16). The zeros
of a({) in the upper half plane correspond to the bound
states, and are denoted as §; = ¢; + in;, j = 1,...,N. Finally
let b; denote the value of b at §;, and let p; denote the residue
of p at the pole §;. Similar quantities are defined for the
eigenvalues §;.

In Ref. 1 it was shown how to express the first symplec-
tic two-form in terms of the scattering data in the case
r = + ¢*. Tracing through the calculation there in the more
general case, we find that

Q= ir {8g A br}dx
_ i f " (log b(£) A6 log[@(£)a(£) 1}dE

-2 2(6§,A510gb +6§,/\610gb,) » (17

i=1 ]

(L‘)—15V=£f [80(£) (L4 ~"¥(&)

N
—2'S (Go, (LYY, +p,86,(LY "y, +
=

%Jw (5P(§)‘l’(§)

where the last sum is absent if » = 4 ¢*, since there are no
bound states. When r= 4 ¢*, then @(£) =a(£)*, and
b(&) = F b(£)*. In this case one can choose canonically
conjugate variables by letting

Aj = 477]’ pi= - 4§j! P(g) = - (l/ﬂ)IOS‘a(g)l ’
represent the momenta (p’s), and letting

B, =argb;, gq;=log|b,|, q(&)=argb(£)

represent the conjugate coordinates (g’s) for the system.
The first Hamiltonian functional is then expressed as

- :tE=%f £2log(|a(&)])dE

8 X -
-=3 & (18)
3 4
From this expression, the quantized form follows directly as
in Ref. 1.

For the second symplectic form, we first recognize that
by (12), (13) and Ref. 7,

JZ=LAJI=LA02, (19)
where L# is the recursion operator for the squared eigen-
functions. Recall that the squared eigenfunctions corre-
sponding to (15) are the functions

Ul(é',x)z)
v (&x)%

We define the corresponding quantities W; for the bound
states §; similarly. The key result'®is that the recursion oper-
ator L4, given in (19), has the squared eigenfunctions as
eigenstates:

Y(Sx) =(

LAW=¢w, LAY, =£V, (20)

Thus we can compute the second symplectic form
Q, =8V Ao (L) 7|6V) .

Now, according to (B3) of Ref. 10,

8V = %f [8p(E)¥ (&) — 85(IF(£) 1dE
N — — —
- 2i.2, (8p; ¥, +p; 86x; + 6P, ¥, + P, 66,x;)-
j=

Therefore, using (20),

— 8p(E) (LA~ (&)]dE

8p;(L*) ™'Y, + 5,85, (L)~ "))

E+ie (gg)\l;(g))dé, o 2 ( ( ) e 8§’X’+6(§,)w +2 ’S;’X’)
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where we have moved the integral over the continuous spec-
trum off the real axis to avoid the singularity at § = 0. There-
fore the only difference between the computation of {2, and
the new symplectic form 2, are the weighting factors 1/£ in
the continuous spectrum, and 1/¢; in the discrete spectrum.
A similar calculation as was used to produce (17) now gives

Q,= —’—)C_w {61ogla(&)a(&)1 NS arg b(f)}'%

—b0b051 B(0) 1 5105 20
(0)5(0)8 log - NS log -

-2 z {8log¢; NSlogb, +S1logE; ASlogh,},
(21)

where the two complex integrals have combined to give the
principal value in the leading term, and extra discrete term
comes from the associated residues at the pole §{ = 0. When
r= + ¢*, canonically conjugate variables are provided by
the momenta

A, =4argl;, p,= —4log|l;l,

p(&) = — (i/wE) logla(§)|,
and the conjugate coordinates
=log|b;|, §(§) =argb(f),
provided £ #0. In addition, the point £ = O appears sepa-
rately as the extra residue term in the expression for (1,, so
this particular mode survives the principal value cancella-
tion in a new discrete form. However, there is no simple
formula for the relevant canonical variables there. Also, in
the case r = + ¢*, this term vanishes because @(0) = a(0),
and so this extra complication does not arise. All the other
modes for the continuous spectrum are related according to
the simple reweighting

(&) =Ep(&). (22)

For the second Hamiltonian structure, the Hamiltonian
functional giving the nonlinear Schrédinger equation is the
momentum (11). According to the calculations in Ref. 1, it
can be expressed in terms of the scattering data as

o N o=
H2=P=_:_-f §logla(§)|ds —4i ¥ (67—

=1

A. B, =argh;,, g;

(23)

Comparing with (18), we see that, in terms of the respective
canonical variables, the continuous spectrum contribution is
exactly the same weighted sum of the continuous canonical
momentum variable associated with the respective symplec-
tic two forms:

ifw Ep(E)dE  versus .

TJ—w

4 = _i ) 2a
L7 woa=2[" oo

Therefore, the continuous modes have identical quantiza-
tions. (The singular point £ = 0 plays no role as both Hamil-
tonians make no contribution to this mode.) As for the

bound states, we are reduced to the case of a collection of

integrable two-dimensional Hamiltonian systems with dif-
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ferent Hamiltonian structures. For the original symplectic
form 2, the Hamiltonian system corresponding to the dis-
crete eigenvalue §; has the form

1 6H 1 JH
—'—'—‘1—4;], (;])t= 2 81 l

and similarly for the eigenvalues E, (We are just reproduc-
ing the classical calculation of the evolution of the discrete
scattering data for soliton equations.) For the second sym-
plectic form (),, the Hamiltonian system corresponding to
the discrete eigenvalue §; now takes the form

1 4H,

(log b;), =

logh,), = — - —4ic?,

(log ;). 2 Jlog, )
1 oH

logé), =90 _g

(log ¢) 2 dlogd;

and similarly for the elgenvaluesfj. Thus, these two dimen-
sional Hamiltonian systems are identical, even though they
use two different Hamiltonian structures:

—266;A\6log b, —25log§; Ndlogb; .

However, as we remarked above, we take as fundamental the
fact that a two-dimensional Hamiltonian system has a
unique quantization, even though it has many different
Hamiltonian structures. Therefore the bound states for the
nonlinear Schrédinger equation also have identical quanti-
zations. We conclude that both Hamiltonians lead to the
same quantized verison of the nonlinear Schrédinger equa-
tion.

As a final remark, we recall that the other soliton equa-
tions appearing in the AKNS scheme can be written in the
form

(), =0uC)..

where (£) determines the linear dispersion relation.’
These can all be written in bi-Hamiltonian form using the
same two Hamiltonian structures as above. An identical cal-
culation, which we omit for the sake of brevity, will show
that the two quantized versions of any member of these
AKNS hierarchies will lead to the same quantum version.
Moreover, it is not hard to see that the only difference be-
tween the quantized versions of two different members of the
same soliton hierarchy is in the weighting factor (&) for
the modes corresponding to the continuous spectrum [with
appropriate discrete contributions at the points where
Q(£) = 0] and replacement of the discrete Hamiltonians by
Q(g;) and Q({;), respectively. Thus the only distinction
between the various quantized versions of a soliton hierar-
chy is in the weighting assigned to the continuous modes,
and the replacement of the Hamiltonian governing the evo-
lution of the bound states. Finally, we note that the same
considerations will apply to other soliton equations, such as
the Korteweg—de Vries equation, as the key fact that the
recursion operator is the squared eigenfunction operator re-
mains valid.
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The solution of the Yang-Baxter equation for integrable systems is shown to be equivalent to
the existence of a differential identity. Quantum integration formulas for the calculation of
commutators of monodromy matrices are given. Based on the integration formulas and the
systematic use of differential identities, the Yang-Baxter equations for the nonlinear
Schrodinger model for the quantum case of both bosons and fermions are derived. The case for
discrete models is also included. The parallelism between the classical and quantum case and
the classical limiting process from the latter to the former are discussed.

I. INTRODUCTION

The calculation of Poisson brackets for the scattering
data for the KdV equation by the CISM (classical inverse
scattering method) was first carried out by Zakharov and
Faddeev.' The calculations depended on a set of differential
identities and on the evaluation of certain limits in the sense
of distributions. After the formulation of the QISM (quan-
tum inverse scattering method) by Faddeev and his colla-
borators,” in which the solution of the Yang-Baxter equa-
tion is the important step of the problem, the CISM was
recast in terms of the solution of a classical Yang—Baxter
equation.® In this paper, we first repeat the calculation of
Poisson brackets for monodromy matrices of the NS (non-
linear Schrédinger) model by the use of an integration for-
mula® and differential identity, and then generalize the for-
mula to the quantum cases to calculate commutators and
obtain the Yang—Baxter equations of the NS model for both
bosons and fermions by carrying out the integration with the
use of corresponding differential identities. We present a
simple proof that the Yang—Baxter equation is equivalent to
a differential identity. These differential identities can be
chosen to be the same as those that have been used to derive
Yang-Baxter equations by our generalized formulas.
Further, the differential identity is shown to be equivalent to
the local Yang—Baxter equation. We do not claim that the
establishment of differential identities is always simpler than
the algebraic solutions of local Yang-Baxter equations but
aim to clarify the relations between them in various contexts.
Finally, we show how the classical results are obtained by
the classical limit from the quantum ones. The correspond-
ing results for discrete models are similar where the differen-
tial identities are replaced by difference identities. We dis-
cuss the discrete model of the Heisenberg chain as an
illustration.

Il. POISSON BRACKETS FOR CLASSICAL SYSTEMS

In this section we recapitulate the calculation of the
Poisson brackets by the use of differential identities. We use
the following integration formula for the Poisson bracket of
monodromy matrices (see Ref. 3, p. 192):
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{T(xp|4) ® T(xpl)}
= Jx fx dzdz T(xz|A) e T(x,2'|1)
y y

x{U@zA) @ U(Z' \p)}T(2y|A) @ T(Z ylp), (2.1)
where T'(x,p|A) is the monodromy matrix defined by
% T(xp|A) = UxA)T(x,p|4),
(2.2)

T(xx|A) =1.
For the NS model, the Hamiltonian takes the form

H= f dx(MM + cu*(x)u*(x)u(x)u(x)),
ax Jx
(2.3)

where ¢, the coupling constant, is positive for repulsive inter-
action, and

U(x,A) = (i/2)Ao; + Weu(x)o, — ieu*(x)o_.
(2.4)

Here o, = {(o, + io,), where o, (i = 1,2,3) are the Pauli
matrices.

Let F and G be (2X2) matrix valued functionals of u
and u*. The Poisson bracket of Fand G'is (see Ref. 3, p. 187)

{F®G}=iJ-w( OF o 86
—o\Ou(x) Su*(x)

SF o SG)
Su*(x) bu(x)

Considering U(x,4) as a functional of u(z) and u*(z),
we have

SU(x,A) _ . _

1) = iJed(x —2)o,,

SU(xA) . _

o) ied(x —z)o_.
Hence
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{UxA) e Uy} = if dz(‘s_U_(E»/l_)

ou(z)
SUu)  SUMxA)  SU(pu) )
ou*(z) Su*(z) Su(z)
=icb(x—y)(o,.®0_—0_®0,)

= (iC/Z)(0'3®I—I®0'3)P5(x"J’),

2.5)
where the identity
(2.6)

has been used. In (2.6) the symbol P stands for the permuta-
tion matrix, equal to

3
P=—;—(I®I+ D a,-@a,-), 2.7

i=1

(o0,80_—0_®0,)=4(038]—I80;)P

where I is the 2 X2 identity matrix. The matrix P acts on
VeV by (éen)P=7n8®f and on matrices by
P(4®B) = (B®A)P. Clearly, P? = I and

[(4eB)P];. = (A4®B);,,

[P(A®B)]ju = (A®B); -

Substituting (2.5) into (2.1), we obtain
{T(xp|A4) @ T(xp|)}

=& [ da(T(xal) s T(aplu) @ Txal) T(asl)
y

— T(x,z|A)T(z,y\n) ® T(x,z|n) o3 T(z,p|A))P.

Performing the integration with the help of the differential

identity

gE(T(x,zl/l) T(zp|1) ® T(x,2|p) T(z,p|4))

= — (i/2)(A —pn)
X(T(x,z|A)a;3T(zy|u) ® T(x,z|p) T(z,p|4)
— T(x,z|A)T(zp|u) ® T(x,zlp)0,T(z,p|1)),
(2.8)

we finally obtain®

{T(xp|A) @ T(xplu) } = [r(Ap), T(xp|4) ® T(x,p|p) 1,

where

r(Au) = —cP/(A—p). 2.9)

Ili. THE QUANTUM CASE

In Sec. II, we showed that the classical Yang—Baxter
equation for the monodromy matrix can be obtained from
the differential equation for the monodromy matrix by the
use of a certain differential identity. This is also true for the
quantum case. We demonstrate this point for the NS model
for bosons. The Hamiltonian in this case is again (2.3), but
now u, u* are operators acting on Fock space satisfying the
commutation relations

[u(x),u* ()] =6(x —y),

3.1
[u(x)u(y)] = [u*(x), u*(¥)] =0.

119 J. Math. Phys., Vol. 31, No. 1, January 1990

The monodromy matrix T(x,p|A) satisfies the forward and
backward differential equations

a%r(x,yu) = :U(x,A)T(x,y|4):,

aiyr(x.ym = — Ty UG, (32)

T(xx|A) =1,

where U(x,A) is given by (2.4).

The notation :A: means that an operator 4, depending
on the creation and annihilation operators u* and u, is to be
written in normal order, meaning that the destruction opera-
tors u are to appear all the way to the right. For example,
u*u” is in normal order, while # u*u is not. The reasons for
writing expressions in normal order are subtle. (In particu-
lar, we found that the order in which the operators appear in
an expression can have an effect on the asymptotic behavior
of its expectations as x— + o0.)

The following commutation relations hold** (y < x):

[4(2),T(xp|A)] = [u*(2),T(x,y|A)] =0, z¢[p.x],
[4(x), T(x Y] = —i(e/2)o_T(xp|2),

[u), T(xy|A)] = — i(Je/2)T(xp|A)o_,
(u*(x), T(x )] = — i(Ve/2)o, T(x,p|A),

[u* (), T(xp| )] = — i(Je/2) T(xp|A)o

[u(2),T(xpA)] = — NeT(x,z|A)o_T(z,y|A), y<z<x.
(3.3)

With the help of (3.3), Eqs. (3.2) can be rewritten in stan-
dard order as

O T(xylt) = Vs ) T(epld),
ox

L T(xpla) = — Tyl Vi),
dy

where

Vix,A) = U(x,A)(c¢/2)o, 0_. (3.4)

We now generalize (2.1) to the quantum case. First, we
define

[T(x,y|4) @ T(x,y|u)]

to be a matrix with elements

[T(xpA) @ T(xpl) s = [T (x,9|4), Ty (x,9(p0) 1.

(3.5)
It is easy to see that
[T(x,y|4) @ T(x,y|p)]
= T(x,y|A) ® T(x,ylu) — PT(x,p|p) ® T(x,y|A)P.
(3.6)

We state our generalized formula as the following theorem.
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Theorem 3.1:

[T(x.y|2) ® T(x,p|1]
=f f dzdz T(xz|A) e T(x,2'|u)
y vy

X[V(zA) e V(zu)]

X PT(Z,y|u) ® T(z,y|A)P, (3.7)

where
—g; T(xpld) = :UxA)T(x,p|A): = V(x,A)T(x,p|4).

Proof: The (af8,¥8) component of the right-hand side of
(3.7)is

I J dzdz T,,(x,2|A) T, (x,2'|1)
y Jy

X(Vpo(z/l) Va¢ (Z.pu) — Vg¢ (Z.»)
X Vo3 (AT 45 (2 ,y|u) T, (zp|A),

where, as usual, repeated indices mean summation. Using
the forward and backward equations in component form

I ’ a '
Voo (21) Tys (2 p|12) =7 Tos (Z'ylp),

— T, (0,2 |) V4 (2 11) = % Ty (x,2'|p),

we can write this as

f a:T7,, (x,z|/1)[f dz’i,(Tﬁ,(x,z’Lu)
y 'y dz

X Vpo AT, (zlayl,u))] Tay (Z’J/'M)-

Integrating with respect to z' and using the fact that
Ty, (x,x|u) = bg,, for example, we get

f dz[T,,(x,z|A) Voo (24) Tgs (x,9|10) Ts5 (2,9|4)
¥y
— Top (%:2|4) Tgs (x p|p0) V5 (2,4) Ty, (2,914) .

Similarly, by the use of

T, (x2|x)V,5(2A) = — %Taa(xxlzl),

V. (2A) Ty, (2|4) = -g; T, (zylA),

the integration of z is carried out. Finally, we obtain

— Tos (xpl) Tory (x,914) + Ty (x,9|4) Tigs (X,3|12),

which is just [T(x,y|4) ® T(x,y|)1.5,s; thus, by defini-
tion, the theorem is proved.
By a straightforward calculation, we have

(V(zA) e V()]

=[U(zA) o U(Z.u)]

=c(o,®0_—0_80,)6(z—2).
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Substituting this into Theorem 3.1 and using (2.6), we ob-
tain

[T(x.p|A) ® T(x,plu) ]

= %J‘ dz T(x,z|A) ® T(x,z|u)(o;0 ] — I® 03)
y

X T(z,y|u) ® T(z,y|A)P.

Since [7'(x,z|p),T(z,p|u) ] = O, the right-hand side can be
written as

%f dz{T(x,z|1) 05 T(z,p|p) ® T(x,z|u) T(z,p|A)
y
— T(x,z|A)T(z,p|) ® T(x,z|u) 03 T(2,p|A))P.

Because of (3.4), the differential identity (2.8) remains val-
id in this case for bosons. So the integral is calculated using
(2.8). In this way, we obtain

[T(x.y[4) @ T(x.y|p) ]

= [ic/(A — ) T(xp|u) @ T(x,p|A)
— T(x,p|A) ® T(x,piu))P.
Using (3.6), Eq. (3.8) may be rewritten in the form
R(Au)T(x,p|4) ® T(x,p|u)
= T(xy|u) ® T(x,p|A)R(A.u),
where
RAp)=[—ic/(A—u—ic)]l
+ [(A—p)/ (A —p—ic)]P.
In fact, from (3.2) and (3.8), we have
T(x,y|4) ® T(x,p|u) — PT(x,p\) ® T(x,p|A)P
= [ic/(A — p) T (xp|p) @ T(x,y|4)
— T(xplA) @ T(x,p|p))P.
Multiplying on the right by P we obtain

(3.8)

(3.9)

T(x,p|4) ® T(x,y|p)P — PT(x,p|p) ® T(x,p|4)
= [ic/(A — ) (T (x,p|p) ® T(x,p|A)
— T(x,p|A) ® T(x,y|u));

hence
[P+ ic/(A — )T (x,y|u) ® T(x,p|A)

= T(x,y|4) ® T(x,p|p) [P+ ic/ (A —p)].
Equation (3.9) is now obtained by interchanging A and u
and multiplying by the factor (1 — ¢)/(4 — u — ic). Thisis
the result of Refs. 2 and 4.

For the NS model of fermions,’ the Hamiltonian takes
the form

—_— au" % oy L .)
H—de( o I + cutuutug ).
Here we again consider only the case of repulsive interaction
¢>0. The dummy indices i, j are now summed over 1,2;
u;,u¥ act on Fock space and satisfy the anticommutation
relations

(3.10)
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fu,(x)ur() ] =6;6(x—y),
[ui(-x)9uj(y)]+ = [“}"(x),uf(.V)]+ =0‘

The monodromy matrix T(x,y|4) is a 3 X 3 matrix defined
by

(3.11)

a

— T(xp|A) = :Ux,A)T(x,p|4):,
dx
(3.12)
T(xx|A) =1,
where
U(x,A) = (iA/2)J + ieu;(x)e;; — iJeu?(x)es;,
(3.13)

J=diag(1,1, — 1), and ¢, is a 3X3 matrix defined by
(ejk Yim = 5]15km-
For fermion fields, the normal product is

w(x)ur(p): = —ur(pu,(x),
and for the monodromy matrix we get as a result®
w; (x)T(xp|A): = JT(x,p|A)Ju; (x).
Therefore Eq. (3.12) can be written

%g(x,y|/l) = (%/’LJ—i cuf(x)e3j)T(x,y[/{)

+ icen JT(x,p|A)Ju; (x).

The following relations hold® (y < x), forj = 1,2:
u;(2)T(x,p|A) = JT(x,p|A)Ju;(2), z¢[x,p],
T(xy|A)ur(z) = uX(2)JT(xy|A)J, 2zé[xy],
u; (x)T(x,p|A)

= JT(x,p|A)Ju;(x) — (ic/2)ey T(x,p|A),
u;(P)T(x,y|4)

= JT(x,y|A)u; (y) — (iVe/2)IT(x,y|A) ey,
T(x,p|A)ut(x)

= ur (x)IT(x,p|A)J + (iVe/2)IT(x,y|A) ey,
T(xy|A)ur(y)

= u*(WIT(xy|A) + (e/2) T(x.p|A)e;s.

(3.14)

From (3.12) and the third equation in (3.14), we find

2 Tlpld) = V) T(xpld)
ax

[V(z,/l) ®V(Z.u) U(z,A) @ U(Z \u)

where
V(x,A) = U(x,A) — (c/2)epey;.
Similarly,

(3.15)

aiyr(x,ym = — Ty A VOA).

In dealing with problems involving fermions, it is neces-
sary to introduce supermatrices.> For a supermatrix we as-
sign a parity p(/) of the ith row (column) = O when the
parity is even, and p(/) = 1 when the parity is odd. The su-
pertensor product of two supermatrices 4 and B is defined by

(A®B) ;) = Ay B, ( — 1)PPED +p00),

We define [A eB ] to be the matrix with elements given by
[A ®B ]U.kl =A'.kBﬂ( — 1)PDED + p(k))

—leAik( — l)p(l)(P(i)+p(k))_

It is easy to see that

[A@B]=A®B—PSB®APS, (3.16)

where P, = Ze; @ ¢;( — 1)7"?Y is the superpermutation
operator. In analogy with Theorem 3.1, we have the follow-
ing theorem.

Theorem 3.2:
[T(x,y|/1) ® T(x,ylu)]

=f f dzdz T(xz|A)® T(x,z'|u)
y Jy s

X [U(z,/l) ® U(Z’,y)]Ps T(Zy|u) ® T(z,y|A)P,.

3.17)

Proof: The proof is similar to that of Theorem 2.1 with
consideration of the additional signs due to the parity.

We now return to the NS model for fermions, described
by the Hamiltonian (3.10). For the present problem the par-
ity should be chosen as

) 0, i=12,
pi) = {1, i=3.
It follows from a straightforward calculation that

= c(e3j ®e; + e @e,,) 6(z—2').

Substituting this into (3.17) and taking into account the identity

(ey ®e, + ey @ey)P, = % (IeJ—JeD),
we obtain
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= %J- dz T(x,z|A) ® T(x,z|u) (I8 J —~Je )T(z,y|pn) @ T(z,y|1)P,. (3.18)
'y s s s s

[T(x,ylzl) e T(x,y|n)

For nonoverlapping intervals (x,z) and (z,) (x <z<y), [T(x,zl,u) ® T(z,yl,u)] =0 so (3.18) becomes

-g—f dz(T(x,zl/l)T(z,th) @ T(x,z|u)JT(zp|A) — T(x,z|A)JT(z,p|u) T(x,z|y)T(z,y|/1))Ps. (3.19)
y 5 s
Making use of the differential identity

9 (T(x,zM) T(z,y|u) ® T(x,z|u) T(z,y]/l))
Jz s

v —,u)(T(x,zM)T(z,y],u) ® T(x,z|u)JT(2,y|A) — T(x,z|A)T(z,y|u) ® T(x,z|u) T(z,y|/1)) (3.20)

+
2
[(3.20) follows from (3.15)], the integral of (3.19) is reduced to

[—c/(A—p) ](T(x,ylu) ® T(x,p|A) — T(x,p|A) ® T(x,ylﬂ))Ps-

Thus, we have shown that

T(xyld) e T(x,ylu)] =[—ic/(A—u) ](T(x,ylﬂ) ® T(xy|d) — T(xyld) @ T(x,ylﬂ))Ps- (3.21)

According to (3.16), the left-hand side of (3.21) is

T(xp|A) ® T(x,plu) — P, T(x,plp) ® T(x,p|A)P,.

Therefore, it is easy to see that (3.17) contains the Yang-Baxter equation

R(Ap)T(x,y|A) @ T(x,p|n) = T(x,p|p) ® T(x,y|]A)R(Au),

where
RAp)=lic/(A—p+ic)l I+ (A —pu)/(A—pu+ic)]P,. (3.22)

Here I denotes the 3 X 3 identity matrix. This is the result obtained in Ref. 5.

We point out that both Theorems 3.1 and 3.2 are valid in general for the quantum case, but that Theorem 3.1 is useful for
the boson case, while Theorem 3.2 is useful for the fermion case. Further, Theorem 3.1 can be considered as a particular case of
Theorem 3.2 when p(i) =0, for all i.

For a discrete model on a one-dimensional lattice, define

TG jlA) =L;_ 1 (A)+-L;(A), j<i—1, TGild) =1, (3.23)

where L;(4) is the associated linear operator of the given model. If we define the difference operator A; by A f(7)
= f(i + 1) — f(i), then the forward and backward difference equations are, respectively,

AT j|IA) = U (A TG jIA), TG jIA) = — TG, j+ 1)U (A), where U;(4) =L, (1) — 1. (3.24)
The analogs of Theorems 3.1 and 3.2 are as follows.

Theorem 3.3:

[ 1 i—1i—1 [ 1

TGjA) e TGjw) =S 3 TGk+11A)e TGk’ + 1|w)| L (A) @ Ly (1) [P T(k', jlu) ® T(k, jlA)P.  (3.25)
t E k=jk =j - b

Theorem 3.4:
[ 7 i—1 i—1 [ b

TG TG jlw) = > Y T(hk+1A) @ T(hk' + 1p)| L (A) ® Ly () [P.T(K', jlpw) ® T(k, jlA)P,. (3.26)

k=jk'=j

Since Theorem 3.3 can be considered as a particular case of Theorem 3.4 when all parities are even, it is sufficient to give
the proof for Theorem 3.4.
Take the (afB,8) component of the right-hand side of (3.26):
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i—1 i—1

(th8)gps = 3 S Top ik + 1A) Ty, (k' + 1) ( — 1)PO C@ +200
K=jKk=j

XL, (l)pﬂLk'(ﬂ)mﬁ( — 1)"‘”)("(”)+”(‘”)—Lk.(ﬂ),¢Lk ('1),;‘9( — 1)p(¢)(p(p)+p(o)))
X Tw(k ',jlﬂ)Toy(k;]'I'{)( — l)p(a)(p(-?) +p(1)

Notice that
Tpo (k" + 1 p)Ly (@) g = Ty (hk'|18), Ly (1) oy Tys (K", jlt) = Tos (k' + 1, jut), 3.27)
and perform the summation of k' by the use of
i—1
Sk + 1) =fED) =, —f(D). (3.28)
K=j
We obtain

i—1
(rhs)aﬁ,rb‘ = 2 (Tap Gk + IM')Lk (,{)p', TBG(i’jlﬂ)Tﬂ‘y(k’jli)( — l)p(B)(p(a) + p(N) + p(B) (p(H) +p(r))
k=j

— Tap (,"k + 1],1) Tpa (i’jll-‘)Lk (,{)po T.?y (krjM) (-1 )p(é)(p(r) + p(P) + p(B) () +p(p)))_
Repeating the process for the summation on k, we arrive at
(rhs)aﬂ,ys — Tay (i’jM) Tﬂs (i’jll‘) (=1 )p(ﬁ)(p(a) +p() _ Tﬁy(i)jlll') Tay (l',jl/l)( _ l)p(é)(p(a))

= 76110 8 700 |

= (lhs)aﬂ’y’s .

As an example we consider the Heisenberg spin chain, for which L, (1) is a 2X 2 matrix given by?

L, (A)=Al+io,S%,
where the S'¢ are spin opérators satisfying the commutation relations

[S‘I:,Sg ] = iakk ’ eaﬁys}:'
By a straightforward calculation, we obtain

[Lk (A) @Lkr(ﬂ)] = —i(skkré'am,SZOaGUﬂ. (3.29)
Substituting (3.29) into (3.25), we have

i—1

[T(i,jM) ® T(z',j|,u)] = —i Y TGk +1|4) @ TGk + 1|u)e,p,0° © oPPS L T(k, jlu) ® T(k, jIA)P. (3.30)
K=

From the algebraic identity
€.p,0°®0°P=i(0"0I—I20"),

we obtain

€15y 0°® 0SSP =L, (A) @I —I®L,(4). (3.31)
Using (3.31) and the fact that L, (4) commutes with 7°(i,k + 1|x) and T'(k, j|©z), the right-hand side of (3.30) can be written
as

i—1

—i S TGk + 1AL (D) Tk, jlw) ® Tk + 1) Tk, jlA) — TGk + 1A T(k, jlp) @ TGk + 1|u) L, (1) T(k, jIA))P
k=)

i—1
= —i S (TGk|)T(k, jlp) @ TGk + 1|u)T(k, jlA) — T(ik + 1A) Tk, jlp) @ TGk + 1|p) T(k + 1, jI))P.
kK=j

(3.32)
The next step is to use the difference identity
ATk |A)T(k, jlp)  TUk ) T(k, jlA))
= ((A —p)(T(k |A)T(k, jlu) @ T(ik + 1) T(k, jlA) — T(ik + 1|1A)T(k, jlu) ® T(ik + Hp) T(k, + 1, j|4))

to carry out the summation. Finally we obtain
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T, 4) & T jl) | = [ = i/ (A = ) UTG ) © TG IA) — TG, jIA) @ TG )P,

which is equivalent to

RAp)T(,jlIA) @ T, jlu) = T, jlg) ® T(, jIAYR(A.u),
with

RAp)=[I/A—p+ DU+ [(A—-p)/(A—p+i)]P.
This is the result obtained in Ref. 2.

IV. CONCLUDING REMARKS

In the preceding section, we derived the Yang—Baxter equations on the basis of integration (summation) formulas and
with the help of certain differential (difference) identities. In fact, we may show that the Yang-Baxter equation is equivalent
to a differential identity.

Theorem 4.1: The Yang-Baxter equation

R(Au)T(xp|A) & T(xp/p) = T(x,y|p) ® T(x,p|A)R(A.p) (4.1)
is equivalent to the differential identity

ai(T(x,ZIp) ® T(x,z|A)R(Au)T(z,p|A) ® T(z,y|u)) = 0. (4.2)
74

Proof: Integrating this identity over the interval y<z<x, we get the Yang—Baxter equation. Conversely, if the Yang-
Baxter equation holds for all x and y, then it certainly holds for y = z. Multiplying the Yang—Baxter equation for x,z on the
right by T(z,y|1) ® T(z,y|1), we get

R(Ap)(T(x,2|4) ® T(x,z|u)UT(z2,y|4) ® T(z,p|1)) = T(x,2|) ® T(x,2|A)R(Ap) T(2,p|4) ® T(z,p|p).

Since T'(x,z|u) and T'(z,y|A) depend on field operators on nonoverlapping intervals, and since the field operators commute on
nonoverlapping intervals,

(T(x,z|A) ® T(x,z|p)T(z,y|A) ® T(z,y|n)) = T(x,p|A) ® T(x,p|p).

Therefore the left side above is independent of z, and the differentiation of this identity with respect to z proves the other half of
Theorem 4.1.
The differential identity (4.2) for the NS model for bosons can be written

ic

%(PT(x,zl,u) ® T(x,z|A)P T(z,p|A) @ T(z,p|)) = P%(T(x,zl,u) T(zy|A) @ T(x,z|A) T(z,p|)). (4.3)

A—p
On the other hand, we have*

a% T(zy|A) ® T(zplp) = T(2Aw) Tz p|d) @ T(zylu):

% T(x,zlp) ® T(x,z|A) = — :T(x,z|p) ® T(x,z| )T (z|p,A):,

where
FAp)=UzA)el+1eU(zpu) +co, e0_.

The term co, ® o_ is the quantum correction due to the noncommutativity of the field operators.

Using (2.6), Eq. (4.3) may be reduced to (2.8).

In general, if we write the forward differential equation for the tensor product of two monodromy matrices in normal
order

g; (T(zpl0) @ Ty)) = Tzl T(zyld) @ T(zplu)s (4.4)
then the backward differential equation in normal order is

ba;(T(x,zM) & T(xz|u)) = — :T(xz]A) ® T(xzlp) [zl (4.5)
We have the following theorem which was proved in Ref. 4 by another method.
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Theorem 4.2;: The Yang-Baxter equation is equivalent to

R(Au)T (z|A,u) =T (|, A)R(A,u). (4.6)
Proof: From (4.2) and (4.4), we have

%(T(x,zLu) ® T(x,z|A)R(Au)T(2,p|A) ® T(z,p|n))

=: T(x,zip) ® T(x,z| A — T (z|p,A)R(A,p)
+ R(AWT (Z|A,u))T(2,p|A) @ T(z,p|r): =0.

The theorem follows from the conclusion of Theorem 4.1.
Similarly, if we write the differential equations for the
tensor product of monodromy matrices in standard order,

%(T(z,yli) ® T(z,y|u))

= A@Z|Ap)T(z,y|A) @ T(zy|p),
%(T(x,zm) ® T(x.2|))

= — T(x,2|A) ® T(x,z|p)A(z|A,u),

then the Yang-Baxter equation is equivalent to
R(Au)A(z|A.p) = Az|,A)R(Au). (4.8)

Analogously, for supermatrices with assigned parities,
we have the following theorem.
Theorem 4.3: The Yang-Baxter equation

4.7)

R(Ap)T(x,y|4) ® T(x,plp)

= T(x)y|lu’) ® T(x’J’l/l)R(}»,,u) (4-9)
is equivalent to the differential identity
%(T(x,zLu) ® T(x,2|A)R(Au) T(z,p|A)

® T(z,y|u)) = 0; (4.10)
and the latter is equivalent to

R(Ap)T(z|A,p) =T (z|u,A)R(Ap) (4.11)
or

RAp)A(z|Ap) = A(z|u)R(Au) (4.12)
provided that
2 (Tapldy o T
oz s

= T4 T(zy|d) ® T(zy|p):

= A(z|Au)T(z,p|A) ® T(z,p|us). (4.13)

On account of (3.22), the differential identity (4.10) for
the NS model of fermions with repulsive interaction can be
written as

8% (Ps T(x,z|n) ® T(x,z|]A)P,T(z,p|A) ® T(Z,)’V‘))
- P, 9 (T(x,z|,u)T(z,y|/1)
A—p Oz
® T(x,z|A) T(z,y|,u)). (4.14)
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From Ref. 6,
9 (T(z,ylﬂ) ® T(z,ylu))
Jz s

= :(U(z,ﬂ) el+1IeU(zu) +cej ee3j)
X T(z,p|A) ® T(z,p|):,
i(T(x,zlu) ® T(x,ZIzi))
dz s
= — T(xz|p) ® T(x,zlzl)(U(z,y) el

+I0U(z,A) +ce; @ e3j):,

the differentiation on the left side of (4.14) can be complet-
ed. Then, (4.14) turns out to be just the differential identity
(3.20).

For the discrete model on a lattice the corresponding
theorem is as follows.

Theorem 4.4: The Yang-Baxter equation
R(Au)T(,j|A) @ TG, jln) = T3, j |1w) @ T(iJ |A)R(Au)

(4.15)
is equivalent to the difference identity
AT Gk ) ® TGk |A)R(Ap) T(k, j|A)
® T(k, jlu)) =0. (4.16)

In the classical theory of inverse scattering transform
the following theorem is true.

Theorem 4.5: The classical Yang—Baxter equation

[T(x,yli) ® T(x,ylﬂ)]

= [C(4,u),T(xp|4) ® T(xp|u)]
is equivalent to
d

3z

(4.17)

({T(x,zM) ® T(x,zly)]T(z,yM) @ T(zylp)
+ T(x,z|A) @ T(x,z|p)r(A,u)T(zy|A)

® T(z,y|,u)) =0. (4.18)

Proof: Integrating (4.18) from y to x we obtain (4.17).
To prove the converse, set y equal to zin (4.17), multiply on
the right by T(z,y|1) ® T(z,y|u), and differentiate with re-
spect to z; this yields (4.18).

If the mondromy matrix T'(x,y|4) is a functional of
u(x) and u*(x), as in the case of the NS model, and the
Poisson bracket can be put in the form (cf. Ref. 3)

= [T(x,yl/l) ® T(x,ylﬂ)}

=I.J"‘(5T(x,y|/1) ® ST (x,p|u)
y Su(z) Su*(z)
_ STyl o 6T(x,y|,u))dz
Su*(2) du(z) ’

then
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%({T(x,z[l) ® T(x,z|,u)]T(z,y|/1) ® T(z,y[y))
_ _ i(&T(x,yM) ® ST (x,p|u)
ou(z) Su*(z)
_ 6T (x,y]4) ® 6T(x,y|/t)) ]
Su*(z) Su(z)
This follows from the fact that
8T(z,y|4)
Su(w)
Therefore, (4.18) takes the form

%(T(x,ylll) ® T(x,y|u)r(Ap) T(z,y|4) @ T(z,y|n))

___i(ST(x,yM) ® ST (x.y|p)
Su(z) Su*(z)
_ 6T (x,y|4) ® 6T(x,y|,u))
Su*(2) Su(z) )

=0, when we[y,z].

(4.19)

For the NS model with repulsive interaction we recall

r(/l’#) = _J'%#P,

STxYA) _ 1ixzit)o, T(zylA),
Su(z)

STOHAD) _ 75 214y0_ T(zplA
Tl (x,2)A)o_T(z,p|A).

Then (4.19) is just the same differential identity (2.8).

Finally, we mention that all formulas obtained in the
classical theory can be derived from those in quantum theory
by taking the classical limit -0,

%[T(x,yli) ® T(x,ylp)] - {T(x,ylll) ® T(x,ylﬂ)}-
(4.20)

For example, (2.1) can be obtained from Theorem 3.1 in this
way. Likewise, by taking the limit #—0,

7—hl[T(x,y|A) ® T(x,yly)] - [T(x,yli) ® T(x.yl,u)] ,
' (4.21)

we obtain, from (3.17),
{T(x,yl/l) ® T(x.yllt)]

= ij dzdz T(xz|A) ® T(x.2'|)
y Jy s

X [U(x,/i) ® U(z',/.t)}T(z,ylxl) e T(Z'ylu) (422)

where
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[T(x,ylxi) ® T(x,ylﬂ)}‘_ y
5 i
_ iJ.x dx((ST'ik (xy|4) 8T, (an|l‘)( — 1)PUN) + KN
N Su(z) Su*(z)
_ 5le (xy|p) 8T, (x,p|4) (— 1)Pthem +p(k)))‘
du(z) Su*(z)

This equation can also be derived directly by taking into
account the parity of monodromy matrices in classical theo-
ry. The parities of monodromy matrices are defined in the
same way for both the quantum and classical cases. In the
classical case corresponding to fermion fields, the field oper-
ators are anticommutative and form a Grassmann algebra.
The monodromy matrices are then supermatrices.

The anticommutators for fermion fields, with Planck’s
constant written explicitly, are

u, (x)uf(y) + ur(P)u;(x) = #ib;6(x — y),
u;(xX)u;(y) + u;(p)u;(x) =0.
In the classical limit #— 0, we have
u,(x)ur(y) +uf(y)u,(x) =0,
u;(x)u;(y) +u;(y)u;(x) =0.
Thus in the classical limit the fermion fields are anticommu-
tative, and the monodromy operators are supermatrices.
The differential identity (4.18) equivalent to the classi-
cal Yang-Baxter equation (4.17) can be obtained from the
differential identity (4.10) equivalent to the quantum
Yang-Baxter equation (4.9) by putting?

and taking the limit according to (4.20).

(4.23)
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The structure of a directing field is determined by the projective structure of space-time and by
various tensor (force) fields. Given a sufficient variety of such directing fields, which can be
measured directly given only the ability to track material bodies with respect to an arbitrary
coordinate system, it is shown how the projective and tensor fields involved can be determined
(and hence measured). This method employs the technique of harmonic analysis on the
forward unit hyperboloid. For the important and physically relevant case of an
electromagnetic directing field, the projective structure and the electromagnetic field tensor
can be determined using only one class of charged monopoles characterized by a given charge-
to-mass ratio. The method also provides a new empirical criterion for determining whether or

not a directing field is geodesic.

. ACCELERATION AND DIRECTING FIELDS

Let M be an n-dimensional, C* manifold. A curve ele-
ment of order k at peM is an equivalence class j5 ¥ of curves
through p that have the same Taylor expansion with respect
to some (and hence every) coordinate chart (U,x), up to
and including order k at OcR. A path element of order k at
PEM is an equivalence class of paths j;£ consisting of all
paths corresponding to curves in j% 7, where ye£.

A second-order curve element j3 ¥ has local coordinates
7% and ¥4, called n-velocity and #-acceleration, respectively,
and given by

o d . d?
= — x'O 0 R =
" 7 y(0), 72 e
A second-order path element £ has local coordinates £ §

and &%, called (n — 1)-velocity and (# — 1)-acceleration,
respectively, and given by

x‘op(0). n

__dx®oy o d*x%y
dxroy 1,7 77 (dxmop)?l,

3 (2)

Under a change of coordinate chart from (U,x), to (TF) P
the coordinates of /3y transform according to

vi=Xn, vi=Xyl+Xrivi, (3)
and the coordinates of J2£ transform according to
Ef=Xi+ X0/ X+ X0ED) (4)
and ‘
)

XeEs + X ERET +2X2 £0 + X2,
(X +X1E7)?
ETXES + X ERET +2X L E8 + X )
X +X2E7)?

Wl

a
2

(3)

where X = Xox ™.

Denote by .#} (M) and .#3 (M) the bundles of first-
and second-order curve elements and by Z'(M) and
Z?*(M) the bundles of first- and second-order path ele-
ments. In each case, the bundle of second-order elements can
be regarded as a bundle over the corresponding bundle of
first-order elements.

An acceleration field is a cross section A:
L} (M)—L?%(M).Such afield is described in terms of local
coordinates by functions 4 } (x',7} ), which transform under
a change of coordinates according to

AL (F ) =X;xH5 ) + X GHrive. (6)
An acceleration field is called geodesic iff for every peM,
there is some coordinate chart (U,x), such that the func-

tions 4 § (¥, ) vanish at p. A geodesic acceleration field is
denoted by I'" and has the special functional form

[ (X)) = — T (xNrivs. (N
A directing field is a cross section Z: D' (M) - D*(M).
Such a field is described in terms of local coordinates by

functions E5 (x',£ {), which transform under a change of co-
ordinate chart according to

E2(XED) = [X2ONEE(XED) + X5 (XNELET + 2X 7, (XNEF + X1, (XN /(X 7 (X)) + X 3 (xNETY
—ES[Xr(NEE(XET) + XL, (XNERET +2X 1 (XNES + X 1, (X)) ]/(X (X)) + X3 (xNET) (8)

A directing field is called geodesic iff for every peM, there is
some coordinate chart (U,X), such that the functions
E(X,£T) vanish at p. A geodesic directing field is denoted

by II and has the special functional form
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!
M5 (FET) = £ T, (F)ERET + 20T, (x)E7 + I, (x))
— (5, (FIERET + 2013, (DEL + T, (),

9
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where the projective coefficients IT}, (x’) are traceless so that
II;, (x’) and IT;,, (x‘) may be eliminated from (9).

An acceleration field 4 determines a directing field = iff
A is of the form (see Ref. 1, Theorem 3.1)

AL (X)) =B v)v + CH(x), (10)
where
Ci(x'\, Ay)) = AC(Xh). (11)

Il. ANALYSIS OF DIRECTING FIELDS

The directing fields 5 (x',£ ¢) considered in this section
are all those of the form

ESEDN = [N45(r) — 45 (rD /04, (12)

where 4 % () is any member of the following multiple-pa-
rameter family:

A5 =p, @ iv) PT vl — I, yivt:
+ 3@V V) T v+
+ 1 (@AY K DRT L vyl

(13)
where g is the space-time metric tensor, the II,‘?, j, are the
projective coefficients, and the

are tensors antisymmetrized on the first two indices and then
symmetrized on the last r indices so that

gnTi.;, = 0,
and
A5, =0 (16)

The fact that the fields 4 (¥} ) are homogeneous of degree 2
in the variables | yields the relation

A5(N) =745, (7). (17)
The relations (12), (16), and (17) may be used to express
the fields 4 £ (¥} ) in terms of the fields 25 (£ ¥). The result is
A5n) = (FESED) — [M7Y5/(n+2)]Z5,(€D),

A5(N) = — [/ (n+2)]E5,(£D. (18)

Elsewhere? we have shown that the fields E5(£§) can be
measured directly in a noncircular manner given access only

(15)

tor can be determined provided that it is possible to measure
the projective structure of space-time.> In this section we
show that the projective structure and the tensor fields that
occur in the fields (13) can be determined provided that the
{measurable) directing fields corresponding to the fields
(13) are known. Our procedure employs harmonic analysis
on the forward unit hyperboloid.

We denote the coefficients that determine the conformal
structure locally by g;, which for definiteness we assume to
be normalized to satisfy

det(g;) = — L. (19)
Define
=Y. (20)

Since the terms on the right-hand side of Eq. (13) are homo-
geneous of degree 2 in the z-velocities ¥ , division by g%} 7{
yields

AL =T — T, iyt
+:“371.jzi. Yivive +

+ T g v, 21)

where the unknown conformal factor has been absorbed into
the coeflicients 7. It is worth noting that these functions
defined on the forward unit mass shell satisfy the Lorentz-
Jinite property; that is, the set of functions (for any k and for
any coefficients .7~ and IT)

{45 (A7 "p])|AleSO(1,n — 1)} (22)

is a finite-dimensional vector space with respect to pointwise
addition and scalar multiplication. Helgason** has shown
that such functions must be the restriction to the forward
unit hyperboloid of a polynomial on R".

The analysis of the fields is carried out on a pointwise
basis as far as the space-time coordinates x’ are concerned.
Let y' be coordinates for the interior of the forward light
cone at the given space-time point so that

g,y y7/>0. (23)
At the given point, the microinvariance group of the confor-

mal structure acts on the interior of the forward light cone.
The generators for the action of the Lorentz subgroup are

to the differential topology of space-time, that is, the ability Jo=yg" 9 _ yg" 9 . (24)
to track material bodies with respect to an arbitrary coordi- ' '
nate system. It follows that the fields 45 (¥} ) are also mea-  Set
surable. s iy [oors

Although the full space-time metric cannot be measured V=yNeyVy (25)
in a direct manner, the conformal structure of space-time  Denote by [§$---$"] the product % - - " with all traces
can be directly measured. The remaining unknown scalefac-  removed $o that

J

V=W]”%=mﬂ+y*

Yt = [ + [1/(n + 2)1(g"9> + 89" + g~'9%), (26)
and

FPP = [9999] + [1/n(n + 2)]1(g""g" + g""g"" + g"g"")

+ [/ (n+ )" [99"] + g~ [9"] + g"“[§9"] + &= [p"9"] + g*“[9"9*] + g*“[$"$"]) . 27
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The Laplace-Beltrami operator on the forward unit hyper-
boloid is given by

L=1g,g,J" T (28)
Note that this operator does not depend on the arbitrary
normalization of g. The functions [ --§"] satisfy

— L [3"9%+9"] = (P + (n — 2D [3"5--5"] . (29)
By expressing the field (21) in terms of the quantities
[#49%---$"], one obtains
4:0) =5+, "1+ S5, /v *l + -
+8 . ey (30)
The first task is to determine the coefficients S} ... ;.- For con-
venience, write 4 for 45(j), L, for the operator
—L—(#+ (n—2)r),and S, for S;. .y [yj'“-yj’]. The

operator L, multiplies the corresponding term S, by zero
and any other term, say S, by the nonzero integer

(s* + (n — 2)s) — (¥* + (n — 2)r). Hence the field 4 has the
form

A=S,+8 + " +5, (31)
for some integer £, just in case

L.L,_,LLA=0, (32)
but

L, L,_, L, L,A+#O. (33)
In fact, one has
Ly Ly 5 LLA

= (kfIl (k2+ (n=2)k)— (P + (n— 2)r)])Sk,

r=0
(34)
from which one can obtain S, . Moreover,
L, ,Ly y--L,LoA
k—2
=T w17+ =206~ 1)
r=0

—(P+ (= 2A)Se,

k—2
+(M 1+ 020 -2+ =21 )s,.
r=0
(35)

Since S, is known, one can subtract the second term and
hence determine S, _ , . Clearly, this process can be used to
determine all of the coefficients S, .

In general, the coefficients S,’fl j»---j, are mixtures of the
coefficients 77 ; ..., and IT} ; that one desires to determine,
and the procedure used to determine them can, in principle,
be quite complex. Fortunately, the analysis of directing
fields for neutral monopoles and electrically charged mono-
poles is relatively straightforward. We therefore consider
these physically relevant and important cases before consid-
ering the complications that arise in a case involving terms
up to fourth order. For an electromagnetic directing field,
only the first two terms of (21) occur, and 4, is the electro-
magnetic charge-to-mass ratio. One obtains
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Si=(1/n)g"*M;, ,
S =mT,

Sl’llz = Hllllz (l/n)gjljzgklkzn;.qka
The projective structure is easily recovered from the first and

third of these equations. One obtains

Im, =S;, +g,.S" 37
It is important to note that the projective structure so deter-
mined does not depend on the arbitrary normalization of
g;, ;.- The projective structure IT; ; and the conformal struc-
ture g; ; together uniquely determine®” the affine structure
T} ;, and hence a Weyl structure®® on space-time provided
that the projective and conformal structures satisfy a sec-
ond-order compatibility constraint. Moreover, provided
that I, = I'}, satisfies

rkJ—Fk=O, (38)

i
the conformal structure reduces to a Riemann structure.
Thus the scale factor A(x'), where

g, (x") = A(x)g;, ;, (x)), (39)
can be determined by parallel transport of the scale factor

chosen arbitrarily at any one point, and the electromagnetic
field tensor T'; is given by

i Ti =vVA(X)S] = pA(x) (40)
where the charge-to-mass ratio 4, must be chosen arbitrarily
for at least one class of charged particles in order to deter-
mine the scale for charge space.

Remark I: In all extant work>’~'° on the constructive
axiomatics of the general theory of relativity, it was neces-
sary to specify that the test particles used to determine the
projective structure of space-time were not only monopole
but also neutral. In a previous paper,'' we constructed a
method of uniquely decomposing a directing field of the type
(13) into its projective and force components. This method
has the virtue of permitting the determination of the projec-
tive coefficients H‘k given only one class of monopoles (13)
regardless of the complexity of the force component; how-
ever, it requires that the g; be measured with sufficient preci-
sion to permit the computation of the conformal connection
coefficients K, from them.

In contrast, in order to determine the Hj‘fk , the harmonic
method discussed in this paper requires only the g; and not
the K j,. The K}, are only required for the determination of
the scale factor A (x’) and hence the metric g;;. On the other
hand, as is shown below, many classes of monopoles with a
suitable variety of charge-to- -mass ratios may in principle be
required to determine the IT;, In practice, however, this is
not really a problem because only the electromagnetic case is
physically relevant and in this case only one electromagnetic
charge-to-mass ratio is needed. In addition, the general tech-
niques of harmonic analysis are widely known, a fact that
makes the harmonic method more transparent.

Remark 2: Although the projective structure (geodesic
directing field) that governs the motions of neutral massive
monopoles is a special case of the electromagnetic directing
field discussed above, it is particularly important because of
the central role it plays in the formulation of the Law of

(36)
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Inertia.! In previous work? (see, also Ref. 12), we provided
an empirical criterion for determining whether or not a di-
recting field is or is not geodesic (projective); namely, a di-
recting field E5(x,£¢) is geodesic iff it is cubic in its
(n — 1)-velocities £ §. The analysis presented above shows

that an alternative criterion is the following.
An Empirical Criterion for Geodesicity: A directing field
EZ(£7) is geodesic iff the corresponding field (21) satisfies
-

S'= (1/n)g" I} o + [Bus/n(n+2)1g%g"*T 1 v ks

Si =T, + s/ (n + 2) 18T

Shn =0, — (1/n)g; , g I ) + [6pa/ (n + D E T sy, — (1/0)8;, ;8 8 T i)

LLLA% (Vi) =0 (41)
and
LLAL () = (2n— 1)Led L (7). (42)

We conclude with the analysis of a somewhat more
complicated possibility, namely, the field (21) with k = 4.
The §;...; are given by

“Ji

(43)

Shii =H3[ T s — W/ (n+2)1(8;,,8T by, + 8,8 s, + 8.1,8T 1) 15

and

hddvde = pal

i k ks i kiky i ko ky ci
i — 1/ (0 + D) ]1[8,,8"T ki + 88 T hkssie + 88T kkasiis

ko, i Kok i ik, i
+ 8,8 kjiie t 8108 T kkaiiis + 818 ki

—[1/(n+2)1(8;, .8, + 8,8,/ +8,.8,,)8 8" “T krun 1}

It is clear that one must know the S ; ..; for a sufficient
variety of i, . Moreover, one complete set of the iz, must be
fixed arbitrarily in order to determine the scale for €ach of
the charge-to-mass ratios. For one field for which u,7#0 and
1470, define the charge-to-mass scales by setting u; =1
and p, = 1. One can then easily determine ji, and j, from
the ratio of § 4., and S} and the ratio of S i, and
S}, 11, o> TESPectively. Then from S ¢, and S}, and from Ky
and $* the projective and nonprojective terms can be recov-
ered. Thus the projective structure can be reconstructed in
the same way as in the case of the electromagnetic directing
field, and the metric tensor and hence the scale factor A(x’)
can be determined from the projective and conformal struc-

tures as before. In addition, the nonprojective terms of S,

S ;.;.;, suffice for the reconstruction of .7} , ; . and hence
of T, ,.,.- Finally, given

S, =#17;, + [3ua/(n + 2)]gk'k1y—2.k,j.» (45)

Sh =T + B/ (4 DI T s (46)
one can obtain

S}, — St = (Pt — pfp) T, 47)

One could determine the scale for the £, charge-to-mass ra-
tio by setting the coefficient ({4, — p25it,) equal to 1 and
hence determine .7} ; however, i1, and /i, are still not known
and there does not seem to be any straightforward way to
determine the field g&** .7} , . . However, if the family of
directing fields contained a pair of fields with g7 = 0, u} #0,
p#7 =0, and u§ #0, then they could be identified by the fact
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(44)

r
that the combination corresponding to (47) would vanish
(assuming it is already known that .7',’ does not vanish).
From these fields, g“**.77% , ; can be determined and hence

T ., and T . can be reconstructed.
1aJa FIWEY A
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Chandrasekhar has developed a method of analyzing first-order perturbations about some
known metrics using the N.P. system of equations. In this paper it is shown that some of the
intriguing aspects that have been noted in his method—the superfluity of the N.P. system, and
the existence of very complicated integral identities—are not peculiar to this particular type of
perturbation analysis; rather the underlying principles are fundamental properties associated
with the differential structure of the N.P. system. Specifically the three different subsystems
used in the three space-times where Chandrasekhar’s method has been applied, are confirmed
directly as sufficient subsystems for extracting all information from the complete N.P. system,
for the respective situations in which they have been used.

I. INTRODUCTION

In his work on gravitational perturbations about a Kerr
black hole, Chandrasekhar'~* draws attention to the need for
further investigation of a number of related features that
emerge in his analysis. These include

(i) the superfluity of the N.P. system of equations,®
which permits the complete solution of this system to be
obtained by solving explicitly only a particular subsystem
(which shall be called subsystem C,) of the whole system;

(ii) the existence of integral identities (and, in particu-
lar, the depth of their integral nature) which are obtained in
the process of calculating the solution of subsystem C,; and

(iii) the question whether a similar type of analysis
would supply new integrability identities for existing func-
tions of mathematical physics, when they occur in Einstein’s
equations.

Chandrasekhar considers a Kerr black hole being per-
turbed so that the N.P. quantities associated with the Kerr
metric change by the first order of smallness and with a par-
ticular ¢ and ¢ dependence. He then solves the subsystem
C,—to this level of accuracy and with this restricted f and ¢
dependence—to obtain explicit expressions for all the first-
order changes.

The various specializations being made, the approxi-
mate nature of the analysis, the very long and complicated
calculations involved, mean that the features described
above emerge in a puzzling manner; it is not immediately
apparent whether they are features of this particular ap-
proach to this particualr problem, or whether they are of a
more general and fundamental nature.

The purpose of this paper is to examine the first feature
noted above—although the results obtained will have impli-
cations in the greater understanding of the related features.
When the differential structure of the N.P. system is consid-
ered, together with the relationship of this system to Ein-
stein’s equations, it becomes clear that the superfluity of the
N.P. system and the existence of associated integral identi-
ties are fundamental features—peculiar neither to Chandra-
sekhar’s approach, nor even to this type of perturbation
analysis.
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The results of this paper follow from work by Papape-
trou”® on the structure of the system of equations used in
tetrad formalisms. Since these results do not seem to be well
known, they are summarized in the following section; and in
Sec. I1I some general implications are deduced regarding
existence of sufficient subsystems of the N.P. system.

In Sec. IV it is shown that in general subsystem C, is not
sufficient to guarantee exact solutions of the whole N.P. sys-
tem. Of course Chandrasekhar’s analysis seeks to find ap-
proximate solutions with a restricted type of ¢ and ¢ behav-
ior; and it does not automatically follow that if a particular
subsystem is insufficient (or sufficient) in general to guaran-
tee the exact solution, that it is insufficient (or sufficient) to
guarantee an approximate solution of a particular restricted
type. In fact the insistance that solutions must have a partic-
ular type of tand ¢ dependence is a crucial restriction, which
ensures that subsystem C, is sufficient in these circum-
stances. So it is proved in Sec. V that subsystem C, is a suffi-
cient subsystem to guarantee restricted approximate solu-

" tions of the type under consideration.

It should be noted that Chandrasekhar did not show
directly that subsystem C; was sufficient, and some of the
N.P. equations were left unsolved in his analysis—although
the nature of his solution gives evidence that all of the infor-
mation in the N.P. system has indeed been extracted using
subsystem C,. However, in one of his original papers? Chan-
drasekhar had prematurely argued that all of the informa-
tion had been extracted—using an even smaller subsystem
than subsystem C,—only to find later that this was not the
case, and additional N.P. equations had to be solved explicit-
ly.3"‘

The result obtained in this paper therefore confirms un-
ambiguously that Chandrasekhar’s analysis, using subsys-
tem C, has indeed extracted all possible information from
the N.P. system for the type of restricted and approximate
solutions under consideration. It is also noted that the sig-
nificance of subsystem C, is limited to this particular ap-
proach to this particular problem. However, in any attempt
to find exact or approximate solutions to Einstein’s equa-
tions there will usually be one or more subsystems that sug-
gest themselves in a natural way; the sufficiency of these
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subsystems can be tested by Papapetrou’s identities.® !

Recently Chandrasekhar and Xanthopoulus'? have car-
ried out the same type of perturbation analysis on region I
and region II of Bell-Szekeres space-time.'*™'* In each re-
gion only a subsystem of the complete N.P. system is solved
explicitly (subsystems C, and C,, respectively). Although
there is no doubt that all of the information has been extract-
ed, it is instructive to use Papapetrou’s identities to confirm
that the subsystems C, and C; are indeed sufficient in their
respective situations.

This is shown in Sec. VI; and once again it is noted that
the usefulness of both subsystems seems to be restricted to
these particular situations.

Since subsystems C;, C,, and C; are all different, some
overall insight into the redundancy of the N.P. system and
the role of integrability conditions has been gained, and this
is summarized in Sec. VIL

Il. PAPAPETROU’S IDENTITIES

The basic system of equations for the tetrad formalism
can be presented as

Xonp =0, (2.1)
Y npg =0, 2.2)
Veminpg) = 0, 2.3)
where
Xoinp =2V (minip1 — 2Zim" p1Znas 24)
Y, mnpq ERmnpq - 27mn(p:ql - zysmlqyslnlpl - 27mn sys[pq I
(2.5)
Vomnpg =Rsmnpg — 2Rsmm¥'sn + Rogem¥'sn — RpgsV'mn-
(2.6)
Following Papapetrou,® labels X,,,,,, Y rnpgs Vemnpg have

been introduced for the different equations; the remainder of
the notation is standard.

The redundancy is then given explicitly by the following
three sets of identities:

Xim'wip) = X 1m X o1 + X w010 51 — Vo1V
+ Zer[mVn rp] + Y[msnpl =0,
nlpgr] = Ymn[pq:rl + Veunlpils qsrl + Zflpq Ylmn-‘Ir]
- Vsm[p Ylsnlqu + 7"n[p YIS"'Iqu + 7/mnsYs{pqr] =0, (2.8)
ﬂmrs{ anpqr.s + 37’!rs an[pqt 17 27”[rn|p Vfl"lq’s
—Rontr Yipgs + Ry (n Yy + iRmnpq::Xr‘s} =0.
2.9)

Also used in the tetrad formalism are the commutator
equations

{V[mv,,] +}’[m”nlvp}=0. (2-10)

- The N.P. formalism for general relativity® is derived
from the above by
(i) choosing the four tetrad vectors to be two real and
two complex null vectors, so that there are 12 complex spin
coefficients and 12 independent complex components of the
Riemann tensor;
(ii) using Einstein’s equations to replace the Ricci ten-

(2.7)
Vi
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sor components in (2.2) and (2.3) by the appropriate ener-
gy-momentum tensor components; and

(iii) writing out each individual equation from the four
sets (2.1)-(2.3) and (2.10) using a different symbol for
each spin-coefficient, differential operator, and independent
Weyl tensor and energy-momentum tensor component.

Perhaps two points over which there seems to be some
uncertainty in the literature'®'” need to be emphasized:

(a) The four sets of equations (2.1)-(2.3) and (2.10)
with the substitutions noted above are completely equivalent
to Einstein’s equations’ (although this N.P. system is obvi-
ously larger with considerable redundancy).

(b) The structure equations defining the spin coeffi-
cients (2.1) and the commutator equations (2.10) are exact-
ly equivalent, so only one of these sets needs to be included in
the formal N.P. system.”

In the remainder of this paper, “ the complete N.P. sys-
tem of equations” will refer to the three sets of equations
(2.2), (2.3), and (2.10) written out individually subject to
the substitutions noted above. [ These are, respectively, Egs.
(310), (321,322), and (303, 304) on pages 45-51 of Ref. 5.]

" The usefulness of Papapetrou’s explicit determination
of the redundancy is that one is able to pick out from the
complete system of equations a particular subsystem and to
test directly whether it is sufficient to ensure that the com-
plete system is satisfied. A simple example will illustrate.
Suppose one solves only the Ricci equations (2.2) and the
commutator equations (2.10), which in the above notation
are equivalent to

X, =0, for all m,n,p, (2.11)

Yinpg =0, for all m,npgq. (2.12)
By virtue of identity (2.8),

Viminpg) =0, for all m,n,p,q,s, (2.13)

and so the complete N.P. system is satisfied. This is of course
just the well-known result that Egs. (2.13) (the Bianchi
“identities”) are identically satisfied, provided that the two
sets of structure equations (2.11) and (2.12) are satisfied.
However, it is easy to note that this subsystem is unnecessari-
ly large. An appropriately chosen subset of the Ricci equa-
tions (2.12) together with all of (2.11) would suffice, since
Egs. (2.11) substituted in identity (2.7) yield

) AL () (2.14)

In practice, in many calculations the Bianchi equations
(2.3) are the easiest equations to manipulate, and so it is
often preferable to choose them as part of the basic subsys-
tem, together with the commutators (2.10); then the identi-
ties (2.7)—(2.9) can be used to determine just how few of the
equations from the remaining set of Ricci equations (2.2)
are really needed to be added to (2.3) and (2.10) toensurea
sufficient subsystem.

Since Chandrasekhar’s method involves a subsystem
consisting of all Egs. (2.3) and (2.10), and some of Eqgs.
(2.2), Papapetrou’s identities enable an analysis of this sys-
tem to be made comparatively easily.
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Ili. SUBSYSTEMS OF N.P. SYSTEM

In this section some general results for arbitrary spaces
are deduced from Papapetrou’s identities (2.7)-(2.9).

The first point to note is that the commutator equations
(2.10) [or equivalently the structure equations (2.1) ] imply
from (2.7) that

Yim'np1=0. 3.1

These are the six complex and four real ‘“‘elimination real-
tions” quoted by Chandrasekhar.'® Therefore, provided that
Eqgs. (2.10) are satisfied, Y,,,,,, has exactly the same symme-
try properties as the Riemann tensor R,,,,,. So it will be
convenient to use a similar N.P.-type notation,

‘Al;o = — Y513 ‘1;3 = — Yo
0 0
‘Tll = - 10[12139 @4 = - {4242, (3.2)
‘iz = — L1342y
0
q)oo = - iYw b, = — iYw
D, = — Y+ Yy, Pu=—1iY;;,
q)m: "'ina» ¢’22= —£Y22a (3.3)
q>12 = - ;Y23, q’zo = - iY-w
b= 1Y, A=Y/24,
where Y ..., Y, relateto ¥,,,,,, in exactly the same way as
0

the Weyl tensor C,,,,, and Ricci tensor R,,,, respectively,
relate to the Riemann tensor R,,,,, .

Next it is noted that when the Bianchi equations (2.3)
are added to the commutator equations (2.10), then (2.8)
becomes

Y antpogr) = 2V 1pg Yimnsir1 + Vmtp Yisnlar1 — Vatp YISMIqu(’;’ 2)
SoY

mnpq 4150 Obeys the same differential equations as R,,,,,,,.
This means that each equation of (3.4) can be written out
explicitly in the N.P.-type notation simply by substituting
the various ¥,® quantities defined in (3.2) and (3.3) for
their corresponding Riemann tensor counterparts in the
usual N.P. version of the Bianchi equations—Eqgs. (321),
(321"), and (322) on pp. 49-51 of Ref. 5.
In addition, (2.3) and (2.10) imply from (2.9)

RmntrY'pqs - Rqrt[n Y'm]ps = 0! (35)
which written out explicitly gives

Vo0, — 39, ¥, + 3W,¥, — ¥,¥, =0,

v, ¥, — 30, ¥, + 39, ¥, — ¥,¥, =0, (3.6)

V¥, — 29, ¥, + 2¥,¥, — v, ¥, =0.

So provided (2.3) and (2.10) are satisfied, the eighteen
complex Ricci equations (2.2) are subject to nine complex
and four real algebraic identities (3.1) and (3.6) together
with nine complex and two real integrability conditions
(3.4). Clearly the two sets of equation (2.3) and (2.10) need
only a small number of equations from (2.2) to ensure that
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the complete N.P. system is satisfied: There are many varia-
tions of sufficient subsystems—the type of analysis being
carried out and/or the tetrad formalism being used will sug-
gest the appropriate subsystem to be tested for sufficien-
cy. !

Although there are many choices of sufficient subsys-
tems, there is one equation from the complete system that
must always be included in the subsystem to ensure suffi-
ciency in general cases. Note that if all of the equations in the
N.P. system (2.1), (2.2), and (2.10) are satisfied, with the
exception of the one equation

A=0, (3.7
then the identities (2.7)-(2.9) reduce to the four equations
A, =0, (3.8)

which in general have a nonzero (although constant) solu-
tion. Hence any subsystem of equations that does not include
Eq. (3.7) explicitly or implicitly will not be a sufficient sub-
system for arbitrary spaces.

IV. SUBSYSTEM C,

In this section Chandrasekhar’s subsystem C; is consid-
ered explicitly. This subsystem consists of all the commuta-
tor equations (2.10), all the Bianchi equations (2.3), and six
Ricci equations from(2.2) [given by Eqgs. (310), members a,
b, g,j, n, p, on pp. 4647 of Ref. 5]. In the notation of the last
sections, subsystem C, consists of

Xy =0, (4.1)
¥,=0=V,, (4.2a)
Sy =D, =0=0,,=D,, (4.2b)
Veminpg) = O- (4.3)

Since this system does not contain Eq. (3.7), it cannot
be a sufficient subsystem for arbitrary spaces.

Of course Chandrasekhar was not seeking arbitrary so-
lutions, but rather solutions to a first level of approximation
whose perturbations have a ¢ and ¢ dependence given by

it me, (4.4)
where o+ is a real positive constant and m is an integer
(positive, negative, or zero). The X,,,,, Y nupgs Vimnpg 1abels

for the equations will therefore now only be considered to
this level of approximation, and so can be written

Xy =X 00y + X 100 (4.5a)
Yonpa =Y tonog + ¥ anpes (4.5b)
Vinnpa =V Sonpg + V ompas (4.5¢)

Since the equations are satisfied to zeroth order, all (0)
marked terms are identically zero. The perturbation quanti-
ties, marked with (1), will all have the ¢t and ¢ dependence
given by (4.4), and the usual conventions of dropping the
(1) superscript and suppressing the factor (4.4) on such
quantities will now be followed.

Subsystem C,, for the type of analysis carried out by
Chandrasekhar, is therefore given by (4.1)-(4.3), where the
various quantities are now considered as perturbed quanti-
ties of first order with an implicit factor (4.4).
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With this interpretation of (4.1)-(4.3), theargument in
the last paragraph of the last section is no longer valid. Since
A must have a factor (4.4), the only solution to (3.8) is

A=0. (4.6)

Hence the argument in that paragraph cannot be used to
rule out subsystem C, as a sufficient subsystem for the re-
stricted type of approximate solution sought by Chandrasek-
har. So subsystem C, will now be considered explicitly for
such situations.

V. SUFFICIENCY OF SUBSYSTEM C,

The equations (4.1)-(4.3) comprising subsystem C are
now substituted into the identities (2.7)—(2.9), and the re-
sulting equations are solved to show that the only soluton is
that all the remaining ® quantities be zero, i.e., the complete
N.P. system is satisfied.

When (4.1) and (4.3) are substituted into identity
(2.8) as in the last section, it reduces to (3.6); the additional
substitution of (4.2), together with the consideration of
terms up to first order only, reduces (3.6) to

¥, =0, (5.1a)
¥, =0. (5.1b)

When (4.1)-(4.3), together with (5.1), are substituted
into identity (2.8), the 11 equations can be written out expli-
citly as

D, — 2(e+p*) Py =0, (5.2a)
6Py, + 2(m* — )Py, =0, (5.2b)
AD,, +2(u* + 1, =0, (5.2¢)
5d,, +2(a— )P, =0, (5.2d)
DV, + 2DA — 5*®,,

=3pW, — 2(a + *)Py, + 208, — 2rB,,, (5.32)

AV, + 2AA — 63,
= — 3#‘1"2 + 2(7* +ﬂ)$21 - 2/1&5“ - 27"&512’

(5.3b)
8Y, + 26A + AD,,
=370, — 2(u* — Py, + 208, — 27,  (5.3¢)
5*V, + 25*A + D,

= — 317“172 + 2(p‘ - 6)621 - 2/1610 + 27(’511,(5.3(1)
D(¥, + ¥ — &, + A)
=3p¥, + 3p*¥F — (27* + Py, — 21+ 7*) D,

(5.4a)
A(q’z + ‘AI;; - ‘T’u +A)
= —3u¥, — 3u* V2 + (r* + 21D,
+ (r+20%)D,,, (5.4b)
8(¥, + ¥+ &,, +A)
=37, — 3r*¥s — (2u* — )Py, + 20 —p*) ).
(5.4¢)

The notation and conventions of Ref. 5 are being used—
in particular, all spin coefficients and operators are zeroth
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order (Kerr), since the field quantities are all first order.
Note that, with respect to the original N.P. notation, (5.4a)
and (5.4b) are real.

There are a number of possible integrability conditions
for this system (five complex and two real), but the only
nontrivial ones are the two real ones from the set of equations
(5.4); these conditions are quite complicated in the general
case.

When the ¢ quantities in (5.2)~(5.4) are restricted to
having the factor (4.4), then the zeroth-order operators act-
ing on such quantities have the form

D=4, +iK/A, A= — (A/20%) (8, — iK /A),
6= (1/pv2)(d, — @), &*=(1/p*v2)(dy + Q),

where

(5.5)

K= (P +d*)o+ +am,
p=r+iacosf, p*=r—iacosé,
pPP=r+acos’d, A=r —2Mr+ d>

Q=ao* sin @ + mcsc 6,
(5.6)

When these operators are substituted into Eqs. (5.2)-(5.4),
they become a system of differential equations in the two
coordinates 7 and 6. The two nontrivial integrability condi-
tons have a simpler form; in addition, two real and two com-
plex algebraic compatibility conditions arise when

(i) 3, terms are eliminated by combining (5.4a) and
(5.4b);

(ii) d, terms are eliminated by combining (5.4¢c) and
(5.4¢c*);

(iii) 4, and d, terms are eliminated by combining
(5.2b) and (5.2d) with (5.3¢) and (5.3d); and

(iv) 4, and d, terms are eliminated by combining
(5.2a) and (5.2c) with (5.3c) and (5.3d).

So there is an algebraic system of six equations (four real
and_two complex) in five unknowns (A,®,, real and
V,,®,,,P,, complex). This is equivalent to a homogeneous
system of eight real algebraic equations in eight real unk-
nowns, which will have only the trivial solution if all the
equations are linearly independent. To show that this system
is indeed linearly independent in the Kerr background it is
clearly sufficient (and much easier) to show that it is linearly
independent in a special case of the Kerr background, i.e.,
the Schwarzschild background.

When the algebraic and integrability conditions for the
system (5.2)~(5.4) are specialized to a Schwarzschild back-
ground they simplify as follows.

The two real integrability conditions found from (5.4a)
and (5.4b), and (5.4c) and (5.4c*), respectively, are

K(¥, +¥3) =0, (5.72)
K(¥, — ¥ =0. (5.7b)

The compatibility conditions for (5.4a) and (5.4b), and
(5.4c) and (5.4c*), respectively, are

K9, + 92 ~®,,+A) =0, (5.7¢)
VIQ(Y, + ¥% + &, + X) + ((A/202) Dy, + D))
—((A/2p")D o + D)) =0. (5.7d)

The compatibility conditions from (5.2b), (5.2d),
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(5.3a), (5.3b), and (5.2a), (5.2c), (5.3c), and (5.3d), re-
spectively, are

vZQ(P, 4+ 2A) — ZA(%&Sm + Eﬁzl)

+ M (-2%&310 + 61312) — 2rik (%&50, _ 62,) =0.

(5.7¢)
K (5 o~ Ax
bl Q (ﬁ;&lo - 612) = 0- (5.7f)

It is easy to see that the only solution to the system (5.7)
is the trivial solution, and this must, therefore, also be the
only solution in the Kerr background. So it has been shown
that sybsystem C, ensures that all other N.P. equations are
satisfied,

D,=D,, =P, =0=V,=A, (5.8)

for the restricted approximate analysis under consideration.

V1. SUFFICIENCY OF SUBSYSTEMS C. AND C;

In this section the subsystems considered in the pertur-
bation analysis'? of Bell-Szekeres space-time'? are examined
and shown to be sufficient.

The Bell-Szekeres space-time is conformalily flat,

Yo=V¥,=¥,=¥,=¥,=0. 6.1)
In the coordinate and tetrad systems used in region I the only
nonzero spin coefficients are

€= —y=cot@/2v2 and a= — B =cot§/2V2,

(6.2)

and the only nonzero Maxwell scalar is
6, = 1/V2. (6.3)

In the usual way first-order changes are considered for all
the tetrad vectors, spin coefficients, and Weyl and Maxwell
tensor components; the same conventions and notation are
used as in the case for perturbations about Kerr.

The subsystem C, consists of all the nontrivial Maxwell
equations together with the following N.P. equations:

X,,., =0, for all mn,p.qs, (6.4)
Yi3=Y35= Y1312 =0= Y2441 = Y431 = Yaaz1s (6.52)
Yossr = Va3 = Ypuus = 0= Yours = Y1332 = Y1320 (6.5b)
v, (6.6)

This means that the only equations of the N.P. system not
considered explicitly are the six equations

minpg ] =0, for all m,n,p.q,s,

Yia— Y3 = Y213 — Y33 = Y1232 — Yaua2

(6.7a)
Yi212— Y412 = Y1234 — Y343, =0. (6.7b)
But when Egs. (6.4)—(6.6) are substituted into the first

of Papapetrou’s identities (2.7), it is clear that the first four

of these remaining equations (6.7a) are also satisfied by vir-
tue of the elimination relations. So in the N.P.-type notation

= Y1242 - Y3442 =0,
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used in Sec. III the only equations still outstanding are

V,+®,—A=0, (6.8a)

-¥,+®%,+A=0, (6.8b)
where it is known from (6.5) that

¥, +2A=0. (6.9)

Since the background metric is conformally flat, there is no
contribution from identity (2.8); the only constraints com-
ing from identity (2.9) [using (6.9)] are

D(®,, +3A) =0,
A((‘Ell + SK) = 0,
5(®,, —3K)=0.

It is obvious that in general these four equations are not
sufficient to ensure ®,,, A identically zero. However, since
these have an x! and x? dependence given by

(6.10)

ei(k.x' + kzxz)’ (6.11)
and on such quantities the operators have the forms

D= + (1/V2)(3, — ik, csc @), (6.12a)

A= + (1/V2)(8, + ik, csc @), (6.12b)

5= — (1/v2)(3, — k, csc 6), (6.12¢)

8* = — (1/v2)(d, + k, csc ), (6.12d)

it is easily seen that the only solution to (6.10) in these cir-
cumstances is

®,=0=A. (6.13)

So it has been shown that C, is a sufficient subsystem of the
N.P. system for region I of Bell-Szekeres space-time in the
chosen coordinate and tetrad system.

In region II of Bell-Szekeres space-time the subsystem
C; used consists of all the nontrivial Maxwell equations and
all of the N.P. equations except the three Ricci equations,

Y251 =0, (6.14a)
Yru3=0, (6.14b)
Y003 =0. (6.14c)

But the first two of these equations are identically satisfied
because of identity (2.7), leaving only the outstanding equa-
tion (6.13c) subject to two constraints from identity (2.9):

'D®,, =0, (6.15a)
5*®,, =0. (6.15b)
Once again these equations, in general, are not sufficient to
ensure ®,, identically zero, but for the type of coordinate

dependence being considered it is obvious that the only pos-
sible solution is

3,,=0. (6.16)

So it has been shown that C; is a sufficient subsystem of the
N.P. system for region II of Bell-Szekeres space-time in the
chosen coordinate and tetrad system.

Vil. SUMMARY AND DISCUSSION

It has been pointed out that because of the inherent re-
dundancy within the complete N.P. system of equations
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many possible choices of sufficient subsystems can be found;
the particular choice will depend on the type of analysis be-
ing undertaken. Papapetrou’s indentities® provide a means
of confirming directly the sufficiency of any subsystem.

In particular, it has been shown that subsystems
C,,C,,C,; are sufficient subsystems for the restricted approxi-
mate analysis in which they have been used. One cannot in
general expect a subsystem that is sufficient for one particu-
lar analysis to be sufficient in an (even slightly) different
analysis. For each particular analysis the potential sufficient
subsystem can be confirmed directly from Papapetrou’s
identities.

Papapetrou’s identities enable one to see exactly where
and why the redundancy arises. These identities in general
are quite complicated in the relations they show between the
three different sets of equations from the N.P. system; but
their structure is considerably simpler when all of the com-
mutator equations

(7.1

are included within the sufficient subsystem. In this case the
first identity (2.7) reduces to

Ym[npq] = 09 (72)
the elimination relations which link together some of the
Ricci equations. If all of the Bianchi equations

v,

Si

X,..,, =0, for all m,n,p,

(7.3)

are also included within the sufficient subsystem, then three
more simple algebraic relations (3.6) linking the Ricci equa-
tions are given by identity (2.9).

However, identity (2.8) provides a more complicated
differential link between the Ricci equations. As has been
seen in Sec. V, not only does this identity give rise there to
algebraic compatibility conditions, but more generally, since
it is a set of differential equations, it itself has its own nontri-
vial integrability conditions, which give rise to yet another
set of identities between the Ricci equations. In Sec. V these
compatibility conditions and higher integrability conditions
are written out for the simple Schwarzschild background
metric; however, if these conditions had been written in the
Kerr background metric, they would have given a much
more complicated set of realtions linking the Ricci equa-
tions. When the Ricci equations themselves are written out
explicitly in terms of the Teukolsky functions, from Chan-
drasekhar’s analysis, and these complicated expressions are
substituted into the already complicated identity (2.8) and
its associated compatibility and higher integrability condi-
tions, then it is clear that very complicated identities for the
Teukolsky functions will result. The identity (2.8) therefore
provides a source for at least some of the deep integral rela-

minpg] = 0’ for all m,n,p,q,s,
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tions found by Chandrasekhar in his perturbation analysis of
the Kerr metric.

So the occurrence of deep integral relations is also some-
thing fundamental to the N.P. formalism, linked to its inher-
ent redundancy; such relations can be expected, even pre-
dicted, in any analysis that relies on solving a sufficient
subsystem of the N.P. system. Of course additional identities
will occur in particular cases, especially when specific
choices of tetrad and coordinate system are made. A fuller
discussion of the integral relations associated with the per-
turbations of the Kerr metric will be presented elsewhere.

It is obvious that subsystems C, and C, have more equa-
tions than subsystem C,. The Bell-Szekeres space-time is
conformally flat, and in both regions the choice of tetrad and
coordinate system reduce almost all zeroth-order spin coeffi-
cients to zero; this means that a greater number of Papape-
trou’s identities are trivially satisfied for these subsystems
compared to the situation for subsystem C,, which is asso-
ciated with the less specialized Kerr space-time. It is clear
that the more specialized and symmetric the space-time, the
“weaker” will be Papapetrou’s identities, and so more equa-
tions will be needed to constitute a sufficient subsystem.

Finally it is noted that for subsystems C, and C, only the
“already linearized equations” were needed to ensure a suffi-
cient subsystem; but subsystem C; required additional
{more complicated) equations alongside its already linear-
ized ones. The most efficient way to supplement the already
linearized equations will be considered in a separate paper.
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Ricci collineations and contracted Ricci collineations of the Robertson—Walker metric,
associated with a vector field of the form £ = (£ °(t,r),£ '(£,7),0,0) are presented.

I. INTRODUCTION

In addition to isometries, space-times may admit other
symmetries that do not leave the metric tensor invariant.!
These collineations have been classified by Katzin et al.'?
and their relation to constants of motion has been indicat-
ed. >

Robertson-Walker space-times, which are described by
the metric®

dr
11—k~

ds2=dt2—R2(t)( +r2d02+r2sin29d¢2)‘,

(1.1)

with k=0, + 1, provide physically relevant examples to
study these geometrical properties.

It has been recently shown that these space-times admit
affine collineations, i.e., symmetries that leave invariant the
equation of the geodesic. In particular, Bedran and Lesche®
have given an example of homothetic motion corresponding
to R(¢) = at + b. Another homothetic collineation has been
found by Maartens,” who has also pointed out the existence
of a proper affine collineation associated with the static case
R = 0. Collinson® has proved the uniqueness of this proper
affine collineation.

A less restrictive class of symmetries corresponds to
Ricci collineations'-? (RC)

g;RM =§VVVRM +Ryv VA§V+RVA V“§v=0,

(1.2)
and to the family of contracted Ricci collineations (FCRC)?

Green et al.'® have provided an example of both types of
symmetries for Robertson-Walker space-times. These au-
thors have confined their study to symmetries generated by a
vector field of the form

&=1(£°(1r,6,4),000).

In this paper we further investigate the symmetry prop-
erties of the Robertson—Walker space-times by considering
Ricci collineations and the family of contracted Ricci collin-
eations associated to a vector field £ of the form

E=(£°t,n), £'(1,r),0,0).

2 Postal address: Apartado 4282, Caracas 1010A, Venezuela.

(14)
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The paper is organized as follows: in Sec. II we study
Ricci collineations while the contracted Ricci collineations
are dealt with in Sec. IIIL

Il. RICCI COLLINEATIONS

The nonvanishing components of the Ricci tensor, cor-
responding to the metric (1.1), read

Ry = — 3R /R, (2.1

R;= —g; (A/R?), (2.2)
where a dot indicates derivative with respect to time. Also, in
(2.2), where i = 1,2,3, there is no sum over repeated indices
and we have defined

A=2k+2R?+ RR. (2.3)

In the next section, in order to single out some of the
proper FCRC, it is convenient to study RC first. Substitut-
ing (1.4) in Eq. (1.2) we obtain the following equations:

E°Ryo +&E'Ryy + 2R &1, =0, (2.4)
£°Ro00 + 2R0 %5 =0, (2.5)
Rpo&® +Ry€'o =0, (2.6)
E°Ryyp +£'Ryy, =0, 2.7)
£°Ry0+ £ 'Ry, =0. (2.8)

Equation (2.7) is equivalent to (2.8), therefore we are
left with four independent equations. Integrating, we have

E0=c(1—kP)2|Ry| "2, (2.9)

E'=g(t) r[1 — kP]V?, (2.10)
where

g(t) = — (¢/|Roo|'"®) (A224), (2.11)
where c is a constant.

Equations (2.4)-(2.7) also provide an independent
expression for g(¢):

2(t) = c k(|Ryo|"*/A). (2.12)

From (2.11) and (2.12) an integrability condition for (1.2)
emerges:

JRooAA — Ryo(AA — A%) = 2kARZ,. (2.13)

Equations (2.9)—(2.13) have been obtained assuming
that R,, and A do not vanish. Nevertheless there may exist
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solutions that correspond- to the vanishing of any of the
above quantities.

It is therefore advantageous to explore the above possi-
bilities.

(i)A =0, R,#O0. The vanishing of A implies R;; =0
which represents a general relativistic fluid with the stiff
matter equation of state, that is, p = p.!'-"*

The equation A = 0 can be integrated leading to

R%dr
— 2.14
J. (c —9kR*)'/? ¢ )
where c is a positive constant. Three cases emerge as a conse-
quence of this integral.
(ia) k = 0. This gives
R=c"5t"3, (2.15)
(ib) k = 1. In this case
t=(c/36)*[2E(a,1/\2) — F(a,1/{2)],  (2.16)

a =sin"![y2sin (z/2)],

where F(a,1/42) and E(a,1/42) are elliptic integrals of the
first and second kind, respectively. The above result is valid
for

O<z<#w/2, R?*=(c"*/3)cosz, 2.17)

which implies

0<R2<c'?/3. (2.18)
This solution represents a closed oscillating universe.

(ic) k = — 1. This case leads to

t= (ﬁ)'“[na;) —2E(a,r)

, \sinh z(1 + sinh” z) ] (2.19)
1 +sinhz ’

where

-1 1-— Sinh ¥4 1
a=cos" ' ——=, r=—oy\
1 +sinh z 2

with

2>0, R?=(c"*/3)sinhz
In order to obtain the collineations associated to these space-
times, we go back to Eqgs. (2.4)-(2.7) obtaining

Roof®, =0, (2.20)

E°Rpoo + 2Ryt %o =0. (2.21)

In these equations £ ! emerges as an arbitrary function of
tand 7. The component £ °, on the other hand, is determined
by (2.20) and (2.21) which indicates that R (¢) is not further

restricted and £° is forced to depend on the time only, as
follows:

§0 — C/|R00| I/2’
where c is a constant.

(ii) A = const#0, Ry, = 0. This represents a matter
satisfying the equation of state p + 3p = 0. Also, it implies
that the curvature tensor has no components normal to the
homogeneous hypersurfaces.'"'>*?

R(t) =at+ b,

(2.22)

a,b = const. (2.23)
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Asaresult of (2.4)—(2.7) we obtain that £ ! vanishes and £°
remains an underdetermined function of z and r.

When ARy, #0 we can obtain the RC and the corre-
sponding space-times for the case k = 0. In these cases the
integrability condition (2.13) can be integrated once yield-
ing

g(t) = —cR 5"? (A/2A) = const. (2.24)
Then the collineation vector takes the form

E%=c/|Ry|"?, (2.25)

El=g()r. (2.26)

A one-parameter family of space-times, consistent with
(2.24), corresponds to

R(f) =Be™. (2.27)
This represents an empty de Sitter space-time. Since this is
an Einstein space, all the collineations are motions.!

The solution of Eq. (2.24) given above is obviously not
unique. Another solution is

Rty =pBr, a#l. (2.28)

This choice of R(¢) produces a different Ricci collinea-
tion. However the RC associated to (2.28) is not a proper
Ricci collineation; it corresponds to the homothetic motion
found by Maartens.” _

Another particular solution to (2.24) is A = 0. In this
case £ ! vanishes while £ °is still given by (2.25). This corre-
sponds to the RC found by Green et al.'®

lll. FAMILY OF CONTRACTED RICCI COLLINEATIONS
Contracted Ricci collineations are defined by

gPL R, =0, (3.1)

which for the Robertson-Walker metric (1.1) takes the
form

£9(Rono — 35+ 2Rk,
 2kr A 4A ) 2A
- —]-=¢&, =0
5 (l—kr2 ® TR RS
A first example of proper FCRC is obtained by setting
A = Qin the above equation. Following Sec. I1, we have inte-
grated the equation A = 0, finding R(¢). In the present case
& 'is undetermined and Eq. (3.2) becomes
2Rt %5 + Rooo€® =0. 3.3)

This equation is the same as (2.5) and can be integrated
demanding that R, be different from zero. Thus

E°(t,r) = h(r)/|Rgol %,
where A(r) is arbitrary.

Now, for the case A#0 we introduce solutions of the
form

El=u) v(r)
and

E0=f() h(r) (3.6)

into Eq. (3.2). Then, it is possible to separate variables, ob-
taining

3.2)

34)

3.5)
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V'(r) + (kr/(1 — kP?) + 2/7)(r) + ch(r), 3.7)
2Ro0 f(2) + (Rooo — IA/RHA(1)
=¢(2A/R?) u(?), (3.8)

where c is a constant.

These equations enable us to find two of the four func-
tions needed to determine £° and £ !. Now, in order to leave
u(t) and g(r) arbitrary, we set ¢ = 0. Integration of these
equations leads to the proper family of contracted Ricci col-
lineations described by

ENEP) =u(t)|1 — kr?|V2/r?
and
£°(t,r) = h(r)/RR?, 310,

where it is assumed that R, 7#0. As an example we consider
the collineations associated to

R(t) = Be™. (3.11)
This particular form of R(¢) has already been considered in
Sec. I1. Nevertheless, since now & can be different from zero,

(3.11) does not represent an empty de Sitter space. It turns
out that £ ! is given by (3.9) while £ © takes the form

(3.9)

E0%(t,r) = h(r)e— 3>, (3.12)
Let us consider now Ry, = 0. Then
R(t) =at+6, a,b=const. (3.13)

In this case, (3.9) and (3.10) are not valid, going back to
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Egs. (3.7) and (3.8), with ¢ = 0, we find that £ ? is undeter-
mined, while £ ! keeps the form (3.9).
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A procedure to obtain the general exact solution of Einstein equations for a self-gravitating
spherically symmetric static perfect fluid obeying an arbitrary equation of state is applied to
time-dependent Kantowski—Sachs line elements (with spherical, planar, and hyperbolic
symmetry). As in the static case, the solution is generated by an arbitrary function of the
independent variable and its first derivative. To illustrate the results, the whole family of
(plane-symmetric) solutions with a “gamma-law” equation of state is explicitly obtained in
terms of simple known functions. It is also shown that, while in the static plane-symmetric line
element, every metric is in one to one correspondence with a “partner metric” (both originated
from the same generatrix function); in this case every generatrix function uniquely determines

one metric.

I. INTRODUCTION

In this paper we extend a procedure originally con-
ceived to find the general static solution of self-gravitating
perfect fluids'? to the case of time-dependent distributions
of matter.

The approach consists of looking at the differential
equations for the metric coefficients without appealing «
priori to any equation of state for the self-gravitating perfect
fluid. This allows the introduction of an arbitrary function G
in terms of which it is possible to determine all the relevant
unknown functions. Thus the explicit form of the equation of
state becomes fixed only after the integration has been car-
ried out. ,

It is not claimed that the method necessarily provides a
useful tool to find new solutions. Rather, it should be under-
stood as a device to gain extra insight about the structure of
the solutions of Einstein equations or as a possible alterna-
tive way to classify their solutions.

Nonetheless, because of its physical importance and to
gain some acquaintance with the method, an example is ex-
hibited.

Apart from the general form of the solution, two items
regarding the features of the used mechanism deserve special
mention.

First, it should be remembered that if two solutions have
the same equation of state, they may correspond to the same
solution written in different coordinates. However, as will be
seen, solutions labeled by a different function G truly corre-
spond to different solutions as they do induce different equa-
tions of state.

Second, in the static case with planar symmetry the so-
lutions appeared in couples: every solution induced a partner
that in turn generated back its own seed. However, in this
case an important deviation from such a situation occurs.
The particular combination of factors in the quadrature is
such that the integrals, although similar, are simpler than in
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the static case and the problem is reduced to a single integral
depending only on ¢ and G (and not on its first derivative).
In Sec. II, we write the Einstein field equations for
spherical, plane, and hyperbolic symmetry when the metric
coefficients and the matter parameters exhibit time depend-
ence only. Then, in Sec. III, we mimic the method already
used in the static case to get the general solution of the equa-
tions. In Sec. IV, the plane-symmetric case is studied in more
detail and the most general plane-symmetric metric obeying
a gamma-law equation of state is obtained using the pro-
posed scheme. In Sec. V, we present our conclusions.

il. FIELD EQUATIONS
Consider the Kantowski-Sachs-type line element
ds* =dt? — A(t)dr* — B(1)[d8* 4+ 2(6,K)dp?], (2.1)
where the metric coefficients 4 and B depend only on f and
sin?, K=1,
Z(6,K) =16, K=0,
sinh?, K= —1.
The parameter K says whether the matter distribution has
spherical (K=1), plane (K=0), or hyperbolic
(K= — 1) symmetry.
A slightly different form of the metric is obtained if B(¢)
(instead of # itself) is used as an independent variable:
ds’ =g*(t)dt* — h*(t)dr* — t?[d8 + 2 (0. K)dep?]
2.3)
(the new time variable has been renamed ¢). Even if the
following analysis is valid—strictly speaking—just in the co-
ordinates defined by Eq. (2.3), only slight modifications
have to be introduced to take into account other coordinates.

If the gravitational field is generated by a perfect fluid,
the associated energy—-momentum tensor reads

(2.2)

T;Lv = (p +p)u,uuv _ngw (2‘4)
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where p is the matter pressure, p is the energy density, and

ut = (1/8)8 (2.5)
is the matter four-velocity.
The Einstein field equations
G*, =T*#, (2.6)
are
K 2 (h 1)
=+—=|—+=])=p 2.7
t2+tg2(h+21 P (2.72)
K 2 (¢ l)
——g = (e ——)=p, 2.7
t? + 1g? (g 2n) =P (2.7b)
1[h kg 1 (iz g)]
——=l——=4+——=2)|=p 2.7
Zln g T\ T PITP (2.7¢)
whereas the hydrodynamic equation
Te,, =0 (2.8)
is
p=—p+p)h/h+2/1), (2.9)

and, as usual, it can be also deduced from the Bianchi identi-
ties for the curvature tensor constructed from the line ele-
ment (2.1).

The system of equations (2.7) serves—in principle—to
determine both the metric coefficients (g2 and 4 2) and the
thermodynamic variables (p and p).

However, unless an equation of state

p=p(p) (2.10)

linking p and p is introduced, the problem remains undeter-
mined (only three equations for four unknowns).

Solving (2.7) together with (2.9) can become extremely
difficult. Usually, when handling this kind of system, a furic-
tional dependence of one of the unknown functions (say p)
on the independent variable (¢, in the present case) is given
by hand.

In such a way, the three remaining differential field
equations can be solved for g, 42, and p and an equation of
state is determined a posteriori.® For instance, take p as giv-
en. Then,

12mr — 2t(pt? — 4K)mh + 2t*(3p — 2pt)ym + ¢*
+ t3(4Kp — p*t* — 2K1p) =0,
where 71 = pt?/2.

Nonetheless, there are few choices of p leading to an
exactly solvable differential equation for m.

(2.11)

Hl. THE METHOD

Surprisingly, there exists another prescription by means
of which it is possible to get the general exact solution of the
problem in terms of quadratures.

In fact, Eq. (2.7b) can be rewritten as

1d

1
— t(K+=)|=— 3.1
t2dt ( +g2)] P G-
and then integrated, giving
/g8 = — [K+2m()/t), (32)
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where
dm(t) 1 .,
=—pti
ar 27

IfEq. (3.2) and & /k from Eq. (2.9) are introduced into
Eq. (2.7a), one gets

(2m+Kt)(%+%—L)= —52.
3 t2p+p t

(3.3)

(34)

Now define
G(y=[2m(t) + Kt }/[p(t) — K /t?].
Then, Eq. (3.4) becomes
. (=362 + 6)
G(t?+36)
K(t*=3G)(t* +1G—26G) -0
13G(t? + 3G) )

The last equation is first order and linear in p and can be
integrated at once if G is a given function of . In such a case

p(t) = e’"’[po + Kf dt

(3.5)

+

(3.6)

(3G — 1) (¢® + 1G — 2G) -1()]
2, (3.7
t’G(t3 + G) ¢ (D
where p, is an integration constant and
3 2 r
I(t)=fdt " 36"+ 6) (3.8)
G(t3 +3G)

Moreover, from Eq. (3.3) and the definition (3.5) of G,
() = (1/t2)[pG + Gp — (K /1) (£ + 1G - 2G) ).

3.9)
Also,
E=[(/)K/t*—p)G]~! (3.10)
and '
h2= (hi/t)e—"® (3.11)
where
t2
I =fdt-5 (3.12)

and A, is an integration constant.

Considering G as a given function of ¢ is in a sense equiv-
alent to postulating an equation of state. In fact, once a
choice for G in terms of ¢ is made, Eq. (3.5) links p and m.
Such a relationship cannot be directly understood as an
equation of state because it lacks the invariance property
under arbitrary coordinate transformation it should have.
(In any case, it would be more satisfactory to have a relation-
ship involving p and p rather than p and m.)

iV. AN EXAMPLE: PLANE SYMMETRY

Consider now the K = 0 case, which describes plane-
symmetric Bianchi type I models.
Then, from Eq. (3.7),

p =poe'?, (4.1)
where I is given by Eq. (3.8).
A little algebra shows that
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I(t) =In[G /(> + 3G)?] + J(¢). (4.2)

Then, from Eq. (4.1),

p=polG/(t*+3G)*]’". 4.3)

Also, from Egs. (3.6) and (3.9) (for K =0),

p=[(*+2G-3G)/(t*+3G)]p (4.4)
and, from Eq. (3.10),

g = —1t/pG. (4.5)

To illustrate the above formulas let us find—following
Ref. 4—the plane-symmetric line element generated when
the space is filled with a perfect fluid obeying a “gamma-
law” equation of state:

p=(y—1)p, (4.6)l
hz(t) _ [hgt2(7+ l)/(r—Z)GZ/(2~y)’ 7,#2’
h(z’t—(1+Gl))’ y=2;

(y — Dp(t) =p() ={

— [(1 4+ 3Gy)*/p,G,1t — %, r=2
V. CONCLUSIONS

As has been stated elsewhere,"? expressions (3.7)-
(3.11) constitute the whole set of solutions of Eqs. (2.7). No
spurious solutions have been introduced anywhere, as can be
proved by direct substitution of the solutions into the field
equations. On the other hand, any solution can be accommo-
dated in the present scheme; for example, consider a metric
obtained using another technique. Then, by inverting rela-
tion (3.9) the generatrix function can be determined in
terms of the metric coefficient 4 and its first derivative:

G = — ht*/ho(h + 2ht). (5.1)

Moreover, the solutions obtained are not merely coordinate
transformations, because every solution does produce a dif-
ferent equation of state.

The case when p = K /t ? should be considered separate-
ly, as the definition of G loses its meaning [see Eq. (3.5)].
From Eq. (2.7a), A can be readily integrated giving

h=hy/\t. (5.2)
Equation (2.9) can be algebraically solved for p(¢):
p=iK/t*=}p. (5.3)

Finally, from Eqgs. (3.2) and (3.3) it is found that

&= —(§K+2myt)”", (54)
m, being an integration constant.

Thus Eq. (3.4) still holds identically: the right-hand
side and the second factor of the left-hand side vanish.

As we have pointed out in the Introduction, one draw-
back of the present method is that the realistic matter con-
tent cannot be predicted—in general—from an a priori
choice of the function G (e.g., a choice of G does not guaran-
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[Py — 1)/9G2 |37 = D/@=pGra-D,
[PoGo(¥ — 1)/(1 + 3Gp)?)t %3,

for any ¥ such that 1 < y<2.
Substituting Eq. (4.6) into Eq. (4.4),

2G~ 3G+ 2 -yt =0, (4.7)
which is solved by
_ t3 G 37/2, 2’
G { 1°+ Gyt r# 48)
Got 3, y = 2,
where G, is an integration constant.
Inserting (4.8) into Eq. (3.12),
tWA-DGUX=D  gyt)
= 4.9
exp J(1) LG.,, y=2. 4.9)

Then, from Egs. (3.11), (4.3), (4.6), and (4.5) one

gets, respectively,
(4.10)

2,
:i ). (4.11)
(4.12)

! . . . .
tee the positiveness of p, and the equation of state remains

unknown until the integrals are carried out).

It is interesting that in the present context, some restric-
tions have to be imposed on the relevant parameters of the
solutions if we want them to possess physical meaning. In
fact, if ¢ is the time (and that happens to be when the metrics
are asymptotically flat) then it ranges from — o to + co.
Then, by looking at expression (4.8) for the generatrix func-
tion, it is seen that there are certain forbidden values of ¥ in
order to maintain G (and the physical quantities derived
from it) real. ‘

In order to establish a comparison, let us summarize the
main results obtained in the static case with plane symmetry.

The line element to be determined there is

ds® = @(x)dt* — h*(x)dx — x*(dy* + dz*).  (5.5)
If G is defined as
G=m/p, (5.6)
then
(x*+ G')(x*+ G) ]
= d.
p(x) =po eXp[ 6o —G) x
=polG /(X3 — G)?]e’PeBH™), (5.7
p(x) = (1/x*)(pG' + p'G)
= [x*+ 2xG' + G/(x* — G) 1p(x), (5.8)
g (x) =gt (e "/x), _ (5.9)
h%(x) = —x/p(x)G, (5.10)
where
x2
= = 5.11
J(x) f ax X (5.11)
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and

x2
®*—-G
Now, suppose that the integrals J and H can be com-

pletely carried out in terms of known functions. A compan-
ion metric can be determined at once. In fact, consider

G*=x>-G. (5.13)

Then, J* = Hand H* = J. [Notice that (G*)* = G.]
Consequently, a star solution can be written as

H(x) =de (5.12)

(%) = pol (x° — G)/G?]eH X0, (5.14)
p*(x) = [(Ix* — 2xG' — G)/G 1p*(x), (5.15)
(g*(x)) =g (e~ ¥/x), (5.16)
(h*(x))? = —x/p*(x)(x* — G). (5.17)

However, in the present case no other solution can be
found with the above prescription: every solution is uniquely
determined by G and does not induce any other solution.

The physical meaning of the generatrix function G re-
mains unknown to our knowledge. Some attempts to extract
additional information about it are presently underway,’
especially regarding the stability of the solution (3.7)-
(3.10) under perturbations by a scalar field. In particular,
the exact analytical solution of the Klein—Gordon equation
in a class of background metrics presented in Ref. 5 has been
found.
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In any case, we claim that the method applied in the
present paper possesses a very attractive feature when ex-
tracting analytical information from the field equations: it
allows us to handle the whole family of solutions on the same
footing.
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Alternative pairs of impulsive pp waves (accompanied by shocks) that interact to produce a
Kerr geometry are compared. In one case, discovered by Chandrasekhar and Xanthopoulos
[Proc. R. Soc. London Ser. A 408, 175 (1986) ], analytic extension across the horizon revealed
a timelike singularity analogous to the ring singularity of the Kerr metric. In another,
presented here for the first time, analytic extension across the horizon reveals instead an
asymptotically flat exterior Kerr geometry. The pp wave pulse shapes that result in the
formation of these two different Kerr interaction regions are displayed graphically.

I. INTRODUCTION

Many examples of colliding plane-fronted impulsive
gravitational waves have been constructed. However, we be-
lieve the solution we shall present in this paper is the first
that is completely free of curvature singularities. It does
have, of course, a pair of unavoidable singularities of a topo-
logical nature. Unlike a solution' of Chandrasekhar and
Xanthopoulos (CX), to which it is closely related, the new
solution admits a C ' extension to Minkowski space after the
passage of either incident plane wave. Like the CX solution,
it has in the interaction region a null surface that acts as a
horizon. Analytic extension across this null surface reveals,
however, an asymptotically flat metric indistinguishable
from the exterior Kerr metric.

In Boyer-Lindquist coordinates the Kerr metric may be
expressed in the form

ds’ = X(dr/A + dd?)
+ 3 Ysin® ¢ [(# +a*)dp —adt]?
— Alasin® ¢ dp — dt 1%},

where
S=r+atcos’d, A=r+a—-2mr
Usually one considers the <case in  which

r>m + (m? — a*)'/2. However, we shall be using the above
metric for values of 7 such that

m+ (m*—a®)"*cos & | <r<m+ (m*> —a*)'/2
In this selection we differ from Chandrasekhar and Xantho-
poulos, who employed values of 7 such that

m— (m?—a*)"?<r<m+ (m* —a*)""?|cos ¢|.

To facilitate the conversion to null coordinate we intro-
duce x=p~ '(r/m—1), y=cos &, x;=¢, and x, =p 1,
and set a = m g and m = 1. Then the metric assumes the
form

ds®> = 3(—dx*/(1 — x*) + dy*/(1 — %))
+ 2741 =AM (px + 1) + ¢*ldx, — p~'qdx,F

+ (1 = x*) [pg(1-y*)dx, — dx,]?}, (N
where € = (px + 1)? + ¢*%. The CX metric may be ob-

* Present address: Department of Mathematics, Clarkson University, Pots-
dam, New York 13676.
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tained from (1) simply by replacing p by — p.

In terms of the x-y coordinates, the horizon is located at
x =1, where y runs from — 1 to + 1. For 0<x <1, y is
allowed to assume values that run from — x to x. At
¥y = + x occur null surfaces at which we shall match the
Kerr metric to plane-fronted gravitational wave metrics.
This is accomplished in the usual way. Null coordinates u
and v are defined by

x=u(l —v*)V? + v(1-2)""?,
y=u(l—v)"2—p(1 —u?)"2

The joinings then take place at # = 0,1 > v>0, and at v =0,
1> u>0, where Heaviside step functions accomplish the C°
extensions to Petrov type N solutions of the vacuum field
equations.

(2)

Il. THE INCIDENT PLANE WAVES

Inone of the plane wave regions the metric depends only
upon the null coordinate . Here the metric may be ex-
pressed in the form

ds*= —43(1 —u®)~ "2 du dv
+ 37 (1 —A{[[(pu + N* + ¢*] dx,

—p 'qdx, P + [pg(1 — u?) dx, — dx,)%},
3)

where 2 = (pu + 1)> + g*u°.

The joining of this metric to Minkowski space at u = 0,
v <0, is accomplished in the usual way, simply by substitut-
ing u = 0 in the above metric. The resulting joining provides
a C? extension, associated with which there is a § function
discontinuity as well as a step discontinuity in the Weyl ten-
SOr.

In order to discuss the limit u— 1 we shall substitute
u = cos « and treat a as small. We find that

ds =43 dadv + 37 '@ {(Sdx, — p~'qdx,)?* + dx2},
4)

plus terms of order a?, where £ = 2(1 + p). This is clearly
flat space, with the x’s adapted to null rotations. Hence we
have a C'! extension across the hypersurface u = 1 to flat
space, associated with which there is a step discontinuity but
no & function in the Weyl tensor. However, it should be not-
ed that the only geodesics that can reach this null surface are
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those for which the first integrals associated with the two
Killing vectors vanish, for the a* terms in the metric appear
like an angular momentum barrier in the geodesic equation.
It is therefore a moot point as to whether the extension to flat
space is particularly significant.

The traditional Kerr-Schild form for pp waves is

ds = —2dUdV +dYTdY + 2Y"FYdU?, &)

where F(U) is an arbitrary symmetric trace-free matrix and
Y" = (y1,,). To transform such a metric to #,,x,,x, co-
ordinates, we substitute

U= U(u), V=v+1YT(474)*Y, (6)
Y=A4u)X,

where 4(u) is nonsingular and a dot denotes the derivative
with respect to U. The metric will assume the form

ds’= —2dUdv+dX" hdX, h=A"A, (7)
if A satisfies

ATA—A4T4=0, (8)

A—2FA=0. (9

The first of the conditions follows from the symmetry of F,
while its being trace-free yields

ATed + ATed = 0. (10)

Let us now consider the transformation from the point
of view of one who wishes to transform a pp wave expressed
in the form (7) to the Kerr-Schild form (5). First of all, it
should be remarked that a metric of form (7) automatically
satisfies all the vacuum field equations save one, and that one
turns out to be precisely Eq. (10). Equation (9) becomes the
definition of the matrix F, which by (10) is trace-free. What,
however, is the status of Eq. (8)?

It will be noted that for given & = A" 4, the matrix 4 is
determined only up to A —» R4, where R” R = I. In order to
arrive at the Kerr-Schild form (5) one must impose Eq. (8),
which can always be satisfied by choosing R appropriately.

Turning our attention now to the specific pp wave (3),
we may express 4 in the form

-p~ ‘q)

A=£(“+P q ) ((pu+1)2+q2
3\ —q u+p —pg(1 —u?) 1
(11)

FIG. 1. The F,, pulse profile for various values of p for our solution.
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FIG. 2. The F), pulse profile for various values of p for our solutions.

wherep = 1 — 4% Moreover, the transformation U(«) is de-
termined by
2
U2 X E2ut1
V1=
= 34 — Isin(24) + 4p(1 — cos()), wu =sin(F). (12)
Using Egs. (11) and (12) a tedious, although straightfor-
ward, calculation yields
F,, = — (3p%/82%){pu’ + 5u* + 10pu® + 10u* + Spu + 1
—2¢°(2pu® + 5u* + 1)},
Fl2 = — (3p2q/825){(3 - 4q2)u5
+ 10pu* + 10u* — 5u — 2p}.

These expressions are valid for 0 < # < 1; at ¥ = O there is not
only a step function but also a § function discontinuity.

In the accompanying figures (see Figs. 1-4), we have
attempted to display the nature of the functions F;, and F,,
both for our solution (p»0) and for the CX solution (p<0).
The variable u in each case runs from 0 to 1, while U runs

(13)

FIG. 3. The F,, pulse profile for various values of p for the CX solution.
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FIG. 4. The F,, pulse profile for various values of p for the CX solution.

from O to 37/2 + 4p, respectively. The figures are rotated in
such a way as best to display the interesting features. More-
over, the u-independent coefficients, including the minus
signs, have been suppressed. The horizontal axes of the fig-
ures are the p axis and U axis, or more precisely,
U/(37/2 + 4p).

In the collinear case,i.e.,g =0,p= + 1, wegetF, =0
and F,,~ (1 + u) >, which clearly shows the divergence
that occurs in the CX shock wave as u— 1, and which is
absent from our shock wave. Of course, both pulses have a §
function at # = 0, which we have not shown in the sketches.

IN. THE INTERACTION REGION AND THE CRITICAL
POINTS

The metric (1) describes the interaction of the two inci-
dent pp waves. When p = 1 — u? — v” -0, one reaches the
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boundary of our chart. However, a method of Carter? may
be used to construct the unique analytic extension of this
metric across the null surface p = 0. The final result is that
the geometry on the other side of the horizon is described by
a metric of the same form as (1) except with x> 1. It is just
the Kerr metric outside the horizon at # ~. At the corre-
sponding horizon at .# *, one may extend the metric analyti-
cally again, and, if one wishes, one may join part of the region
within that horizon to a pair of outgoing pp waves.

Nowhere in the extended space-time we have been dis-
cussing does the curvature become infinite. Nevertheless,
there do exist in this solution as well as in the CX solution
unavoidable topological singularities at ¥ =0, v=1 and
u =1, v =0. This may be seen by approaching either of
these points from the appropriate pp wave region and the
interaction region. In the former case, one has Minkowski
space in the form (4), where the ignorable coordinates x,
and x, are adapted to null rotations, while in the latter case,
one approaches Minkowski space in a form in which the
ignorable coordinates x, and x, are adapted to a boost and a
rotation. In both cases, the singular point is at the origin
(a = 0), where it is not possible to define the manifold of
tangent vectors.
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Starting with a Weyl solution representing an axially symmetric gravitational field as the seed
metric, a generalized Kerr solution is generated by the Belinskii-Zakharov technique [Sov.
Phys. JETP 48, 985 (1978); 50, 1 (1980)]. This solution may be interpreted as a Kerr metric

embedded in a gravitational field.

I. INTRODUCTION

Using a procedure developed by Ernst,' Kerns and
Wild? constructed an axially symmetric solution of the vacu-
um Einstein field equations for a Schwarzschild source em-
bedded in a gravitational field. Such a gravitational field may
be produced by surrounding matter.? Kerns and Wild point-
ed out at the end of their paper that astrophysically it would
be more interesting to derive a solution embedding a Kerr
source in a gravitational field. With this idea in view, we
started an investigation and succeeded in deriving a solution
for a*> > m” (a is the angular momentum parameter, m is the
mass).* In this paper, we present a solution of a more general
type using the Belinskii-Zakharov technique.*® If the gravi-
tational field parameter vanishes, we obtain the Kerr solu-
tion. If, however, the Kerr (angular momentum) parameter
vanishes, we obtain a generalized Schwarzschild solution.?
It is hoped that astrophysically this generalized Kerr solu-
tion will be more interesting than our earlier solution.* i

Il. A GENERALIZED KERR SOLUTION

Let us consider the Weyl line element for an axially sym-
metric gravitational field':

ds* = &Y~ X(dp® + dz?) + ple~ X dd? — ¥ dt? (1)
=f(p,z) (dp* + d2*) + g, dx° dx®, (2)

where
= -}k x=k, (3)

a and b take the values 0 and 1 corresponding to ¢ and ¥,
respectively, and & is the gravitational field parameter.

Taking (1) as the seed metric and applying the Belins-
kii-Zakharov technique>® we obtain the following physical
(ph) solution:

ka‘y q2 2ko(x — 1) —2ko(x—~1)\2
(8o0)pn = TR T P [Px +¢ - —'4‘(1 -)e +e } ], 4
(8o)pn = — 2[(px+:’)"2+q202] [+ 1+ DI —p) (2 +p)e =D 4 (14 ) (x — p)e?ox— 1}
— (r=p)(x = D{ +p)(x +p)*E D 4 (1 — p) (x — p)e~ =D}, (5)
ale ko [ 2 2 2 2
= 2(x — D31 — 2x(x + 1)2(1 —
(811)pn 2 ox + 77T 7 x—1D2A=py)Px+ 1+ 22(x+ DA -y @ +1)

2
- -1 =) (2x~1-)") -%(xz — DL + 740 4 (1 — p)te =t~ ”}], (6)

f;)h =e—k’a”(x’—1)(1—y’)—2ko’xy[(px+r)2 +4292], N
where

p=e*"cos?y —e " *Vsin?y, r=e**cos’ n+e~*7sin’y, gq=2sinncos, (8)

7 =const, 20 = (14 p)ek>—1 _ (1 —p)e-2kex-1,
and x,y are related to p, z as

z = 0Xp, &)

pr=(x*=1)(1 -y, (10)
o being a constant.

Using the transformation

9=1t+ (2¢/p)®, (11)
one can write the new metric in the form

ds? = ¢~ K'PEF =D =) —2komy[(px 4 F)2 qzﬂ2][x;ix_21 + ld_yzyzl + G, d®? + Gy, dP d7 + G, d77, (12)
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e2kaxy

Guo= ~ [+ ¢ = 7 = L1 -yt 4 ey, (13)
Gor = — A L+ PG+ DI =P 420650 4 (14 ) (= )}
— (r=p)x = D{(1 +p) (x +p)E7D 4 (1 = p) (x — p)e~ #o*~D}] P ’“’"’[p ‘g —r
— Ly (e 4 ey (14)
e (. e | A R Tty
+%[(p+r)(x+l){(l—y)(x+y)e“2’“’"“”+(1+y)(x—y)ez'“’“_”}
— (r=p)(x = D{(1 +p)(x + ) D 4 (1 — y) (x — p)e~ 2>~ 1}]
Jr%e-"“”"[zoc—1)2(1—yz)(px+r)2+zx(x+1)2(1—y2)(p+r)2
—qz(xz-—-l)(l—yz)(Zx—l—yz)—%(xz—l){(l+y)4e"“’("_”+(l—y)“e"‘“‘”"‘"’}]). (15)
lil. DISCUSSION

Putting k = 0, one gets p = cos 27, g = sin 27, and, substituting mp = o and ¢/p = g, the new metric (12) reduces to

2
@ =[x+ 17+ g7 E

1_yZ]+ y2[(px+l)2+q2+
_ Pty -1,

2¢°(px+ (1 =) | 492
(x + 1) + ¢ ]

(16)

p (ox+ 1)+ g%
which is the Kerr metric.

T ex+ P+ gyt

On the other hand, if ¢ vanishes, then the new metric (12) reduces to the following form:

2
ds? = (x + 1)2e—2kaxy—k’o‘(x2—l)(l—,V')+4kay dx

x*=1

This is a generalized Schwarzschild solution derived by
Kerns and Wild.? It represents a Schwarzschild source em-
bedded in a gravitational field. This leads to the interpreta-
tion of (12) as a solution for Kerr source embedded in a
gravitational field. Kerns and Wild apparently wanted to
have a solution of this type. Herein lies the importance of our
work.
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A vacuum solution in higher dimensions that corresponds to the exterior Marder solution in

four-dimensional general relativity is presented.

I. INTRODUCTION

Higher-dimensional physics is of great importance to-
day as a result of recent developments in superstring theo-
ry."? Yoshimura and Koikawa have recently presented
some spherically symmetric solutions in higher dimen-
sions.*® Myers and Perry’ and Krori et al.® have derived
Schwarzschild-like exterior and interior solutions, respec-
tively. Here a vacuum solution in higher dimensions has
been worked out and can be considered as an extension of the
Marder solution® to higher dimensions: It reduces to the
Marder solution when the number of dimensions becomes
four.

. SOLUTION
We consider the line element in the form

ds’ = e dt* — P(dr + dz*) — rPe* dY, (n

where a, 3, 7 are functions of 7 only and d(}? is the line
element on a unit (N — 3) sphere.

Using exterior calculus, we find the following Ricci ten-
sors:

Reo=e"#[a" +a?+ (N=3)(a/r+a'y)], (2)
Ry=e #—a"—B"—a*+aB' +(N-3)
X(=2¢//r+B'/r—y*+B'Y —v")], (3)

Ry=e [ —aB' —B"—(N=3)B'/r+B'Y)],
4

Ryz=Ry="""=Rpn_w_n =e #[—-a/r—ay
—22Y/r—y =Y = (N—-4)(1/r+ 7). (5)

We obtain the following field equations by making
R, =0

a”"+a*+ (N-3)(&/r+ay) =0, 6)
—a"—B" —a?+aB + (N—=3)(—2//r+B'/r
—V*+B'Y —v") =0, (M
aB’'+B"+(N=3)(B'/r+B'Y)=0, (8)
a/r+ay +2//r+ v + 97
+(N—4)(I/r+9)*=0. (9
From Eq. (6) we obtain
yY=(—a" —a?)/(N-3)a'—1/r. (10)
Hence
Y =(—aa” —2a"%" +a" +a*a")/(N-3)
+ 1/~ (1

 This paper is dedicated in honor of Professor 8. D. Chatterjee for his con-
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Using (10) and (11) we obtain, from Eq. (9),

a" —Ca?=0, (12)
where Cis an integration constant. Solving Eq. (12) we ob-
tain

a=A4—Blog(r+ C,), (13)
where 4, B, and C, are integration constants. From Eq. (10)
by using (13) we obtain
y=[(1+B)/(N-3)]log(r+ C,) —logr+C,, (14)

where C, is a constant. From Eq. (8) by using (13) and (14)
we obtain '

= —}[(1-B* - (1+B)/(N-13)]

Xlog(r+ Cy) + G;,

where C; is a constant.

It can be shown that solutions (13)-(15) correspond to
the N-dimensional extension of a Marderlike solution. Exact
N-dimensional Marderlike solutions can be obtained by ad-
justing the constants in the following manner:

(15)

A=0, B=—-C, C;=C,=0, C,=logk, (16)
where C and X are constants.
Thus we obtain
a=Clogr, (17)
y=[(1-C)/(N—3)]logr—logr, (18)
B= —3[1-C2~ (1= CO)*(N—3)]logr+logK.
(19)

The line element (1) becomes
ds? =PCdt? — K2~ U-C-U-OYWN=91 (g2 | J72)

4+ £U=O/N=3 02, (20)
When N =4 (i.e., the number of dimensions is four) we
obtain the Marder metric®
ds? =PCdt? — K= 20— O(gdP + d2?) + P~ O d¢2.

2n

lll. LIMITING CONDITIONS

We now consider properties of the general solution rep-
resented by (13)-(17) and of the Marderlike solution (20)
in the limits r—0 and r— . The metric coefficients for the
general solution are

e =e(r+ C)) ~ %, (22)

P =(r+C) 7 (23)
where

P=1—B?—(1+B)*(N-13), (24)

re? = &%[(r + C) |2 + BN =3, (25)
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A.r- 0

In the limit 7—0, the metric coefficients of the general
solution have the values

e2a N eZA C 1— ZB,

PoEoC 7,
,Zelr_,eZCzC?(l +BY/(N—3)

(26)

Thus the general solution is free from any singularity in
the limit »—0. However, the situation is different for the
)

B.r— o

particular Marderlike solution with values of the integration
constants given by (16). In this case,

£7-00,
823—»0,
& o,
& =K?,
e’ — w,
rze"—oo,
P =1,

P<0, ie,
P>0, ie,
P=0, ie,
C>1,
C«l,
C=1

In the limit 7— o the metric coefficients of the general solution have the values

&% w0, if B<O,

>0, if B>0,

o, if P<O, ie.,

-0, if P>0, ie, —1<B<(N—4)/(N-2),
& = &%, if P=0, ie.,

re-w, if B> —1,

Pe*r -0, if B< —1,

rer=¢e<, if B= —1.

B< —~1or B>(N—-4)/(N-2),

B=—1o0or B=(N—-4)/(N-2),

Thus the general solution has singularities in the limit r— «. For the Marderlike solution we have, in this limit,

"> o,

P, if C>1,
-0, if C<«l,
f=k? if C=1,
ré’- o, if C<l,
rPe?’-0, if C>1,
rPe"=1, if C=1.

Singularities occur in this case as well.
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Solutions of the Einstein-Maxwell equations for static spheres of charged imperfect fluids are
investigated, where the space-time geometry is assumed to admit a conformal symmetry.
Previous work is generalized by considering a nonstatic conformal symmetry. This allows the
possibility of solutions that are nonsingular at the center, unlike the previous solutions based
on a static conformal symmetry. Two such regular solutions are presented for charged spheres.
The further generalization necessary to find stable exact stellar models with a conformal

symmetry is indicated.

I. INTRODUCTION

Despite the power of computer solutions, exact solu-
tions are still of importance in general relativity, because
they allow a “global” understanding not tied to a specific
choice of parameters and initial conditons. In relativistic as-
trophysics, exact static fluid solutions are important for de-
veloping stellar models. The most general mathematical case
in this class of solutions is the charged, imperfect fluid
sphere.

Exact solutions of the field equations for static spheres
may be found in an ad hoc fashion by specifying one or more
of the geometric and matter variables, and using the field
equations to determine the remaining variables. However,
such ad hoc solutions are extremely unlikely to produce phy-
sically acceptable models. What is needed is a systematic
method of searching for exact solutions. One such method
has been initiated by Herrera and co-workers (see Refs. 1-3
and references cited therein). In this approach, the fluid
space-time is assumed to have, in addition to its static and
spherical symmetry, a conformal symmetry. If the vector
field £ is the generator of this conformal symmetry, then the
space-time metric g is mapped conformally onto itself along
the trajectories of §:

Z t8= ¢g’ (N
where . is the Lie derivative operator,* and ¢ is the confor-
mal factor.

The condition (1) is essentially geometric. But it does
have two physical points of support. First, it is a generaliza-
tion (when # is not constant) of self-similarity in hydrodyn-
amics. Second, it is a generalization of the property of the
incompressible Schwarzschild interior solution, which has
11 independent conformal symmetries in addition to the
four Killing symmetries, since it is conformally flat.* The
Schwarzschild interior solution is perhaps the most realistic
known exact static stellar solution.? Condition (1) therefore
offers the possibility of finding exact solutions that genera-
lize the Schwarzschild interior solution, and are more physi-
cally interesting models.

However, as we shall show, the possibility of finding
acceptable solutions via condition (1) depends crucially on
the form of the conformal Killing vector field &. In fact the
form of § assumed by Herrera and co-workers'? is too re-
strictive to allow this possibility. A wide range of solutions is
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presented in Refs. 1 and 2, but all of these solutions are singu-
lar at the stellar center. Although one can argue, as in Refs. 1
and 2, for a regular core matched to the solution that satisfies
condition (1), this seems a little artificial and perhaps
against the intention underlying assumption (1). In any
case, our aim in this paper is to investigate the possibility of
generalizing the Schwarzschild interior solution in a nonsin-
gular way, using condition (1).

In Sec. II we give the field equations for the general case
of charged imperfect fluid spheres. We show in Sec. III why
the solutions of Herrera and co-workers'? are necessarily
singular at the center. Essentially, this occurs because Her-
rera and co-workers assume that § is not only spherically
symmetric, but also static. It follows that the first step in
aiming for regular solutions is to relax the assumption that §
be static. [ Note that in the limiting case of flat space-time
(regular vacuum solution), none of the nonisometric con-
formal Killing vectors is static.] Two cases then arise: either
1 is static or nonstatic. The first case is pursued in this paper.
The second case, the most general possibility for spherically
symmetric &, is under investigation.®

In Sec. III we show that the case of nonstatic § with
static ¢ admits the possibility of solutions regular at the stel-
lar center. We find a necessary condition on ¢ for regularity.
Then we show that the new class of solutions contains fiat
space-time, but not the Schwarzschild interior solution (for
which ¥ is nonstatic®).

In Sec. IV we consider some new solutions for the gener-
alized nonstatic §. We show that the upper limit on the
mass—-radius ratio may exceed that established in Refs. T and
2 on the basis of a static §&. We briefly describe the direct
generalization of the solutions of Herrera and Ponce de
Leon? (which contain the solutions of Ref. 1 as the un-
charged special case). In particular, we find a regular perfect
fluid solution with uniform charge. We also find a regular
charged imperfect fluid solution by giving ¥ its simplest pol-
ynomial form satisfying the regularity condition. Unfortu-
nately, both of these solutions have unstable features.

In fact, we show in Sec. IV that instability arising from
negative pressures is a problem with all the generalized regu-
lar solutions. Furthermore, we show that there are no regu-
lar uncharged perfect fluid spheres. Either electric repulsion
or pressure anisotropy is necessary to maintain a sphere
(even if unstable) within this class of solutions. We also
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show that there are no regular charged perfect fluid solu-
tions that are self-similar or that satisfy the equation of state
p=(y—pu, 1<y<2.

These results show that while we are able to remove the
central singularity by generalizing the conformal symmetry
of Herrera and co-workers,'? our models have other draw-
backs. In particular, we cannot find regular uncharged per-
fect fluid solutions. This motivates a further generalization
of the conformal symmetry.’

Il. FIELD EQUATIONS

(We use the notation and conventions of Ref. 4, with
Einstein’s gravitational constant equal to 1.) Consider a
charged nonconducting imperfect fluid without heat flow.
(For a discussion of the physical relevance of such fluids in
astrophyics, see Refs. 2 and 3 and references cited therein. )
The total energy—-momentum tensor is

Tab =Mab +Eab! (2)
where the matter contribution is
Mab =/“uaub +phab +7Tab (3)

(with h,, = g., + 4,u,) and the electromagnetic contribu-
tion is

E, =F,F, — igachdFCd' (4)
The Einstein-Maxwell field equations are

R.y —3R8y = Ty, (5

Flpey=0, F®, =eu". (6)

For a static spherically symmetric fluid, we can choose
coordinates x’ = (x°,x*) = (#,r,6,4) such that the metric is
g, = diag( — e""’,zei’lﬂ-(”,rz,r2 sin? 8). ¢))
By symmetry, the fluid four-velocity u, energy density u,
isotropic pressure p, and stress tensor  take the form,>®
wW=e "8, pu=pu(r), p=1i[p(r) +2p,+(N],
Ty = (Pr —Pr)(”in,- —-—ih,_,), ni=e—l/26‘i, (3
where n is a unit radial vector, p, is the radial pressure, and

Pr is the tangential pressure. Symmetry also implies that we
can give the Maxwell field the form®

F = f(r)dtA\dr, 9
sothat d F = 0 and the first set of Maxwell’s equations (6) is
satisfied. The second set determines the charge density e(r)
in terms of fand g;. The form (9) shows that the magnetic
field vanishes in the fluid rest frame, and the electric field
E, = F,,u® has the form

E, =E(r)n,. (10)

Putting together (2)-(10), we get the field equations*®

LHAE =r24+r 2% (A’ - 1), (11)
Pr—3E* = —r 24 r%e 4 +1), (12)
Pr+iE =le*[2v" 4+ (v =AY (V' +2)].  (13)
By (4)-(10),
E®, = — F®F, = — eEn",
| ' (14)

= —u,F*®, =e " *(FE)"
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Thus the contracted Bianchi identity reduces to €E*
= M*,, which gives, by (3), (7), (8), and (14),

2r2E(PE) = (u + pp )V + 2k + 4~ '(pg — pr).
(15)

The field equations (11)-(13) imply (15); alternatively,
Eq. (15) may replace one of the field equations.

Finally, we consider the boundary conditions at the ra-
dius 7 = R of the fluid sphere. The metric and energy—-mo-
mentum tensor must match the Reissner—Nordstrom exteri-
or space-time. This gives®

P =e=4R -1 _IM/R+ Q?/2R?,

Pr(R)=0, E(R)=Q/R?

where M and Q represent the total mass and charge of the
sphere.

Iil. THE CONFORMAL SYMMETRY

The field equations (11)—(13) are underdetermined.
One or more (depending on whether E #0 and
Pr — Pr#0) functional relations must be specified in order
to solve the equations. One method, which avoids ad hoc
specification, is to assume that the fluid space-time is
mapped conformally onto itself along the direction §, so
that, by (1),

(16)

Gkl +8uyE", +8ul", =Ygy (17)
Herrera and co-workers'-? assume that
E=a(r)d, +B(r)d,. (18)

(In fact, it is erroneously asserted in Ref. 1 that this form
follows from the static spherical symmetry of g: Minkowski
space-time provides an immediate counterexample.) Using
(7) and (18) in (17), we get'?

a=A4, B=1LBre=*? yYy=Be *? ¢ =C?%,
(19)
where 4, B, and C are constants: 4 may be set to zero since
A 3, is a Killing vector; B may be set to 1 by a rescaling
g—B g, y—B 'y, which leaves (17) invariant. Thus the
assumptions (17) and (18) for the geometry (7) determine
the metric component e” explicitly, and fix a, 8, and 9.
The form (18) is the most general § invariant under the

Killing symmetries of g, i.e.,

[angl =0= [Xa’g]’

where {X_ } generates SO(3). Thus a nonisometric confor-

. mal Killing vector that is static and spherically symmetric is

necessarily orthogonal to d,. There are no such vectors in
Minkowski space-time: thus assumption (18) rules out the
limiting case of a regular vacuum solution. This suggests
that (18) may lead to solutions that are singular. The world
line {r = 0} is a timelike geodesic, by spherical symmetry.
The regularity of space-time along a geodesic imposes strin-
gent conditions on the limiting behavior of g, obtained by
expanding about the central geodesic. If # measures proper
time along {r = 0}, this gives’

e'=14+0(?%, r=1+4+0?,

near / = 0, where / is proper radial distance orthogonal to
{r=0} (di=€*"? dr). By arescaling: t~e~ “*t, v—v + a,
which leaves the metric invariant, we get the more general
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necessary condition for a nonsingular stellar center:
e'=¢e"+0(#), ¢=1+0(?) near r=0. (20)

Then (19) shows that all the solutions obtained via (18) are
necessarily singular.

Thus a search for regular solutions leads us to weaken
the static symmetry of (18), i.e., we take

gE=a(,rd, +B(1,rd, 21

(which generalizes the isotropic conformal vector
td, + rd, of Minkowski space-time). Furthermore we as-
sume that the conformal factor is static:

P=9(r). (22)
[Note that (22) follows from (18), but not necessarily from
(21).] The general case ¥ = ¥(t,r) is under investigation.’
Note also that (22) in (17) implies that the deformation of g

under £ is static and spherically symmetric, like g itself.
Using (21) and (22), (17) gives B, ¢ asin (18), and

a=4A +%kt, e”=C?* exp( —2kB! J rlet? dr),
where k is constant. As before, we canset 4 =0and B=1

without loss of generality. Thus we have
E= %kt d, + W(r)ra,,

f=97?% e =C¥ exp( — 2kf%;).

The solutions of Refs. 1 and 2 belong to the class k = 0.
The vacuum solution is k = 1 = ¢. The self-similar Tolman
solutions®

ds?= — Y=Y dr? 4+ b2 dP + r*(d0° + sin” 6 dg?)
are given by (23) with

k=Q—y)/by, v=0b""', C=1
However, the Schwarzschild interior solution*

e t=1—Ar 27*=3(1—AR>'?> — (1 — 4r)"?
(24)

is not contained by (23): if we take ¥ = + (1 —A4r)"/?
then

e A=1—A4r, e?=Cr[2r {1+ (1 — 4”3 %%
(25)

which cannot regain (24) for any C,k. It can be shown® that
(24) requires ¥ = y(1,r).
With (23), the field equations (11)-(13) become

p=1rm2 (1 —k2) =37y + A, (26)
Pr =Y (k2 — 14+ 47 —dky) +r 'Y — A, (27)
E>=r"2(k*>+1—2¢7) + 2r~ 'y — 24, (28)

(23)

where, following Herrera and Ponce de Leon,” we define

A=4i(pr—pr) (29)

as the measure of pressure anisotropy. Exact solution of the
‘Einstein-Maxwell equations in the general case (EA3£0)
thus requires a choice of ¥(r) and of an equation of state
J(u,pg,A) =0 (or equivalent choice).

Comparing (20) and (23), we get a necessary condition
for regularity at the stellar center:
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Yv=14+0(") near r=0, k=1 (30)

If (30) is satisfied, then the field equations (26)-(28) show
that the dynamical variables u, pr, A, and E are all bounded
at r =0, provided any one of them is bounded (which hap-
pens automatically in the special case EA =0 of an un-
charged or perfect fluid).

Finally, we note that each dynamical tensor is mapped
conformally onto itself by (21): by (8)-(10) and (23), we
have

[Eu]l = —iYu, [En] = —iyn,
Lew=(1+rA'/20)¢m,

L F=4(rlf'/ f+r¥ + ¥+ KF,
[&,E] = {$(rE'/E — )E.

(Note that none of the above holds in general for conformal
motions.>) The conformal Killing vector § forms a five di-

mensional Lie algebra with the Killing vectors
{XO =4, Xo }:

[X0’§] = %k Xo, [Xang] =0,

[XoX,] =0, [X.X,]=€"0X,.
IV. NEW SOLUTIONS

We begin by deriving the mass—charge~radius relations
for solutions satisfying (23). By (16), (23), (27), and (28)
we have

Q?/2R*=1—3y(R)* + 2ky(R),

31
M/R =1—24(R)? + ky(R).
Then, since Q%>0, M>0, (31) implies
max{a_,b_}<¢(R)<min{a, b }, (32)

where 3a, =k+ (k2+3)"? 4b, =k+ (K*+8)'2
Eliminating ¢¥(R)?in (31),

3M =R + Q%R — kRY(R). (33)

For k =0, we regain the results of Herrera and Ponce de
Leon.? In particular, we see that for k #0 it is no longer
necessarily true that charge increases the mass. Further-
more, for uncharged spheres with conformal symmetry,
M /R =} is not an upper limit, as stated in Refs. 1 and 9.
[ This assertion is based on the assumption that (18) is the
most general form of conformal symmetry.] In fact, by (31)
and (33), for uncharged spheres the upper limit is

M/R=}—}k*+§|k|(k*+3)2

Thus the limit on M /R is independent of the pressure anisot-
ropy, and depends only on the conformal symmetry param-
eter k. In particular, M /R can exceed 4, and approach } arbi-
trarily closely for large enough |% |. For regular uncharged
spheres (k = 1), themaximumis M /R = 4, equal to the per-
fect fluid limit.®

The condition for the existence of a horizon, Q2/2<M?,
is, by (31),

Y(R)<Y(k—1) or $(R)>i(k+1), (34)
and then the horizon radius is

R. =M+ (M?*—10H"2 (35)
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By (31), it follows that R . <R, for all k and all /(R satisfy-
ing (32) and (34) (which ensure the existence of R. ).

We now briefly describe the generalization of some of
the singular solutions of Ref. 2. The generalized self-similar
perfect fluid solutions are all singular, except for the vacuum
limit. They are given by A=0=1¢' in (26)-(29) and in
(23):

p=31—kHr % p=§(k*—1+ 4 — 4k¢p)r?,
E = (k +1=2")r% e=y¢y~? e =C?Pu-rv,
This is a charged generalization of the Tolman solution.?

The generalization of the charged dust solution
(A = 0 = p) is also singular for all k:
p=31—k*—6rgy)r % E*=(1-=3+2k)r?
where 1 satisfies

2rff + 4 — 4k + k* — 1 =0,
which is an Abel-type equation unless k=0, when®
¥ =1+A4r* ork=1,when

Y=144r2=e"*? &=CPUA+r)"},
by (23).

The generalized solution for perfect fluids with uniform
charge density is obtained by solving (28) for ¥ with A =0,
E = Br, and then substituting into (26) and (27):

V=41+k?) —AP + 1B =e",

p=31—k*r?4+34—3B°P,

p=3(1+43k?r?—34+2B** —2kyr?,
with e* given by (23). When k = 1, this shows that the regu-

larity condition (30) is satisfied if >0, and further that g, p,
and E are bounded at » = 0:

Y=(1 —A"2+§Bzr“)”2=e"”2,

e =C?* exp( - ZJ‘Q),
)
p=34—3B*, E=Br,

p=2[1— (1 —AP +4B**)'?1r 2 — 34+ 2B~
(36)

Thus p(0) = — 24, and the radius of the sphere is given by
4B*R°® — 12AB*R* + (942 + 6B*)R*>—84 =0,

where 4 > 0by (36), since ¢ > 0. Thus the cubicin R 2 always
has a positive root. It is possible to choose 4 and B such that
u remains positive throughout the sphere. The limiting case,
when p and p vanish simultaneously at » = R, is given by
B=A/\2 and R = (2/4)"*. Then ¢(R) =0, so that by
(31) and (35), the stellar surface is at the horizon
(R =R.), with M = R and Q = 2R. This limiting case is
clearly unstable. Unfortunately, all solutions (36) have un-
stable features: both p and dp/du are negative, at least near
the center. Electric repulsion is holding the matter apart, but
this is not stable. We do not claim that the model is realistic,
but it is a regular generalization of the singular solution in
Ref. 2.

In fact, the solution (36) indicates a general property of
the class of solutions that obey the regularity condition (30):
all regular fluid spheres have nonpositive pressure at the cen-
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ter. To see this, we begin with the necessary conditions for
regularity: u,pr,A.E bounded at »=0; and, by (30),
¥ =1— AP + O(7) near r = 0 and k = 1. Then, by (26)-
(28),

#(0) =64 + A(0), pgr(0) = —44 — A(0),
E(0)* = —2A(0).

Since u,E 2>0 we have 430 and A (0) <0. Furthermore, the
isotropic pressure p, given by (8), satisfies

p(0) =4(A(0) — 124)

by (29) and (37). Thus, except for the special case
A = 0= A(0), the pressure p is negative near the center. In
the special case, p(0) = 0. Neither of these cases is ruled out:
negative pressures could occur in nonequilibrium metasta-
ble states,® and zero central pressure is not impossible. How-
ever, we do not claim that p(0) <0 is realistic for a static
stellar model.

Apart from the central-pressure feature of the regular
solutions with the generalized conformal symmetry (21)
and (22), there are further general results that follow from
(26)-(30).

(a) There are no regular uncharged perfect fluid
spheres. Putting A = 0= E into (26)-(28), we find that
Y=+ (1 — 42, giving the solution (25) with
+ k= + 1. Furthermore, we get 4 = 34 >0 and

p=—A=2r[(1 —4A"?2 - (1 - 4],
which is negative for all ». Thus there is no zero-pressure
surface.

(b) There are no regular incompressible perfect fluid
spheres. This follows since A =0=y’ implies E =0 by
(26) and (28). Then result (a) applies.

(c) There are no regular perfect fluid spheres with equa-
tion of state p= (y— 1)y, 1<y<2. If we put A=0,
» = (y — 1)y into (26)-(28) with &k = 1, we get

¢, =1 _A’J/(2—37’)’
which is singular at » = 0.

Finally, we present a solution for a charged and imper-
fect fluid sphere. We start by taking the simplest regular
polynomial form for the conformal factor: ¢ =1 — 47
Then we choose a linear pressure anisotropy A(r). By (37),

— 64<A(0)< — 44 ensures that 1£(0),pz (0) >0. By (27),
A(R) =4A4(AR? — 1) ensurespg (R) = 0. Then (26) gives
AR *<1 as the condition for u (R)>0. We choose

A=4R 7% 50R?A=7x-—25,
where x = r/R. Then (26)-(29) give
50R%u =5+ 7x — 3x?,
50R%pp =5 — Tx + 2x2,
50R%’p; = — 45 4+ Tx + 2x2,
25R2’E* =125 — 35x + 5x%.
By (31), the charge and mass are given by
Q=4\26R, M=#R.

Thus the sphere is charge dominated, and has no horizon, by
(34). The radial pressure is positive in the interior, decreas-
ing monotonically to zero. However, the tangential pressure

(37

(38)
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is negative throughout the interior. By (23), the metric com-
ponents inside the sphere are [using (16) ]

e/1=(1—]!0x2)_29 ev=]%(1_]]3x2)9
and the conformal Killing vector is

E=4[td. + (1 —ﬁ,xz_)xax].

The generalization of the solutions of Herrera and
Ponce de Leon? and the new regular solutions (36) and (38)
show the importance of the choice of conformal symmetry
vector €. The solutions of Ref. 2 are all forced to blow up at
the center. While we are able to overcome this singularity via
the generalization (21) of §, our solutions still suffer some
serious drawbacks, particularly the problem of negative
pressures. An indication of these drawbacks is the fact that
the Schwarzschild interior solution is not contained in our
class of solutions. The static nature of the conformal factor
in (22) is the root of these limitations. When # is allowed to
be nonstatic, a new range of possibilities is opened up.’
[Note that Ponce de Leon'® obtains regular stable static so-
lutions with anisotropic pressure via a different approach: he
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assumes that the sphere is conformally flat. Thus there are
11 independent vector fields satisfying (1), some of which
may obey (21) with ¢ = ¢(¢,r).]
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The application of the method of stochastic quantization originally attributed to Parisi and Wu
has been extended to spinor fields obeying para-Fermi statistics. The connection between
Euclidean and stochastic field theories is established in the conventional manner by proving

the equivalence between a Langevin equation satisfied by para-Grassmann fields and a
Fokker—Planck equation, the Hamiltonian of which has been constructed using para-
Grassmann variables analogous to its construction from Grassmann variables in the Fermi
case. As an example, a two-point Green function is calculated for any arbitrary value of order p
of para-Fermi statistics, barring the pathological case p = 2 which has been mentioned briefly.

. INTRODUCTION

The stochastic quantization of Parisi and Wu' provides
a viable alternative to path-integral quantization. It is par-
ticularly useful in quantizing gauge field theories, as no
gauge fixing and associated Faddeev-Popov ghosts are
required. In essence, the vacuum expectation value
of the time-ordered product of field operators
(O] T(@(x,)P(x,) - #(x,))|0) as given by a Euclidean path
integral is identical with the steady state equal time ( = ¢)
stochastic average (@, (x,,t)¢, (x5,t)" '@, (x,,?)), of the
product of stochastic fields. In the approach, ¢ denotes the
fictitious time coordinate which is introduced in addition to
the usual space-time variable x and for the dynamical evolu-
tion of the stochastic field ¢, (x,f) with respect to the new
time variable 7, one postulates the following Langevin equa-
tion LE:

a S [4]
— ) = — ——L-- x,t), 1.1
8t¢"(x ) 56, (x.1) + 7(x,t) (1.1)
where 7 is a Gaussian white noise with standard properties,
x,)), =0,
(n(x,0), (12)

(nx,Dq(x',t")), =28(x —x")6(t—1t'),
and 7 average is performed with respect to a Gaussian distri-
bution

(Fq)y, =321 F [lexp( — }fdx d; %)
§Dm exp( — Mdx dt %)
for any arbitrary function F[ 7] of 7.

This equivalence between D-dimensional Euclidean
field theories and the steady-state of the (D + 1)-dimen-
sional stochastic process is known as the stochastic quanti-
zation of Parisi and Wu. The equivalence between Euclidean
field theories and stochastic processes can be seen through
the well-known relation between a Langevin equation and a
Fokker-Planck equation (FPE). Extension of this stochas-
tic quantization method to spinor fields has been considered
by Fukai e al.? and Sakita.? Here the path integral expres-
sion for an n-point function is given by

§DY DYP(x,) - (x,))exp( — S [¢,9])
§DY Dy exp( — S [#,3])

(1.3)
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where 3 and ¢ are independent Grassmann variables and the
action is taken to be a bilinear expression S = { d *x yK¢; K
may contain not only derivative operators, but also external
fields, and K need not be Hermitian in general. An appropri-
ate Fokker—Planck Hamiltonian can be chosen as

6 (6 &S 6 (6 &S
Hep=|d [_(__ _.r)___(_ _.)] 1.4
FP fx5¢ 5¢+6¢ 57 5¢+5¢ (1.4)
and the corresponding Langevin equations are

—:—ttﬁ(x,t) = — K¥(x,t) + p(x,t) = — g—; + 7(x,1)
(1.5)
and

% (1) = —K"P(x0) + F(x,0) = + g_s +7(x0).
(1.6)
Note that 7 and 7} are Gaussian noise functions obeying
(e ()75 (X)) = — (7 (X1 V70 (2,1)),,
=26,,6(x —x")8(t—1").
The 7 average here means
(F(m),

_ SD% DyF(n)exp( — i5dx dt 7j(x,t)n(x,t))
SD7 Dy exp( — Lf dx dt 3(x,t)n(x,1))

If the Hy;, defined above does not have positive semidefinite
eigenvalues, then one can modify the Hamiltonian in an ap-
propriate manner. Application of this extension has already
been considered in different processes. We in the present
paper would like to consider a straightforward extension of
Parisi and Wu stochastic quantization for spinor fields obey-
ing generalized statistics, known in the literature as para-
Fermi statistics, originally attributed to Green.*

The method of canonical quantization for para-Fermi
fields is well-known.* It is based on the use of trilinear com-
r_nutation relations satisfied by the field operators #(x) and
¥(x),

[9(x),[¥' 0¥ ()] _1_ =28*(x — p)¢t(2)
—28%(x — )Y (),

(1.7a)
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[¥(x),[¥' () ¥(2)] _1_ =26%(x — »)¥(2), (1.7b)
[¥(x),[¥v(),¥(2)] ] =0. (1.7¢)

The point is that the Heisenberg equations of motion for the
field operators lead to the desired field equations not only if
¥, ¥ satisfy the standard Fermi bilinear quantization rules
but also if they satisfy the trilinear commutation rules (1.7).
If one expands ¥, ¢ in terms of annihilation and creation
operators b,,,b L, the relevant equations (1.7a)~(1.7¢) as-
sume the following equivalent form:

[bas[bhbE]_]- =28,5b) —26,,b}, (1.8a)
[6as[b1:6,]_]— =28.5b,, (1.8b)
[bas[bgsb,]_]- =0 (1.8¢)

In order to define the theory completely one postulates a
vacuum state which satisfies the following properties:

bl =0y =0; bgh'|0) =pb,s|0). (1.9)

The positive integer p normally known as the order of para-
Fermi statistics is the maximum number of parafermions
that a totally symmetric state can accommodate. What is
most important for what follows is that 4 la Green,* a para-
Fermi operator of order p can be uniquely represented by the
sum

& i
ba =i;1 ba’

where the so-called Green components b -,,b 7 satisfy (anti)-
commutation rules of the anomalous type

[6L.65].=[b0b]]s —6.5=0, (1.11a)
[6L,6%]_ =[bL.bF]_ =0; fori#j. (1.11b)
The path-integral quantization of para-Fermi fields® is
not as well known as their canonical quantization just men-
tioned. The former involves integration over para-Grass-
mann fields. They are defined in Sec. II where we show the
equivalence of the n-point function of Euclidean field theo-
ries with the steady state limit of the equal time correlation

functions computed from the following LE’s [ see (2.23) and
(2.24)],

(1.10)

3 58

—(x,t) = —— 0, 1.12
at'/’(x ) 590eD) + 7(x,t) (1.12)
d - as _

2 Hx) = ). 1.13
P Y(x,t) = + D) + 7(x,t) (1.13)

Here #(x,t) and :Z(x,t) are independent stochastic para-
Grassmann fields. The statistical properties of the para-
Grassmann noise functions % and 7 are given by

(7, (x,1)%g (x’,t’)>1,,ﬁ = - ('TIB (X't )7, (x’t)),,,;,

=2p8,p6*(x — x")6(t —t")
(1.14)

[see (2.25a)—(2.25¢)].

Construction of action S, with a bilinear form like that
of ordinary Fermi fields, has been discussed at length by
Kamefuchi and Ohnuki.® They have shown that consistent
with weak locality, an action of the bilinear form
S = 1f dx[¢,K¢] _, where K is a linear operator, can always
be written down for order of statistics p»3. For p = 2 the
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action contains additional terms such as (dx x[z},;ﬁ] s
where k is a nonvanishing real parameter. The case p = 2 has
been shown by Kamefuchi and Ohnuki to be equivalent to
two ordinary Fermi fields with different masses through
Klein transformation. We shall restrict ourselves to p#2.

In Sec. IT we set out with the aforementioned form of the
action. We assert a Langevin equation and derive the
Fokker—-Planck equation which corresponds to it, and exam-
ine the spectrum of the Fokker-Planck Hamiltonian thus
derived to prove the equivalence between Euclidean field
theories and stochastic processes. The construction of this
Fokker-Planck Hamiltonian in terms of para-Grassmann
variables proceeds parallel to its construction in the Fermi
case using Grassmann variables. In Sec. III the formalism is
applied to calculate the two-point Green’s function for two
para-Fermi fields and show the distinction of the Green’s
function for para-Fermi fields from that for ordinary Fermi
fields. Our results agree with those obtained earlier through
canonical quantization. In Sec. IV we discuss another appli-
cation of the formalism and obtain the normal and the anom-
alous Ward identities for a para-Fermi field, directly from
the Langevin equation of motion. The Appendix is devoted
to a discussion of the averages defined over para-Grassmann
variables and a derivation of the analog of Novikov’s
theorem for such variables.

Il. QUANTIZATION OF PARA-FERMI FIELDS

In this section we are mainly concerned with developing
a stochastic quantization scheme for para-Fermi fields. This
is done by an extension of these methods which were applied
earlier to Fermi fields by Fukai et al.? For the derivation
given below, we try to generalize the work of Chaturvedi,
Kapoor, and Srinivasan.’

As before, our starting point is the functional formula-
tion of quantum field theory. In this approach, the averages
of products of the para-Fermi fields with respect to a weight
factor exp( —S[#,¥]) yield the Green’s functions
(W(x,)¥(x,) - ¥(x,)) of the field theory. Here S[,¥] is
the action, which we take to be bilinear in the fields

S [4.9] =fdx5[?ﬁ,K¢]_ .

Unlike the fermion case, an parafermion action cannot be
cast in this form with the help of auxiliary scalar fields. But
for the application we discuss in Sec. III, the bilinear terms
suffice. Unless the order p of parastatistics equals two, Ka-
mafuchi and Ohnuki® argue that the most general bilinear in
parafields consistent with the requirement of weak locality
has the form (2.1). K'in (2.1) may in genéral contain scalar
fields, derivative operators, and ¥ matrices. The peculiar
case of order two will be discussed thoroughly elsewhere.
The fields, ¥(x) and ¥(x), neither commute nor anticom-
mute. Rather they constitute p Green components,

b =3 ¥, =73 F,

a=1 a=1

(2.1)

(2.2)

which satisfy the following anomalous (anti-) commutation
relations
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[ (x), ¥ (X)), = [ (), 9(x) ],

= [¢¥*(x),¥*(x)] . =0, (2.3a)
[ (), 9 (x) ] _ = [¢°(x),8°(x") ] -

= ["(x),9"(x)] - =0, a#b. (2.3b)

Such fields as %, 17/, known as para-Grassmann fields, are
formally defined in terms of an infinite number of para-
Grassmann numbers in the following manner:

S 4a, dx =3 swa,

i=1 i=1
where ¢,(x) is a complete set of orthonormal functions.
Note that a; and @, are independent para-Grassmann
numbers. Such numbers are in turn decomposable into p
Green components

V4
Za,,a—za,-

a=1 a=1

which satisfy

P(x) = (2.4)

[CHCA P Ctr

= [ala']. =0, (2.5a)
[af,a)] - = [afa’] -
= [@},a@]- =0, as#b. (2.5b)

It is evident from (2.5a) that for a given value of the Green
index the numbers af,&{ are ordinary Grassmann numbers.
The functional integration measure in the prescription for
obtaining Green’s functions,

($(x) - P(x,))
_ DY DY) P e —S[HID -, o
SDY Dy exp( — S [¢4]) CT

must be understood as integrations over a{ and &,

- w P
f D¢D¢=f M I dades. 27)
J=1la=1
In terms of af and @/ the action can also be written as
P -
§= 3 | dx¢Ky
a=1
P o
=y 3 ak,a, 2.8)
a=1ij=1
where
K, = f dx $*K8,. (2.9)

Note that in the double sum over Green indices implied in S,
the off-diagonal terms have dropped out, leaving only a di-
rect sum in Green space, because of (2.1).

Computation of Green’s functions for the para-Fermi
fields thus essentially amounts to computation of averages of
products of para-Grassmann numbers a; and &; with re-
spect to the weight factor

exp( az’l UZ] a"K,,a,)

For the stochastic quantization of para-Fermi fields, our
aim as mentioned in the Introduction is to introduce a ficti-

(2.10)
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tious time ¢ and a probability distribution P(a,a,t) whose
evolution in the fictitious time is such that in the steady state
limit, i.e., in the limit t— o, P(a,a,t) relaxes to the weight
factor (2.10). The evolution equation, called a Fokker—
Planck equation [even though in classical stochastic pro-
cesses there exists no analog of P(a,a,t) defined over para-
Grassmann variables], is written as

%P(a,&,t) = — Hep P(a,at). (2.11)

A possible choice for the operator H, is the following:

Ho=3 § K,e5)

a=1i=1 (a_ J=1

—93 _
X ak,||.
Jas (aa ,; ! ’)]

In view of the algebra (2.5), it can be easily checked that
(2.10) is a stationary solution of (2.11), i.e., it is an eigen-
function of Hg, with zero eigenvalue. In terms of the eigen-
functions y, and the corresponding eigenvalues A, of the
operator Hpp, the general solution of (2.11) can be given by
the expansion

(2.12)

P(a,a,t) =Ex,, exp( —A4,1). (2.13)
To examine the spectrum of Hyp, we regard P(a,a,t) as
a representative of an abstract vector |P(¢)) in the coherent
state representation.® This amounts to casting (2.11) into
the following form:
a
ZIP@) = —
P |P(1))

Hyp |P(1)), (2.14)

where the operator Hp in (2.14) is obtained from the opera-
tor Hyp in (2.12) by making the following replacements:

d 9 9 4
da; da; da? dar

L4B",

i

(2.15)
a;,a;a},a;-A;,B;,4},B1,
and is consequently given by
o P
HFP=Z z aT(B"*-i—Z i ,)
i=la=1
B4 — 1 BIK, ] (2.16)
=

Herein (2.15) 4 },B | are independent parafermion creation
operators and A4,,B,; are the corresponding annihilation oper-
ators. They satisfy the well-known trilinear relations and the
superscript @ on them labels their p Green components
which satisfy the following well-known anomalous algebra:

[494°], = [45B¢], = [45B]"].
=[d4%41], —68,=0,

R [ "A’b]+ - (2.17)
[45.47)_=[4:B}]1=[4:B]°] -

=[A%A}*]_ =0, a#b,etc.

Now we consider the following similarity transformation:
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He, = exp(z ATK ;7 'B¢ )

Lj.a

X Hep exp( Z A "TK,JBJ)

Lj,a
Under this transformation,

4 :'ﬂ_’A :‘ﬁ’ B?T_’B:‘ﬂ”

(2.18)

A{-47~Y K;'B, (2.19)
J

B{sB?+ Z K;'4a;g,
so that HFP is given by

Hep = 3 (47K,A47 + BYK,B?). (2.20)

ij.a

From the structure of pr in (2.20), it follows that if K'is a
positive definite operator, then so is Hgp and hence H,p.
This means that every solution like (2.13) of (2.1 L) in the
limit - o approaches the eigenfunction (2.10) of Hy; cor-
responding to the zero eigenvalue, provided that this eigen-
value is nondegenerate and that there is a gap in the spec-
trum of H above the zero eigenvalue. Actually, to guarantee
the relaxation of P(a,a,t) to (2.10) regardless of the nature
of K, it is possible to modify (2.12) without altering the
stationary solution of (2.11) in such a way that the resulting
H_; is positive definite. Instead of (2.12) we may consider
the following form for Hgp:

e = 3 |0 (55 + S Ku)

Lm,a

a

Gt - 221
- 2o (2 -3k ew

where Gis arbitrary. This equation still has (2.10) as its zero
eigenmode. However, the corresponding Hyp is modified
and becomes

A P bt
Hee = 021 i,,ZI(B?T(GKf);BJa

+AT(GK)A9) .

i (2.22)
If we now set G = K, then HFP becomes manifestly positive
definite regardless of the nature of K. In fact, to guarantee
the desired relaxation, it is enough to require that eigenval-
ues of GK ' have positive real parts. This observation proves
to be quite convenient for perturbative calculations with sto-
chastically quantized parafermion fields.

Instead of working with the FPE (2.11), for actual com-
putations, it proves much more convenient to work with an
equivalent formulation based on the Langevin equation
(LE). This is a stochastic differential equation governing the
time evolution of ¥ and ¢ in place of an evolution equation
for P[¢,1,t]. It can be shown that the single time averages
(P(x ) (x,,t)) » computed using the FPE are identical
to the equal time averages obtained using the LE. We begin
with an assertion that the LE’s,

—¢"(,>— — 85

(2.23)
897 (x,t)

+ 7°(x,1),
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a5 A
=)= +——0—
ot Vi 8Y°(x,0)

are equivalent to the FPE (2.11) with Hy;, given by (2.12).
Note that on summing over Green indices in (2.23) and
(2.24) we get (1.12) and (1.13). Here ¢*(x,f) and ¢°(x,?)
are treated as independent stochastic fields, and the noise

sources 7°(x,t) and %?(x,?) satisfy the following stochastic
properties:

+ 7°(x,1), (2.24)

(7 (x,0)) = (F°(x,0)) =0, (2.25a)
M xO7°Wt)) = — (Bt ) p°(x,1))
=286(x —y)6(t—1t"), (2.25b)

N xD7°Dt")) = + (PO I (x,1)) =0, a#b,

(2.25¢)
(*(x07°(n,t"))
= — ("t )7 (x,1)) =0, (2.25d)
(7°(x0)n°(p.t"))
= + ("t )9°(x,1)) =0,
a#b, etc. (2.25¢)

These properties are summarized by the following distribu-
tion for the noise sources:

exp( - z

a=1

dx dt 7y (x,t)n"(x,t)). (2.26)

We are now ready to prove the assertion made above regard-
ing the equivalence between the LE and the FPE. Consider
an arbitrary functional F of ¥ and . Then in the Langevin

approach,
(5., 5] = (%5 )
at X a=1 at a’ﬁa(xyt) 7
+<‘W("”) _6F ) ) (2.27)
at 6W(x9t) LX)
On using (2.23) and (2.24) we get
()= £ = (-5 5]
ot nhH a=1 5W(x1t) SW(XJ) 7
+< 8S oF )
8P (x,t) 8Y°(x,t) [0z
6F
(o 2
ﬂ 5W(xst) LX)
— SF
+< “(xr) —2F ) ) 2.28
17 SW(x,t) 77 ( )

With the help of the distribution of 7 and 7 as given by
(2.26) one can prove an analog of Novikov’s theorem for
these para-Grassmann noise sources (see Appendix A),

SF
“(x,1) ——)
<" 5¢°(x,t) .

=2 f dx’' <6¢’b(x 1)) 8°F >
57°(x,t) 9P (x', )89 (x,8) | 7
(2.29)
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OF
7% (x,t) ——.——)
<” 570

2fd <61//’(x 3] 8F )
= — x
8n°(x,) SY*(x' )69 (x,1) 7
(2.30)

One can show from LE’s (2.23) and (2.24) that
8PP (x',1) _ 8P = 5,5(x — x)®(0)
617 (x,t) 61’ (x’t)
= (1)8,,6(x — x'). (2.31)

The step function in (2.30) arises from the integration over ¢
of LE’s after being differentiated w.r.t. the noise sources.
Substituting from (2.31) into (2.29) and (2.30) and using
the expressions thus obtained in (2.28), we get

(5o~ (- m )
. at Lol a=1 6W(xat) 5W(x,t) nm

+< &S 8F >
8P (x,1) 8P (x,0) [

( ’ ) ( ) n
6 ( ) ( ] ) nm

The connection with the Fokker—Planck approach is
made by identifying the averages in the two approaches,

(FIP),, = f Dy DY F$91P (4t ]

=(F[$4]),,
so that (2.32) also holds for P averages,

[ D3 P 1931 £ P

P
_ 2 dx(—( _5S oF >
a= oY (x) dy¥'(x)/ p
< 58 SF >
Sy (x) 647 (x)! »

(2.32)

(2.33)

Hgosgol. ~ lerosszel.)
S ()Y (x) p  \SY (x)EY(x) p
(2.34)
Next our aim is to transfer the functional derivative(s)
on Fonto Pin each of the four terms on the right-hand side of
(2.34). This is done by integration by parts, keeping in mind
the anticommuting nature of °(x) and ¥°(x). The result is

B 224t s

=JD:/;D17;F
(=35 (57)+ 55 (37)
5P 5P
 SyYrYr W&/ﬂ)' (2.35)

Since F is arbitrary, we obtain the following equation for P:
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Jd -
"'"P ¥y
P (W)

- é, J dx [ws(x) (6:7/"6(x) + 61_;‘fx))

__¢ ( 6 ,.98 )]P (2.36)
SYF(x) \6Yf(x) 6¢Y°(x)
This reduces to
a -
E;P(¢:¢it)
é
a—lf [51//"(x) (6¢“(x)+ W(X))
( )(—— (x))]P (2.37)
“7 e KV

on using the first equation in (2.8). Noting that the defini-
tions (2.4) for ¥°(x) and ¥*(x) imply the following defini-
tions for the functional derivatives with respect to ¥°(x) and

q.b"(x),

; Z¢()a_a

- *
51//"(x) ,§1¢( da? 6¢"() =1

(2.38)
we can translate (2.11) and (2.12) into the following func-
tional equation for P,

ad - _ -
EP['ﬁs'»bst] - HFPP[¢’¢J]

- _é,J a [5¢°6(x) (61//"6(x) +K'/ﬂ(x))

—Kfz'p"(x))] P

(2.39)

8 ( )
8¢ (x) \6¢°(x)

which is identical with (2.37).
For completeness it is added that proceeding in exactly
the same manner as above one can show that the LE’s,

g?//'(x,t) = — GKf(x,t) + Gp°(x,0), (2.40)

%z/f(x,t) = — (KGHPF (60 + 7D, (241)
with 7 and 7 having the properties (2.25) and (2.26), are
equivalent to the FPE (2.11) with Hg, (2.21). As explained
before, one may set G = K. Finally, in the event G is a con-
stant, i.e., it does not contain any fields which are also sto-
chastically quantized, then we may alternatively write

(2.40) and (2.41) in the following form,

%r/f‘(x,t) =GR (x,0) + 0°(x,0), (2.42)
a - 1\ 1757, Da
EW(x:t) = - (KG ) W(x)t) + 0 (xlt)’ (2-43)
with

(0°(x,1)0%(x',t")) = — (B9x',t")0%x,0))

=2G18(x — x")6(t —t"), "
(0°(x,0)0%(x',t")) = + (O°(x',t")0%(x,1))

=0, a#b, etc.
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Let us now briefly recapitulate the discussion in this
section. Here we have considered two FPE’s, and subse-
quently derived the corresponding LE’s. They both have
exp( — § dx §[4,K¥]_) as their stationary solution. For
this to be the unique steady state solution, the corresponding
Hy,p, must have the following attributes:

(i) Its lowest eigenvalue must be zero and the other
eigenvalues must have a positive real part.

(ii) The nonzero eigenvalue must be nondegenerate.

We have been concerned mainly with how (i) could
always be ensured. The second condition is in general diffi-
cult to establish.

1il. FREE PARAFERMIONS

As an application of the extension of the Parisi-Wu for-
malism for parafermions developed in the last section, we
consider free parafermions.

The Euclidean action for free parafermions is given by

S=fd4x—;-[¢(x),(7#5# +m)P(x) ]

= 3 [ d% ¥ 3,8, + myreo),

a=1

3.1)

where y,, are Hermitian matrices obeying the following anti-
commutation relations:

[quV]+ =26;4v' (3.2)
We first consider the LE’s (2.23) and (2.24), which in this
case with K = (7/#3# + m) become
% Vo) = — (1,8, + m) ot (51) + 7% (50),
(3.3)
% T 0ot) = — B2 — 1,3, + Mg + T (61),
(3.4)
with
(e (D TE(x't")) = — (G (X"t )ns (x,1))
=20,56(x —x')6(t—1t'), (3.5a)
(75 (6, 0) 75 (X't ")) = (G5 (xS (x,0))
=0, for a#b.

Fourier transforming (3.3) and (3.4) w.r.t. x,

%z/f;(k,t) — (k4 m) D) + 7 (Rt), (3.6)

(3.5b)

-j—t Vo kt) = — (— ik + m) s B (hst) + 75 (o),

(3.7)
and solving them with the initial conditions
Ya (k,0) =9, (k0) =0, (3.8)
we get
¥ (k1)

=J dtfexp— (i +m)(t—1t)],.m2(kt), (3.9)
0
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Phk't')
=J dt, 15 (k',t;) [exp — (iK' + m)(t' — ;) 155
0
(3.10)
Using (3.5) we can easily compute the equal time correla-
tion function (Y2 (k,))¢5 (k',t))
(Y5 (kDY (k')
_6k+ k")
(ik + m)

We now want to take the limit ¢— . If m is nonzero, this
limit exists because the eigenvalues of the matrix (ik + m),

which are m + ik %, have positive real parts. Hence so long
as m#0, the limit 7— o of the two-point correlation func-
tion (¥, (k,t)yz(k',t)),; exists and is given by

lim (¢, (k)9 (k1))

ik

8.5 (1 — exp( — 2(ik + m)t)).  (3.11)

P

= $ 3 lim Wk k'D)

a=1b=11"®
=pS(k+k")(k+m)~". (3.12)

To deal with the massless case we consider the other set of
LE’s based on (2.42) and (2.43) with G = K. When these
LE’s are Fourier transformed w.r.t. x and solved with the
same initial conditions as (3.8), we obtain the following
expression for the equal-time correlation function,
(Wx(k’t)%(k”t))q‘?]

S(k+k') .

=———(—ik+m),
k?+m? ( Voo

X {1 —exp[ —2(k?+ m*)¢t]}. (3.13)
Clearly the limit #— « exists whether m is zero or not, and
we obtain
pok+k')(—ik+m),g

(Yo Uet) P (k' ,1)) = (k% + m?)

(3.14)

This result agrees with that obtained from canonical quanti-
zation of parafermions.’

We note that we would have obtained the same results
for the propagator if we had used the regularized Langevin
equations (discussed in the next section).

IV.THE AXIAL-VECTOR CURRENT ANOMALY AND THE
VECTOR-CURRENT CONSERVATION FROM THE
LANGEVIN EQUATIONS

As another interesting application of the formalism giv-
en above, we discuss in this section how one can obtain the
normal and the anomalous ward identities for a para-Fermi
field, directly from the Langevin equations of motion with-
out even having to explicitly find their solutions. Following
this equation of motion approach for anomalies, we recover
the standard result for ordinary fermions when the order of
the statistics equals unity. Following Bern et al.,® we use the
covariant derivative regularization scheme in which the
noise structure of the Langevin equations is generalized in a
covariant way to
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%g (x,7) = [%(5,, —igAd,) — m]¥*(x,7)

+ f d*y R(xy)n°(n,7), (4.1)
% (x,7) =9 (x,7) [iv, (-3, —igd,) —m]
+ f d*y 1, m)R(x,p). (4.2)

Here we have set G = 1 for the sake of simplicity. The fer-
mionic regulator R(x,p) is a function of the covariant fer-
mionic Laplacian D?,

Di(xy) =D26(x —y).
The operator
R(x,y) = (exp[ — (D/A)*]) (x.). (4.3)

Note that R approaches unity as the cutoff A approaches
infinity. _

Multiplying Eq. (4.1) fromt he left-hand side by ¢y
and Eq. (4.2) from the right by ys¢*, adding the two, and
taking the noise averages on both sides, we get

3, 3 (st

=id, 3 (Fys1.9) —2m 3 (Fyse)

+ 3 (@ysRn*) + 3 (FRysy). (4.4)
Again, multiplying Eq. (4.1) from the left by ¥ and Eq.
(4.2) from the right by 3, subtracting the two, and noise
averaging both sides, we obtain

S (@8, 47) — S (8,99
=id, 3 (. ) + Y ¥Ry

= > (7°RyY). (4.5)

In the steady-state limit 7— o0 we expect to arrive at the
regulated Ward identities, because then the stochastic aver-
ages 2, (Y°ysy, ¢*) and 3, (q—b"y,, ¥*) reduce to the axial-vec-
tor current and vector current, respectively, in quantum
field theory.

To evaluate the left-hand side of Eq. (4.4), consider_a
function F(, ;ﬁ) which is any arbitrary bilinear in % and 9,

lim 3_ (F)

T— o

= lim d¢d¢F—£—-P[1/J,1/J 7]

T— 0

d¢ d;b FHFPP W’%_ﬁﬂ']

=0, (4.6)

where the last equality follows because the probability distri-
bution function relaxes to the ground state with zero eigen-

= —lim

T— o0
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value in the limit 7— co. The time derivative of X, (#*vsy*)
therefore vanishes.
The left-hand side of Eq. (4.5) is, from first principles,

=T -1 )
= ;1310 or E [ (x, )¢ (x,7 + 67))

— (P (Y (x,7)) — (F(x,7 + )P (x,7))
+ + (P, (x,7)) ], (4.7)

which vanishes because (¥(x,7)¥(x,7')) is symmetric un-
der the interchange of the arguments 7 and 7. To evaluate
the last two terms on the right-hand sides of Eqs. (4.4) and
(4.5), we make use of Novikov’s theorem and obtain

Z(f dy ¢ (x,T)YsR(x,y)ﬂ"(x,¢)>
=3 U d% 7°(x,7)R (x,y)rsilf"(x,r)>

e

a=1

jd"y Tr ¥sR *(x,p) ‘x)

Finally, following Fujikawa® and taking the limit A — o, Eq.
(4.8) reduces to

(4.8)

et 4 v
Tr (*F*'F,
To2 ( v)-

In addition, we have
> (f d’y @"(x,T)R(x,y)n"(x,f)>
= Z(f dly 1 (x,TIR(xXP) P (x,f)>

= —p<x fd“yTrR(x,y) x>. (4.9)

Thus we are led to the Ward identities in the quantum field
theory

> 8. ¥y, vs¥)

= 2mi z (P ysy®) — —Tr(*F""F ) (4.10)
and

3 8, (. ¥ =0 (4.11)

The procedure we have adopted is quite similar in spirit to

the derivation of the chiral anomaly given by Namiki et al.'®

APPENDIX

We wish to prove the analog of Novikov’s theorem for
para-Grassmann variables. The proof depends on a proba-
bility distribution,

a‘A ,,.a}’),

over the Green components o and &’ of independent para-
Grassman variables &; and ;. For a given value of the Green

>3 (A

joa=1

P(a,a) « exp( -
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index, these Green components anticommute, but for differ-
ent Green indices they commute. The average of a function F
of a; and @; is defined as

(F) = fl'[ [] da: da; FP(a,@)

=dea da FP(a,). (A2)
We want to prove the relations
(@iF) = 3 (@ ak>< = ) (A3)
a’F) = — alal (A4)
@F) = -3 ( aa;> .

Noting that {(af@i) =4 ;' we may rewrite (A3) and
(A4) as

S AulaiF) = ( a-a> (AS)

- oF
S @iF)dy = - < )
da!
Consider the lhs of (AS5),

S 4 (aiF) =f1]da da 4,0 FP(2,3)

(A6)

[N dada PPt P

_ _fndadapm %P(a,a), (A7)
a;
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where P(F) is obtained from F on changing the signs of a{’s
and &”’s in F. Carrying out an integration by parts in the next
step, we get
,, _ JF -
;A,.k(a,‘F) =+ Hdadaa—_—aP(a,a), (A8)
a;
which is (AS) or (A3). Likewise one can prove (A6) or

(A4). Equations (A3) and (A4) are the desired analogs of
Novikov’s theorem for the noise sources used in Sec. II.
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Rules are derived for the computation of the spectrum and state function of a system of ¥
fermions in one dimension interacting with a delta function potential. The system is composed
of fermions of two types of internal symmetry. The rules are valid for an arbitrary number of
either symmetry type and any value of the delta function interaction strength. The state
functions satisfy periodic boundary conditions, and therefore describe the interacting system at

nonzero density.

1. INTRODUCTION

I address the problem of N fermions of two distinguish-
able types of internal symmetry (here called « and d), in one
dimension, interacting with a delta function potential. There
are to be K spin-up u particles and M spin-down d particles,
M<K and K + M = N. This problem is of the exactly solv-
able type, for it is algebraically factorized by an ansatz of no
diffraction, often identified with the Bethe ansatz. Gaudin'
is a major resource in tracing the history of this problem, and
in explaining the algebraic relation of this to other problems,
e.g., the Hubbard model.

Some time ago substantial effort was directed toward
computation of the spectrum in the bulk limit for various
values of M and all values of the interaction strength. Flicker
and Lieb,? Gaudin,® Yang,* and Sutherland® conclude, with
reluctance, that the excitation spectrum is not an analytic
function of the delta function coupling constant at zero in-
teraction strength. This conclusion is drawn with reluctance
because zero interaction strength separates the attractive
from the repulsive interaction, and the attractive case prom-
ises the most interesting interpretation due to the presence of
bound states. The integral equation methods developed by
these investigators gave all of the information about the
spectrum for a repulsive interaction, but only very limited
information about the system for an attractive interaction.

Interest has reawakened recently as a result of the com-
plete characterization of the dynamics of the M = 1 case.%’
The excitation spectrum is indeed nonanalytic at zero inter-
action strength, but, through the state function, the nonana-
lyticity is understood as arising from the presence or absence
of a pair. There is a pairing phase transition if the interaction
is attractive.® The phase transition arises because the state
function influences equilibrium, and thus the equilibrium
properties are not a function of the spectrum alone. These
results have fortified the opinion that a solution to the attrac-
tive M-down problem would contain important information
about the superconducting or pair superfluid state of more
realistic models. From the M = 1 case it is clear that under-
standing the attractive M-down equilibrium problem re-
quires computation of the state function as well as the spec-
trum.

This work will follow closely the model of M = 1, which
differs from the work of other investigators in its emphasis
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on the state function. The fundamental assumption will be
the assumption of no diffraction, which is an assumption of
properties of the state function. The internal consistency of
this assumption requires that the free parameters of the sta-
tionary state wavefunctions satisfy a certain dynamical alge-
bra. The invariants of this algebra are integrals of the mo-
tion, completely determined by the algebra and boundary
conditions. These integrals of motion determine the con-
stants of motion. The constants of the motion include the
energy, the total momentum and, as will be shown in subse-
quent work, a paticular marginal probability distribution.

Il. DERIVATION OF THE SPECTRAL LAW

Here I derive the spectral law and the state function for
the M-down problem. Since an algebraic condition of no dif-
fraction is satisfied (a stronger condition than the Bethe an-
satz), I assume—without loss of generality—a state function
of a very particular form.

(1s) The state functions of a complete set of stationary
states may be expressed as linear combinations of N! plane
waves (with differing coefficients) in an N-dimensional state
space, partitioned into N! regions that corespond to order-
ings of the particles along the one spatial dimension.

(2s) The N!different plane waves are permutations of ¥
distinct integrals of motion k; among N particle coordinates.

The delta function dynamics imply an algebraic rule for
computing the coefficients of the plane waves in any region,
given the coefficients in an adjacent region. I will call this
rule D, to be defined explicitly later. The consistency of the
assumption of no diffraction is expressed as a condition on
the algebra of rule D.

(A) Given the value of the coefficients in any one region
it does not matter what sequence of particle permutations
are used to carry the state function to any other region—the
answer for the state function is the same.

The condition of no diffraction, then, is a condition on
the algebra of the delta function dynamics. Any faithful rep-
resentation of the algebra of that dynamics will satisfy condi-
tion (A). Here I choose a particular representation of the
state function that satisfies (1s) and (2s) and a particular
representation of the dynamical algebra which manifestly
satisfies (A). Subsequently I will assure that the dynamical
algebra is consistent with rule D.
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By virtue of the Pauli principle and conditions (1s) and
(2s) above, I may write a state function valid in M X ! contig-
uous regions of the state space. It is of a Slater determinant
form. Let x,,...,x,, be the coordinates of the spin-down fer-
mions, and p;,...,yx be the coordinates of the spin-up fer-
mions. In all regions of the state space such that
XyseeesXpg <P10eYi s the function

; ; ik
r(zle‘kﬂ‘l aze‘kle ces aNe NXY 3
" ) "
T L e "
1= e Bt ik, -
1€ 2€ Bye
ik Y ikyyx ikny
Lﬂle ' Bze BNe KJ

satisfies the Pauli principle and the state function constraints
(1s) and (2s); ¥, = Oif any pair of & ’s are the same, thus all
k ’s must be distinct. Here, ¥, is of the symmetry class appro-
priate to region 1; ¥, = O if any two x’s or y’s are equal. The
a’sand B ’s are independent of the x; ;. Their dependence of
the k; must be chosen to satisfy rule D of the delta function
dynamics, which intervenes at every boundary of this region.

Again, consistent with condition (A) and the Pauli
principle, the form of the solution in an adjacent region is

r ale‘kn"n azeikz"n PPN aNeikle 9
ik\xp, ik, X pg ik X pg
wma,e Haze NON€
¥, =Det{ ' ' putne "7V
viBie’  vfe vwBye ™
ik,y, ikyy, ik
L Bie ™™ Be Bye ™" J

(2)

where I have taken the adjacent region tobe x,,....x,,_ | <J;
<Xpp <Pasesyi- Condition (A) of the algebra of no diffrac-
tion is satisfied if the algebra of this two-body problem self-
consistently determines all other regions. In particular the
constraint (A) on the algebra is satisfied if, in the region M,
V1 € XpseeesXpy < VareesVi» the state function is

( ma et poa e ,“NazveikwxI )
ik, i ik
W, — Det | pae ™ .“zazelkqxu Byaye ¥ 3)
M= ; i
(vy) MB 1€ o (v) Mﬁzelk’y' (vy) MBNelkuv'
{ B & By e By e"‘NVK
)

The idea here is that each time a particular ¥ passes from
right to left through a particular d, the d-particle amplitudes
gain one power of 1, and the u-particle amplitudes gain one
power of v;. The effect of a u—d passage on the state function
isindependent of history, and automatically produces a state
function of the correct symmetry class. Therefore, this dy-
namics of w—d passage satisfies condition (A).

At the common boundary of regions 1 and 2, where
Xp = ¥, delta function potential two-sided boundary condi-
tions that constitute rule D are to be satisfied. I impose these
conditions by factoring out the x,,,y, dependence from (2).
This is achieved by expanding the respective determinants
by 2 X 2 subdeterminant minors along the rows M and
M4 1.

Continuity of the wavefunction gives, for all 7, j

aiﬂj—ajBi=/‘i'Vjaiﬁj‘—,ujajﬂi- 4)
The derivative discontinuity condition:
the discontinuity of the normal derivative
= - g(value of the wavefunction on the boundary),
gives, for all / and j
2k, —kj)(a,B;+a; B, —pv,a, B, —pvia; B)
= —g(a,B;,—a; B, +uv;a;B;, —p;via;B), 5)
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where g is the strength constant of the delta function poten-
tial (as chosen here g > 0 is an attractive interaction). Some
manipulation gives the homogeneous equations

[1+1/s—y,-vj —1/s } [a,.ﬂ,-}
=0,
1/s l—l/s"#j"i ajBi
(6)
wheres=2i(k; — k;)/g. Putting the determinant of the sys-
tem zero gives
s=2i(k, — k;)/g=1/(1
or, for all i, j
2ik; N 1 _ 2ik; 1 '
g (1 —pv) g  (—pw)
Equation (7) is the algebraic condition for the consistency of
rule D and the algebra of the condition of no diffraction.
Consistency with periodic boundary conditions may
only be achieved if the regional state function ¥ ,, (y,) falls in
the same symmetry class as ¥,(y, + L), because the conse-
quence of the dynamics is the translation of a u particle from

aregion where all of the ’s are together to a region where all
of the u’s are together.® Thus, from (3),

(Vi)M=eile

oKL IM Rimm/M

—pv;) — V(1 —pwv),

o)

v, =

®)
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Periodic boundary conditions dictate, for all regions J
W, (X1yeeesXpgsP1seee¥i)

=V,(x;+L,..xps + Ly, +L,...yx +L).
From the determinental form of ¥, it is easy to show
W, (xy, + Lyeosxpy + Ly, + Lyooyx + L)

iZk,L,
=€ W (XiseesXpgsPrse-sVi )s
and thus the condition of periodicity is
3k.L=2mm, &)

for m any integer. Consistency is achieved if I can find p’s
and which allow a self-consistent solution of (7)-(9).

The form of the x’s that admit this consistency is not
unique. I will not attempt to provide a deductive path to a
suitable form. The following choice is reasonable, given the
result for M = 1, and the investigations in Refs. 2-5. It will
be demonstrated to admit the desired consistency. Let

2im. /M

H,=e (10)

where m, = any integer. There are M distinct values for u;,
corresponding to m;, modulo M. These values may be
thought of as naming distinct families of the u;, where the
values of u; are the same for all values of 7, which I call the
generic recurrence index. Each of the v; also falls into one of
the M familities. A substitution in (8)
’uieik,»L/M (11)
establishes v; as a function of k;, as well as a particular one of
M values of u, so the v's differ from the y’s in that their
values are different for different values of the generic recur-
rence index.

I substitute (10) and (11) into (7) and, after some alge-
bra, obtain for all / and j,

ik,L/M 2imm/M
vV, =ée e =

2k; kL mm m7w
— 4 cCtn +
g M M M
2k; kL mgm mm
=—=+ctn , (12)
g 2M M M

the set of transcendental equations to be solved for the k;.
These transcendental equations are a generalization of the
single transcendental equation of Refs. 6 and 7, where
M = 1. Every distinct set of N k; which satisfy these equa-
tions, and for which the constraint of periodicity (9) is satis-
fied, are the integrals of motion of a stationary state of the
system.

If 4w (m; + m;)/gL is added to both sides of (12) the
transcendental equation becomes

2(k; + 2m;w/L + 2m ;w/L) g ( kL mw m,-ﬂ')
g 2M M M
_ 2(k; +2mm/L + 2m ;w/L)
g

k.L ma mmw
tn | =2 1 ! ) 13
+ ctn ( T, + I; 7 (13)

Let m;; = m; + m; modulo M, and
z, = (L/2M) (k™ + 2m, 7/L), (14)
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where the distinct & ;" depend upon s and the generic z; do
not. This change of variable substituted in (13) gives

ctnz, = 4A(c —z,), (15)

where A = M /gL and the constant cis independent of . This
is the generic form of the transcendental equation, as op-
posed to the distinct form (12). The 2’s are the generic inte-
grals of the motion. There are N generic integrals of the mo-
tion and N, distinct generic integrals of the motion where
1< N, <N. Note that the generic and distinct transcendental
equations are identical for M = 1, as in Refs. 6 and 7.

The connection between the generiz z’s and the distinct
k’sis, from (14)

k™= (2/L)(Mz, — m,m), (16)

where m,; = any integér modulo M, except, to keep k’s dis-
tinct, m, #m,, if s#¢t.

Ili. STATEMENT OF THE SPECTRAL LAW

The spectral law for the determination of the distinct
integrals of motion, comprised of (9), (15), and (16), is
now internally consistent and complete. Let the index 7 label
abranch of the cotangent in the generic transcendental equa-
tion. Let the positive integer n;, 0<n; <M, be the occupancy
number of the generic branch ;. It follows that

Y n;=N.

The graphical methods of Refs. 6 and 7 are adequate for
explicit visualization of the solutions to the generic transcen-
dental equation (15) for a fixed value of ¢. The solutions to
(15), z, (¢), are continuous monotonic functions of ¢. Substi-
tuting (16) into (9)

(17)

2¥ Y (Mz,(c) — mym) =2mm,
which gives the generic constraint

nw

nz;(c) =—, 18
Z (o) ” (18)
for n an integer. Each value of ¢ for which this relation is
satisfied is an allowed value of ¢, for which the generic inte-
grals of motion are z; (¢).

IV. THE CONSTANTS OF THE MOTION, STATE
FUNCTION, AND NORMALIZATION

The distinct integrals of motion are determined from
(16). They depend upon the generic integrals of motion as
well as the N quantum numbers m . The constants of the
motion depend upon the distinct integrals of the motion. The
total momentum and energy are given by

n;—1
k(c) =%2 Y (Mz,(c) — mym),
i s=0

n—1

E(c) =—272 3 (Mz;(c) — mym).
s=0

19
22 (19)

As in the M = 1 case, the spectral constant ¢ is to be elimin-
ated in favor of & in the expression for the energy. This gives
rise to an energy band whose energy is E, (k), where the
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band quantum number is determined by the quantum
numbers n; and m,,.

The state function is given by the spatial union of the
state functions in the various regions. To make this state
function explicit I specify the a;’s and 8,’s in region 1. The
equation of continuity (4) gives

a;/B; (1 — p;v;) = const, independent of i, j.

For simplicity, let the constant = 1, and substitute the val-
ues for the y and v

a; = B,(l _ eika/Mer"rrm‘-/M).

To be completely explicit I make another arbitrary choice,
that 8, = 1 for all /. This corresponds to assigning a particu-
lar amplitude and phase to the state function in region 1.
With this choice the complete state function in region 1 is
given by specifying the a’s in region 1

a, = (1—¢e"") = —2ie“sinz,. (20)

Note that these amplitudes are functions only of the generic
integrals of motion.

The state function in region 1 is the determinant of an
N X N matrix whose form is

e

¥, = Det! g 1)

ik

L )
where it is understood that the a; are generic and the k; are
distinct. Now consider the state function in an adjacent re-
gion, where the d particle labeled by x, and the u particle
labeled by y, interchange position. Expand the determinant
(21) by 2X2 subdeterminant minors along the two rows
shown, to factor the x,,y, dependence. According to the self-
consistent version of rule D, each 22 subminor is trans-
formed by

ikx, ikpx,
Det [a,-e aje }

eikly, eik}y‘
e ik
Det| #€” wae (22)
—~Le iy, + L/M) ik + Lo |
e K€

Since this is all of the x,,y, dependence, and the y&’s are uni-
modular, the effect on V*W¥ is

VW, (x,p) =V *Y (x,0, + L /M), (23)

that is W*V¥ in any region is generated by a discrete transla-
tion of ¥*W¥ in any other region.

The complete stationary state wavefunction is the spa-
tial union of the regional state functions, which I write

v = {U¥,}.
This notation means that the various regions of state space
are labeled with an index J, and the total state function is the

nonanalytic function ¥, in region 1, ¥, in region 2, etc. In
the same notation

Y = {UY,*Y,}.
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From (23), ¥,*¥, may be written as a set of finite transla-
tions of ¥, *¥:

V%W (XY 1YV )
L
= Wl'wl(X:yl +n(J) A_l »

L L
Y2+ ny(J) A—l»---:}'K + ng(J) ﬂ) ’
(24)

where the n,(J) are integers which have the meaning that
they are the number of u steps into the d sea required to
connect region 1 to region J. Since ¥*V¥ is composed of the
union of all ¥,*¥,, integrals of ¥*¥ may be computed as
integrals of a single regional state function over volume L.
For example, the unnormalized bivariate 1-d probability
density in a stationary state is

p(z,5.x.y)
L L
=f dX”‘J dYWl(x:y,X,Y)‘I’T(X,J’,X,Y), (25)
(0] (V]

where x is a particular d coordinate, y is a particular u coor-
dinate, and X, Y are, respectively, the set of complementary d
and u coordinates. The procedure for evaluating these inte-
grals as functions of the integrals of motion closely follows
Refs. 6 and 7 and is outlined in the Appendix.

The normalized u-d relative coordinate marginal prob-
ability distribution in a stationary state is

_ \_I._Q_*Q]L
w(z,r)—1+[N 1

where

1 < i
0 —_2__ 26
L N4 (1 —Aq;a)) 20

D=1-1/N+ An.

V. CONCLUDING REMARKS

The computation of the integrals of motion is remark-
ably similar to M = 1. The generic transcendental equation
and constraint of periodicity are identical in form to the cor-
responding equations for M = 1. The computation of the
distinct integrals from the generic is very simple. It is only
necessary to identify with each generic integral a set of equal-
ly spaced momentum states. The effect of this seemingly tri-
vial generalization of the spectral law is profound (particu-
larly in the attractive case), and will be dealt with elsewhere.

I do not continue here with the important application of
the bulk limit & = 2M, which motivated this work, because
that is only a single application of the ideas expressed here.
Further applications include the possibility of removing
some of the artificial barriers in other solvable model prob-
lems (e.g., negative coupling in the one dimensional Hub-
bard and Heisenberg models), and extension of this algebra-
ic approach to other quantum fields.
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APPENDIX: INTEGRALS OVER REGIONAL STATE
FUNCTIONS

Consider integrals of the form
1(z,6,x.y)

5 L
=f dX---f dY AGxp X, AN xp X, ), (AD)
0 0

where A is the determinental form of the state function in
region 1:

ikx)) (. ik

roz(z,.)e a.e

A(AX,Y) = Det{ } = Detg

ik,

L SR
Let z¥ = £;, and correspondingly & * = «;, so that the ad-
joint determinant is written

fa*(g,.)e""f"" fa:_re—ix.m

A'(z,X,Y) = Det{ 4 } =Det{
euqy, iy,

{ ) SR
Note the integral identity:

L/2
j dXei(k_, —xj)x
- L2

=L [5,-,-(1 — Aag;al)

4sin z; sin §, sin(k;, — «;)L /2
gL sin(k; — «;)L /2M

where I have chosen k; = x;<>i = j. This identity is estab-
lished by doing the integral

2sin(L 72) (k; — «;)
L(k; —«;)

1, k1=;(j

(A2)

L/2
J‘ dx ei(ki— K)x L ’ ki #Kj’

—L2

and noting that

+
2 . . a;a;
—sinz sin§; = .é_L e~ @

_ sm(L/ZM)(k, —Kj)
(k,- — K _,')
is an alternative form of the transcendental equation (12).
The second term of (A2) does not contribute in the bulk
limit; if k,L and «;L are distinct and separated by an inte-
gral multiple of 27 it vanishes identically otherwise I shall
always be concerned with the bulk limit gZ —» « where it is
negligible; if k; L=x; L, the corresponding 2 X 2 determinant
vanishes identically.

The integration over y, removes all dependence on y,.
Thus

I(z(X,Y') = 2 (1 — Aa,aD)ATA(Z X, Y"),
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where A(Z',X,Y’) is the determinant of an N — 1 by N — 1
matrix. Here, 2’ means leave out all of the z’s in the sums, Y’
means leave out all of the y’s in the integrals. Continue the
process until all but one of the y’s are integrated out:

I(z,6,X.y)
=3[ (1 — Aa,aDATA(Z X, Y"),
i i
where A is the determinant of an M + 1 by M + 1 matrix:

ik
a(z)e’™

A(z,X,y) = Det

ik,
e Y

Now, integrate the x dependences by the same method—
expand by minors to factor x; dependence of the integrals
using the integral identity. The only difference is that the
typical term is multiplied by a,a!. Integrate over x’s until
only one x remains:

Iz4xy) =33 3 F; [ (1 - Aa,a)A'A,
i jN=2 N-2

where

M-1
Fy=3% 1] eadl

=yy

meaning sum over all possible ways to choose a product of
M — 1 factors a,a}, no index repeated, index £/ or j-In
Refs. 6 and 7 it is observed that @, a], is the weight, or relative
probability, that any given d particle is identified with the
integral of the motion z,. Here, F, is the weight, or relative
probability, that M — 1 balls (d particles) put in N distin-
guishable urns (indices) such that no more than one ball is in
any urn and no ball is in urn { or j. The events “no ball in
and “no ball in j” are independent, and the weight of their
conjunction is the product of their individual weights:

F,=FF,

1 _]’
and

N M—1
F=1- [a,-af S a,.a!] .
i=1
Thus the i dependence of ’F‘, is of order (1/N)™, and there-
fore negligible.
Completing the product over the N — 2 other factors
the result is

A(x,p)AT(x,p)
I 2 B ol = ’
(@6x) Z; (1 — Aa,al) (1 — Ag;a])

where
ik ik .
a,e™” o ]

iky el‘k}y

A= Det[
e

Expanding the determinants
DD'=a,a} + o]

i(k;— ;) iCk;— k) r
’

—a,afe "—aale
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where r = x — y, the u—d relative coordinate. Substituting
and rearranging terms

I=n(1+ An) — 07Q(r),
where the functions » and Q are
1 a,af
n(z)=—) ———,
( N 21: (1— Aa;al)

— Kr

a,e
(1 — Aa;a)) .

The normalization integral may be computed using the
integral identity (A2):

J;LQ‘”er——'%.

In the bulk limit, therefore, the normalized u—d marginal
probability distribution is

1 N
Q(r)—jv-;

169 J. Math. Phys., Vol. 31, No. 1, January 1990

1 QTQ] 1
r) =1 —_——==—,
o(zr) +[N n 1D

where D=1—1/N + An.
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As a further step in the general program of zeta-function regularization of multiseries
expressions, some original formulas are provided for the analytic continuation, to any value of
s, of two-dimensional series of Epstein-Hurwitz type, namely,

e, —olay(ny +¢))* + ay(n, + ¢,)?] ~*, where the a; are positive reals and the c; are not
simultaneously nonpositive integers. They come out from a generalization to Hurwitz
functions of the zeta-function regularization theorem of the author and Romeo [Phys. Rev. D
40, 436 (1989) ] for ordinary zeta functions. For s = — k,0,2, with & = 1,2,3,..., the final
results are, in fact, expressed in terms of Hurwitz zeta functions only. For general s they also
involve Bessel functions. A partial numerical investigation of the different terms of the exact,
algebraic equations is also carried out. As a by-product, the series £=_,exp[ — a(n + ¢)?],

a,c> 0, is conveniently calculated in terms of them.

I. INTRODUCTION

For a few years now, the study of quantum field theories
in partially compactified space-time manifolds has acquired
increasing importance in several domains of quantum phys-
ics. Let me just mention the issues of dimensional reduction
and spontaneous compactification, and the multiple ques-
tions associated with the study of quantum field theories in
the presence of boundaries (like the Casimir effect) and on
curved space-time (manifolds with curvature and nontrivial
topology), a step towards quantum gravity.

There are many interesting calculations in these theories
that can be carried out exactly—and in a very elegant way
from the mathematical point of view—by the zeta-function
regularization method. In particular, if all the eigenvalues of
the Hamiltonian are known, then, very commonly, one is led
in this method to the computation of expressions of the gen-
eral form

© N —s
2 [Z aj(nj+cj)“f] , a;a;>0. (1)
As such a multiseries, this expression only makes sense for
Re(s) big enough, and an analytic (usually meromorphic)
continuation to other values of s is in order. In the zeta-
function method, this is provided by the Riemann and Hur-
witz (also called Riemann generalized) zeta functions.
However, for an expression as general as (1) this pro-
gram has proved to be extremely difficult (not to say impos-
sible until now) to carry out. The simplest case is obtained
when (1) corresponds to the Hamiltonian zeta function

(=Y E )

(E; are the eigenvalues of H) of a system of N noninteracting
harmonic oscillators. In this case, a; = 1, j = 1,2,...,N, and
the a; are the eigenfrequencies w;.' Another important case
shows up in the partial toroidal compactification (space-
time T?XR?*'). Then a; =2 and, usually, ¢; =0, +}
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(Ref. 2).This leads typically to Epstein zeta functions

Zy(sy= Y M4+
Yv= 3 (3)

1 2 1 2y ~s
x[("1+7)+“‘+(”~+7)] ’

(the prime prescribes omission of the term with
n, =n, = -+ = ny = 0). Other powers a; appear when one
deals with the spherical compactification(space-time
SP XR7+ 1), Moreover, as string theory seems to indicate,
nothing precludes the possibility of having to consider other
compactification manifolds, leading to very general values
for the a;. In this work, however, we shall only deal with the
particular case a; =2, j=1,2,...,N, leaving more general
situations for subsequent study.

The aim of the paper is to derive some new and useful
expressions for the analytic continuation of two-dimensional
sums of the types just mentioned. My results will come from
a rigorous generalization of the zeta-function regularization
theorem,!** which is carried out in Sec. II, Eq. (7), by ob-
taining the appropriate counterterm (9). From it, basic ex-
pressions for zeta-functions regularization—Eqgs. (22),
(30), and (32) of Secs. I1I, IV, and V, respectively—will
follow. They will give rise to the general equation (34) of
Sec. V, which provides the analytical extension to any com-
plex value of s of two-dimensional sums of the type men-
tioned in the Abstract, and also to the interesting particular
formulas (35)—(38). Finally, in Sec. VI a recurrent proce-
dure to extend these expressions to arbitrary-N multiseries
as (1) will be sketched [Eq. (39)].

Il. THE CASE o, =2: STATEMENT OF THE
MATHEMATICAL PROBLEM

The apparently simple case a; = 2 carries enough com-
plication that it deserves a complete study on its own. On the
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other hand, at least formally, the general case is actually very
similar to this one (the main difference being the transition
from the cases a; < 2 to the cases a;>2, as will be explained
later. Thus I shall restrict myself to the expressions

Ep (80, 0s@p3C1eesCn )

0

N -5
= z z aj(nj +Cj)2] ’ 4)
ny,ny=0 Lji=1

where it is understood that all a; > 0 and that not all of the c;
are nonpositive integers. Actually, only the particular situa-
tion with N = 2 will be worked out in detail. Let me empha-
size the fact of the presence in (4) of general nonzeroa;’s and
¢;’s. The only precedents in the literature (to my knowledge)
of this kind of evaluations are restricted to very few
special cases other than a,=a,='-=4a, and
¢, =¢, = ''* = ¢y = 1.2° Maybe the most famous expres-
sion in this context is the celebrated result of Hardy,® which
can be obtained as a particular case of our final formulas in
Ref. 4.

In Ref. 4, together with Romeo we began an investiga-
tion of the general expression (4), limiting ourselves to the
simplest casec; = 1,j = 1,2,...,N. It is not that immediate to
extend the results there to the present situation, as we shall
see.

A basic point in the zeta-function regularization proce-

dure is the interchange of the order of the summations of
infinite series in expressions like

SP(s)= Z (m+e¢c)=! 2 ) (m+c)*.

(5)
In the case ¢ = 1 and a < 2, the correct additional contribu-
tion coming from this commutation of sums was obtained by
Weldon.? Actually, he claimed that his result was valid for
any aeN. This has turned out to be not right, as rigorously
shown in Ref. 4 where the correct supplementary contribu-
tions for a@>2 (always with ¢ = 1) have been obtained.

Hl. THE FUNDAMENTAL FORMULA FOR ZETA-
FUNCTION REGULARIZATION WHEN o, =2

I shall now proceed with the calculation of (5). It can be
written as

(a) — < —s5—1 __dg_ —aa
S:(s) mz=0(m+0) izm,(m+c) I'(a),

(6)
where C is the contour (C =L + K) consisting of the
straight line (L), Re(a) =4, O0<a,< 1, and of a curved
part (K), which is the semicircumference at infinity on the
left of this line. For Re(s) big enough, we obtain

i
sP@= 3 s+ 1-aa 415 0 F * 7
a=0 A(a) , N
(= [I"(s/a T yr'(s/a n 1)] +A), e

where £(z,c) is Hurwitz’s (or Riemann’s generalized) zeta

function
$ze)= > (n+c)~° (8)

n=90

and A'® (s) is the following integral over the curved part K

of the contour C:

AP ()= —§(S+ 1 + aa,c)T (a). 9

K 27i

The preceding expressions, Egs. (7) and (9), constitute
the more basic result in this paper. They can be viewed as a
generalization of the zeta-function regularization theorem
obtained in Ref. 4. There the case of the ordinary Riemann
zeta function (i.e.,c = 1) was studiedand a detalled discus-
sion on the nature of the term (9) forc =1 (1nclud1ng nu-
merical computations for different values of s) was pro-
vided. It turns out that, for arbitrary positive ¢, the present
term (9) can be related to the one in Ref. 4; in fact, it is
numerically comprised between two expressions both ob-
tained from the case ¢ = 1 by suppressing a finite number of
contributions, namely, the first [¢ — 1] and [¢], respectively
(here square brackets mean integer part). As the notation
(i.e., the delta) already suggests, this term (9) always turns
out to be a correction to the first, leading terms. It is also
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clear from the above discussion that the most interesting new
case with respect to the one dealt with in Ref. 4 appears now
when 0 < ¢ < 1, and this is precisely the specific situation that
I will consider below.

In order to be able to provide an expression for the inte-
gral (9) in terms of more elementary functions, I shall re-
strict myself to the case a = 2. Use will be made of the well-
known Hurwitz formula,’ valid (in particular) for Re z <0
and 0 <c<1,

£(z,e) =22m)* " 'T(z—1) 2 n! s1n(21rnc+ )

n=1

The behavior of the lhs for |z| » o with Re z<0is o
£(z,0) ~227w)° " 'T'(z — D)sin 2wec + m2/2), (11)
while, for ¢ = 1, we obtain
£(2) = E(z,1) ~2(2m)*~ 'T(z — D)sin(72/2).  (12)

From the last two expressions, we get, for 0 < c<1,

$(ze)
5(2)

|zl — e
Re(z) <0

= sin(2#c¢)cot ( 5 ) + cos(2mc). (13)
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Now, making use of the identity, valid also for Re(z) <0
(Ref. 7),

r(‘
with
S=Yy e,
n=1

we obtain for the analytic continuation of (9) (with a = 2)
tos= —1:

(14)

_z)ﬁl—zy=fwwt‘““V%UL
0

(15)

AD (1) =J. _2‘.1.9-_4‘(20,c)1“(a)
i

_[ 4 [sin(27mc)cot(ma)
k 2mi

+ cos(2mc)1£(2a)T (a). (16)

After making use of Eq. (14), the second term on the rhs can
be integrated immediately. Writing it now at the beginning
of the second member, we get

AP(—-1)= — \/;S(ﬂz)cos(Zﬁc)
<+ sin(27c) J- dt
x 2l

Xt 912 cot(ma)S(7t).

The last integral in (17) turns out to be zero. In fact,

j da it _aeiﬂa+e—i7ra
" P

enra —e” ira

(17

— Jﬂ do Reiet — R(cos 6 + isin )

37/2
— do Reiot — R(cos 8 + isin 6)

iR — iR
S L P
Ln¢
from which it follows that
lim [ deS(rry SSRID

R—w Jo Lnt

=Re [fw du S(7e*'?) e—m] =0
w u

cos(RLny)

18
Ln:¢ (18)

(19)
We are left with just

AP (—1) = —Jmcos(2mec)S(7). (20)

Summing up, I have proved that

S.=SP(—1)= 3 e-m+er 1)
m=0

can be expressed in terms of Hurwitz zeta functions, as

S _(__K ;( — Zm’c)
m!

.= %

m=0
+ g + Jmcos(2mc)S(7), (22)

with (the standard, related to Jacobi’s theta function) S(¢)
being given by Eq. (15). Equation (22) is another meaning-
ful result of this paper. It is exact and holds for any value of c.
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IV. BEHAVIOR OF THE ZETA-REGULARIZED
FUNDAMENTAL SERIES

Let me now investigate the behavior of the different se-
ries in (22). Depending on the value of ¢, the series of Hur-
witz functions can be convergent (even finite) or asympto-
tic. The other two series, i.e., those implicit in the definition
of the ' functions, are quickly convergent (thé one on the rhs
much more quickly than the one on the lhs). In fact, to be
clearer, let us check some specific cases.

(i) In the particular case ¢ = 1 we recover the known
equality®’

S(1) = N7 — 1)/2 +7S(7). (23)

(ii) For ¢ =1 we have {( —2m,}) =0, k=0,1,2,...,
and

£,o9-(n+3)]

—VT V7 3 exp(—mi).

m=1
Therhs of (24) permits us to obtain the value of the series on
the lhs with 107 '° accuracy, with just two terms

£,o0[ = (3]

=g—\/;e—"2 + £(10719),

(iii) For ¢ = 0 we get an equality equivalent to (23),

3 e“"’2=i+£+ﬁS(Tr’)-
m=0 2 2
Actually, it is an immediate consequence of the properties of
the series in (22) that the equalities one obtains for ¢ + 1 and
for ¢ — 1 are each equivalent to the corresponding one for c.
Therefore, only the equalities (22) corresponding to ¢,
0 < ¢<1, provide interesting (independent) relations.
(iv) For ¢ = §, we get

mi;oexp[—(“iﬂ
0o )

m=

(24)

(25)

(26)

(27)

The series of Hurw1tz functlons on the rhs is now asympto-
tic. It stabilizes between the eighth and the twelfth sum-
mands and it provides a best value (with =107 accuracy)
exactly when we add its ten first terms.

(v) For ¢ = ] and ¢ = } we obtain, respectively,

P exv[—(mm‘;)’]
0 l)m _ _1_)
,,.2: ( 2m =

+ (- l)"/_ Z exp( —

m=1
In these cases, contrlbutlons from the two series in the rhs
must be taken into account. The first of them is asymptotic
[as in (iv) ] and has exactly the same characteristics as the
one in (27), both for j = 1,2. The second series is extremely

m*r?), j=12. (28)
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rapidly convergent (much more than the series on the lhs).
These characteristics are maintained over the full range
0<c<1 (but for the very special values ¢ = 4,1 considered
above).

One may ask what is gained with these asymptotic ex-
pressions. The answer has already been given before, in Egs.
(7) and (9), which extend these equalities by analytic con-
tinuation to any value of s, and not simply to the case
s= — 1 exemplified here. I will be more precise in what
follows. Before being so, let me present two more examples
of interesting, original relations that come from Eq. (22):

o0

S expl — (m+ )] =7 + 27 cos(2mc)S(n?),

V. THE GENERAL EXPRESSION FOR N=2

The calculation of the general expression (4) will be
now illustrated, for the sake of clarity, in the simpler case
N = 2. By using the Mellin transform, we write

E,(5,0,,,;¢,,¢5)

L

= 2 [al(nl +Cl)2 + ay(n, + 02)2] —F

n,n, =0

1 kad «
= dees—!
F(S) ,,"§=0J(‘)

xexp{ —# [a,(n; +¢,)* + ay(n, + ¢,)*1}. (31)
We shall need the following generalization of Eq. (22)—

m=—c again a basic outcome of my regularization theorem (7)—-(9)
(29) and obtained in the same way—
Y mexp[ — (m+¢)?] i exp[ — a(m + ¢)?]
m=0 m=0
=13 s (=D ome —2mye)
2 = =
X[§(—2m —1,c) —c§( —2m,c)] -iz_zc +% —-+\/:cos(21rc)S(7r2) (32)
a a®
+ Jm[7sin(2mc) — ¢ cos(2mc) 1S(7?). (30)  Substituting (32) into (31), we get
J
E,(s5;a,,85;¢,,C,)
__1 i (_l)ma;"g’(—Zm,cl) i wdtt”’"“exp[—ta (n, +¢,)?%]
F(S) m=0 m! n, =0J0 2 z
1 r 1 N
I dt15—¥2 — & 2
> 2 T(s) ngo X exp[ — tay(n, + ¢;)°]
+ T cos2me,) i i fw dtt"mexp[— : —taz(n2+c2)2]. (33)
a, F(S) n=1n=1J0 1

This gives

E,(s;a,,a50,,¢,)
a;* =

_ (=1)"T(s+m)
- I'(s) 2

m=0 m!

COS(ZTI'Cl)a — 5/2 — l/4a2— s/4 + 1/4

27’
+
I'(s

n=1n,=0

(ﬂ)mg( —2m,c)6(2s +2m
a,

L(l%i—mv— Le)

2
( l)
a,

z n~ 2+ ¢) K [27\/§”1(”2+02)], (34)
1

where K, is the modified Bessel function of the second kind. Equation (34) constitutes the general analytic continuation
formula for two-dimensional series I was looking for. As is apparent, it involves Bessel functions as well as Hurwitz functions.
However, the following particular cases look especially simple.

Fors= —k, k=0,1,2,..., one obtains

E,( — ka,,a5¢,,¢;)

G & (=D"T(m—k) (a,)'"
= fut § —2m, 2(m — k),
T(— k) m§=:0 ! . 5( m,c,)§(2(m )5€2)
=af (i_ c,)é‘( —2k,c,) +af i k(k—1)---(k—m+1) (_a_l)m E(—=2m,e,)E2(m — k),c)). (35)
2 me m! a,
In particular, for s = 0,
E,(0;a,,a55¢1,¢2) = (¢, — ) (e — 1), (36)
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and, fors= — 1,
E,( — Liay,a5504567)

=a,(} — ¢)5(—2,¢;) +a,(} — 6)( — 2,¢y)

=§(01—§)(02'—})[a1¢'1(1—cl)+azcz(1—‘cz)]- (37)
For s = 2, we obtain

E2(2'al,a2;c,,c2)

—L 5 (—mman (2 );( Imef@m +der) + (300
2 m 2 1%42
* cos(2me,) & —2 a, -
4+ ———1 2 (n+c) ?lexp|27,  [2(n4c) ] -1
alaz m=0 a
3 -1
+[(n+c2)_2+ - (L't—ci)——”exp(%r 2(n+c ))—-1] ] (38)
2

The first two terms on the rhs yield properly the result of the zeta-function regularization method (naive commutation of
the series summations plus Weldon’s additional contribution®). They produce the desired expression of (4) in terms of zeta
functions. The last term in (38) generalizes to arbitrary c¢,,c, >0 the supplementary corrections detected in Ref. 4 for
¢, = ¢, = 1 and which had been loosely forgotten in Ref. 3. In spite of the imposing aspect of this last term, its contribution is
actually very small, and the series in 7 is very quickly convergent (only the first couple of summands need to be taken into

account in practice). For an arbitrary value of s, one must use the general expression (34).

VI. A GENERAL EXPRESSION FOR ARBITRARY N

The preceding calculations can be generalized to multiple sums (4) with arbitary N. The fundamental formula (32)
introduced into the Mellin transform {as in (31)-(33)] allows us to proceed recurrently. One obtains the (exact) equation

E (85010 5@n3C150CN)
1 °° (—
F(S) m= 0

I‘(s——i
a T(s)

7 cos(2mc,) 5: J di 15— 3’2exp[
n=1 n, n

a T(s)

.....

Notice, once more, that the last term is a small correction to
the first two, so that, in practice Eq. (39) can be viewed as a
recursive formula with a small correction term A (the last
one) that can be estimated numerically. This is also dis-
cussed in Ref. 4 (for the particular casec, = -* =¢cy = 1)
in greater detail.

The application of the formulas derived in this paper to
the direct evaluation (exact, or at worst, six to seven decimal
places precise) of the Casimir effect, by just summing over
modes (provided that they are known exactly) and by zeta-
regularizing the resulting expressions, will be developed ina
separate publication.
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Alan P. Wang

Department of Mathematics, Arizona State University, Tempe, Arizona 85287
(Received 3 March 1989; accepted for publication 6 September 1989)

Chandrasekhar developed one-dimensional mathematical models of radiative transfer in 1949
[Radiative Transfer (Oxford U.P., New York, 1950)]. This paper is a systematic extension of
Chandrasekhar’s work to three dimensions, including discussions of specular and diffused

parts, reciprocity, solutions, and approximation.

I. INTRODUCTION

Lord Rayleigh," in 1899, investigated the problem of
specifying the radiative field in a light scattering atmo-
sphere. In 1905, Schuster® explained the absorption and
emission lines in stellar sectra and, in 1906, Schwarzschild®
introduced the concept of radiative equilibrium in stellar at-
mospheres. Until 1949, the subject of radiative transfer had
been principally investigated astrophysically rather than
mathematically.

Then Chandrasekhar published Radiative Transfer.*
He systematically presented radiative transfer as a branch of
mathematical physics. Developing the general “principle of
invariance,” he constructed a complete one-dimensional
mathematical model for radiative transfer in plane-parallel
atmospheres. Since then there have been many interesting
developments in this area.

Ueno® and Bellman and Kalaba® described their method
of “invariant imbedding.” At the same time, 1956, Red-
heffer developed the closely related transmission-line ap-
proach.” Other important contributions were made by Prei-
sendorfer,® Paszkowski,” Wing,'® Ueno and Wang,"
Wang,'? and many others. The mathematical models asso-
ciated with the above were all based on one-dimensional
time-independent radiative transfer.

Recently, investigators have been forced to study three-
dimensional radiative transfer: for example, the study of ra-
diative transfer in a free non-plane-parallel atmosphere, or in
a plane-parallel atmosphere with nonuniform ground reflec-
tion. Models in these three-dimensional cases have immedi-
ate applications in Earth image processing and target identi-
fication.!?-16

The purpose of this paper is to construct, in a compact
and geometric way, a complete set of mathematical models
for three-dimensional radiative transfer using integral oper-
ators and scattering theory.” With our interpretation of such
operators, results may be applied to three-dimensional prob-
lems in neutron transport, probability and circuit theory,
etc. A following paper extends three-dimensional radiative
transfer to a time-dependent case.

Symbols used in this paper can be found in Table L.

Il. BASIC EQUATIONS

Splitting the radiative intensity at an incremental ele-
ment of a transfer medium into input and output, we find its

equation of state, from which we derive, in linear operator

form, the fundamental equation governing the variation of
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intensity in the medium. The intensity I(p,u) is separated
into two parts, I * and I —, i.e., I * (p,u) = I(p; + u), with
0<0<n/2, and I ~ (p,u) = I(p; — u), with 7/2 <6<, As
I*(p,u)and! —(p,u)travelsfromptop’ = p + Ap (seeFig.
1), there are differences in energies arising from the trans-

TABLE 1. Symbols used in this paper.

p=(xp2) the position, i.¢., a point in three-dimensional
Euclidean space
u=(u4)  adirectional vector; u = cos 6, fis the polar angle, and ¢ is
the azimuthal angle
a(p) the position-dependent attenuation coefficient
va(p) the position-dependent scattering coefficient
I(p,u) radiant intensity at position p in the direction ¥ and in an
element of solid angle
f(puu) the position-dependent phase function for an angle be-
tween v and ¥’
47 transmission operator, see Sec. II
p¥ reflection operator, see Sec. II
S scattering matrix, see (2.4)
VAL specular part of transmission operator
R,P diffused part of reflection operator
7 diffused part of transmission operator
rp diffused part of reflection oi:erator
A.B,C.D generators associated with specular part of
operators, see (2.5)
a,bed generators associated with diffuse part of
operators, see (2.5)
K ground reflection operator
bd superscript *, see (3.16)
Q overall reflection operator, see (4.1)
R, see (4.1)

norm and sup norm, see Sec. V.
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FIG. 1. Radiation fields at points p and p + Ap.

mission and reflection in the frequency interval and element
of solid angle considered. Denoting transmission by ¢ and 7
and reflection by 7 and p, their relations are given by
C* (p',u)) _ (7(p,p’,u,u’) ﬁ(p,p',u,u’)) C* (p') )
~(p,u) Fppuu') Fppuu)) I~ (p'w)/’
2.1)
that is, the input-output pairs in direction 4’ are mapped to
the input—output pairs in direction u (see Fig. 2), where,
using ¢ to denote the operator as well as its kernel,

Hpp' ') 1" (pu') = f?(p,p,u,u')l *(pu)du',

likewise for the other operators, p, 7, and 7. We denote the
generators associated with 7, 7, p, and 7, respectively, by
b,d, a, and ¢. Then taking the limit as Ap— 0, we obtain the
equation of state

14 I*(p,u))

v ds \I " (p,u)
_ (5(p,u,u’) a(p,u,u’) ) . G* (p,u')) 22)
—puy) —d(puu') () T

where d /dsis the directional derivative in the direction of R,

d

— I £ (pu) = VI *(p,u)R. (2.3)
ds

The advantage of the present formulation is that the
apparently preferred variable, s, in (2.2) can be adjusted to
the application, e.g., Sec. II1, without the transverse or radial

FIG. 2. Reflection and transmission of
pencils of radiation.

C/
\ I=(p'u')

I+(p'u)

Similarly, if the medium is radially symmetric, the preferred
variable is r = (x* + y* + 22)'/? with an equation similar to
(2.3), cf. Wang."” Thus previous treatments are restricted
cases of the present treatments.

It is known,* in the treatment of radiative transfer, that
it is convenient to distinguish between the reduced or specu-
lar radiation, which penetrates to a point in a medium with-
out being scattered, and the diffuse radiation field, which has
been multiply scattered. The appropriate representation for
a scattering matrix

’ "o t ﬁ)
S(p,p,u,u)—(; 5

is a linear combination of its specular and the diffused parts

S(p.p' ') = T(u')o(u—u') P(u')5(u+u’))
o) =\R(u)o(u +w) TS — u')
(t(u,u’) p(u,u’))

r(uu') T(uu') (24

where § is the Dirac distribution and the dependence on p
and p’ are understood.

The associated generator also allows for both specular
and diffuse parts,

(E(u,u') ﬁ(u,u'))
uu') duu')
_ (B(u’)&(u —u') A)o(u+ u'))
“T\CW)S(u+u') DW)S(u—u')

symmetry assumption of one-dimensional radiative transfer. ' ,
. . b(uu') a(uu’)
If z is the preferred variable, we have transverse or plane- ctuw) duu))’ (2.5)
parallel symmetry and (2.3) becomes ’ ’

4a I*(pu) = a I+ (zu). suppressing the variable p for convenience.

ds ’ dz ’ Set I *(p,u’) =0in (2.1); then

|
%ﬁ(u,u’) = B(u)p(uu') + p(uu’')D(u) + A" )0(u + u') + a(uu') + f b(u,i)p(,u')di
+ fﬁ(u,ﬁ)d(ﬁ,u')dﬁ + fﬁ(u,ﬁ)C( — @)p( — @u)dia + ffﬁ(u,ﬁ)c(ﬁ,ﬁ)ﬁ(ﬁ,u')dﬂ di. (2.6)
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Substituting
pluu’) =P )o(u+u') +p(uu'),

asin (2.4), into Eq. (2.6) and grouping all terms involving
6(u + u'), we obtain the equation containing only the specu-
lar part of the reflection operator p,

4 p(u) = A(u) + B( — w)P(x)
ds

+ P(u)D(u) + P(u)C( — u)P(u). (2.7)

The remaining part of (2.6), i.e., the diffused part, is repre-
sented as

-;isp(u,u') — a(uu’) + Bwp(uu’) +plu)
+ f B(u,i)p ')t + fp(u,a)a(a,u')da

+ffp(u,ﬁ)5(ﬁ,ﬁ)p(ﬁ,u’)dﬁ dii, (2.8)

where the coefficients are defined as follows:

a(uu') =a(uu') + b(u, —u'YP(u') + P(u)d( — u,u’)
4+ P(—u)e( —u,— u'YP(u'),

B(u) = B(u) + P(— u)C(u),

D(u') =D(u') + C(—u)P(u),

b(u,i) = b(u,it) + P(—u)c( — u,i),

d(au') =d(au') + c(@i, — w)P(u'),

C(ia,u) = c(it,it) + C(&)6(it + &).

The specular part [Eq. (2.7) ] is a one-dimensional one
while the diffuse part [ (2.8)] is three dimensional and in-
volves the specular part.

Considering 7 ~ (p',u’') =0 in (2.1), taking the direc-
tional derivative, and separating the §(u — ') terms, we
have the specular part of the transmission,

4
ds
while the diffused part is

T(u) = [B(u) + P(w)C(—u)]T(u), (2.9)

4 Huu') = b(uu') + B(u)t(u,u’)
ds
+f5(u,i2)t(ﬂ,u’)dﬁ

+jfp(u,l7)'é(ﬁ,ft)t(i7,u')dﬂ dii, (2.10)
where the new coefficient
b(uu'y =b(u,u')T(u') + fp(u,a)z(ﬁ,u')d& T(u').

Similarly, the specular part of 7 satisfies the equation
d

p R(u) =I(u)C(u)T(u), (2.11)
s >
and the diffuse part of 7 satisfies
J
+ +
iIi(p,u) =(31—+tan 0 sin ¢ oI + tan @ cos ¢ ol
ds oz ax
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di r(uud’) =¢(u,u’') + f T(u,)c(a,u' YT (u')di
s
+Jf¢(u,ﬁ)?(ﬁ,ﬁ)t(ﬁ,u')dﬁ dii, (2.12)
with
C(u’) =(w)e(u,u' YT (')

+ Il (u) f@(u,ﬁ)t(ﬂ,u)dﬁ.

Finally, the specular part and the diffuse part of the trans-
mission 7 are

% T(u) = () [D(x) + C( — ) P(w)]

and

(2.13)

4 r(u'y =3’y + (uu')D(u')
ds
+ f r(u,it)d(it,u' ) di

+ f f T(u,@)e(u,)p(u')di dit,  (2.14)
with
d(uu') = (w)d(u,u') + () |e(u,@)pi,u’)da.

With the basic equations completed we note that the
derivation is closely related to Redheffer’s transmission line
theory, and the concept to Chandrasekhar’s principle of in-
variance. Also, the three-dimensional model is motivated by
Ueno. In the case where the operator p is independent of
(x,y), Eqgs. (2.7) and (2.8) reduce to those obtained by Red-
heffer. When |p — p’| - «, so that

Spp' . 00)-S, (2,0

and
d ' ‘ '
"—S(P,P 7990 ) = 0;
ds

then the above differential-integral equations (2.6)-(2.14)
all become integral equations. Solutions of such equations
are of great interest in radiative transfer; indeed, they are
related to the “law of darkening” in astrophysics.

lll. RADIATIVE TRANSFER

In this section we consider the three-dimensional radia-
tive transfer model consisting of an atmosphere extended
from optical thicknessz =0toz = z,. Atthetopz = z,, it is
uniformly and monodirectionally illuminated by parallel
rays of solar radiation of constant net flux, 7F, per unit area
normal to the incident direction. At the bottom z =0, it is
bounded by a flat reflecting surface. The upward intensity of
radiation emergent in the direction from the level z, 0<z<z,,
at the horizontal rectangular coordinates (x,p), is I ~ (p,u)
and the downward intensity is I * (p,u). In this case,

+
), (3.1)
y
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since R = (1, tan @ sin @, tan 0 cos ¢) with u = (6,4).

Letting p—p’ as in Fig. 2, the integral equation genera-
tors @, b, &, and d of the previous section are determined by
the physical properties of a thin increment of the medium in
this case. It can be shown'! that

(b a)_o-(z)(f(z,u,u') Azu, —u') ) (3.2)
c d = ar \flz,—uw) flz,—u,—u'))’ "

where o(z) is the position-dependent scattering coefficient
and f(z,u,u') is the position-dependent phase function for
the angle between u and #'. It is also well known'* that
specular radiation, in this case, occurs only in transmission;
therefore A = C = 0. Thus the equation for P in (2.7) re-
duces to the linear equation

%P(u) =B(—u)P(u) + P(u)D(u). (3.3)

N

d 1
[z + a(P)(;

Because there is no specular refiection radiation when the
optical thickness is zero, the proper initial condition in (3.3)
is zero. Hence the unique solution of (3.3) for radiative
transfer is

P(u) = (3.4)
It follows [ (2.8)—(2.10)] that G, b, ¢, d, B, and Darea, b, c,
d, B, and D, respectively. In radiative transfer the reduced or
specular transmission radiation field is equal to e ~ “®/¥, the
amount of incident flux atlevel z. With u = (u,¢), this yields
the values

B(u)= —a(z)/p and D(u') = —a(z)/u. (3.5)

Combining (3.4) and (3.5) with the remarks following
(3.4), Eq. (2.8) has the integral form

+ l%)],a(u,u') =0(2) [f(p,u, —u') + —fp(u ) fp, — 1, — u )

1 . du dii ]
- siby y — u 7] s y 3.6
t ff(p 16”2 fp(u wfp plau’ (3.6)
with initial condition
pluu’) =0, for p=(0x,y). 3.7
Equation (3.6) is identical to the result of Ueno and Wang."*
Applying the above conditions to Eq. (2.9), we have
4 rwy = — 22 7w, (3.8)
ds u
with initial condition T'(4) = §(u — u'), where 8 is the Dirac distribution. The unique solution for (3.8) is
T(u) = exp( — a(p)/u). 3.9)
The corresponding equation (2.10) for radiative transfer now has the form
) 1 = =
[i + a({;) ]t(u,u’) =A(p) [CXP( - M)[(p,u,u )+ -—J. {CXP( - M)I’(“’“)f(l” — )
ds p 7
dit di
+fp.au’ Yt (a,u') | — p(u,u)f(p,—uu)t(uu)———— , (3.10)
l6ﬂ'2 i
with initial condition
t(u,u') =0, when p= (0,x,p). (3.11)

Assuming independence of p, @, and A on (x,y), the atmosphere is homogeneous in the (x,p) but not in the z direction,
with anisotropic scattering in a “free space,” i.e., K = 0, or in a “reflective space,” with ground reflection uniform in (x,y). In
this case, Egs. (3.6) and (3.9) reduce to the results of Ueno>'® and Busbridge.®

As for Egs. (2.13) and (2.14), it is observed that D = B and 4 = C = 0. We have

M(u) = T(u) (3.12)
and
[-5; + %]'r(u,u') =A(p) [eXp( - ﬂ’,i)f(p,u,u’) + ——l—f {eXp( - —a(—‘?))f(p, — w,it)p(p,ia,u’)
+ r(u,it)f(p, — i1, — u )] di J.J.r(p,u ) fp, — w,t)p(p,it,u ) du du , (3.13)
16172 i
with initial condition
T(p,uu'y =0, when p= (O,x,y).. (3.14)
For Eq. (2.11), R(u) =0, since C(«) = 0. Equation (2.12) for radiative transfer reduces to
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[i + az(p)(i + i,)]r(p,u,u’)
[

— _a(p))Lf ~ e _fi_ﬁ__
exp( ) (w,)f(p, — #,u') 7

+exp( - “(”)) Jf(p,—u,u)t(u,u) e fff(u s, di di (3.15)
g 1677 i
also with the initial condition
r(u,u’) =0, when p= (0,x,y).
IV. RECIPROCITY RELATIONS
Suppose the phase function depends only on the cosine of the angle between u and ¢/, i.e.,
flzuu') = f(z, cos ),
where
cos y=ppu' + (1 —u®)2(1 — )2 cos(p’' — ).
Thus
[ (zuu’) = flzuu'), f*(zu,—u') =flzu', —u), (4.1)
where f* is obtained from fby transposing ¥ and #’,
Sfr(zuu’) = fzu'u). 4.2)
Let p be a solution of (3.6); then interchanging # and ', and using Eq. (4.1),
[i + a(p)(—l—- + i,)]p‘(u,u’)
ds boop
[ o 1 -
=0(2) f(p,u s —Uu) +— Jp(u W) fp, — i, — u)-—— +— Jf(.v,
du du
— u' i) f(p,
+ 167 f f puiOfip ,u
=0(2) f(p,u, —-u') + —ff(p,u,ﬁ)p(u,u ) —+ —fp‘(u ) (u,it) — du ffp*(u i)
[ Ar 7 1617'2
Xfp, — , — )p* (@,') v 4
7]
—
e e . . . 1720
This Riccati equation has a unique solution | thus d Fuu') = d P (uu')
pluu’) =p*(uu'). 4.3) ds ds
Likewise, by (3.10), (3.13), (3.15), and (4.1), it can be and
shown that d , d ..,
—P(“su ) "—"—P (u9u )’
Huu') = (uu') (4.4) ds ds
and we obtain
(') = r*(uu'), (4.5) Sauu'y =fzu'u) 4.7
the reciprocity relations for three-dimensional radiative and
transfer. fzu, —u') = flz, — uu'). (4.8)
Conversely, we assume that the reciprocity relations
(4.3)-(4.5) hold. Then Equations (4.6)—(4.8) imply (4.1). Thus Eq. (4.1) holds if
d " w_d , and only if the reciprocity relations are true.
ds () = ds T(uu'). As for isotropic scattering,
Using (3.2) and letting z— (0,x,y), we have Huu') =t*(uu'), (4.9)
flzuu’) =flz, —u, —u'). (46)  and the above reciprocity relations reduces to the Holmboltz
Similarly, since Principle.
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V. SOLUTIONS AND APPROXIMATION

The basic problem, associated with the physical model
in Fig. 3, is to determine the upward radiation field I * (z,u)
at the top of the atmosphere in the direction # due to the
solar or other incident radiation, /, (z, — '), in the direction
u'. Let

I*(zu) = Quu' )1, (z,u), (5.1)

where the linear operator Q is called the overall reflection
operator, because it consists of the reflection by the atmo-
spheric layer and the multiple reflection between atmo-
sphere and the ground. Letting 5 and X denote the upward
reflection operators of the atmosphere and ground, respec-
tively, it is known™!? that

Q.. =p+ 1R, (K)F,
with

(5.2)

R.(K)=K 3 (K",
n=0

where 7 is the downward reflection operator of the atmo-
sphere, and

Quu') = lim Q,, (u,u'). (5.3)

Here, uniform convergence is assumed. It is clear from the
definition that Q,, approximates the overall reflection by
taking the mth order of multiple scattering between the at-
mosphere and ground. Then Q,, is called mth order overall
scattering or the mth-order approximation of Q.

If Egs. (3.6), (3.10), (3.13), and (3.15) can be solved
for p, ¢, 7, and r, then Eq. (5.3) has the form

Q,, =p +exp(— a(p)/p)[2R,, + IR, + R,7]+ IR, 7,
(5.4)

where, by (3.12), 7=t + T, 7= 7+ I, and T = II, with

P =(z,x)).
The right side of Eq. (5.4) has the following physical inter-
pretation: first term, the diffuse reflection due to the atmo-
sphere only, i.e., K = 0; second term, combinations of specu-
lar and diffusion due to the existence of the reflector X; and

I-(p, w)

I; = incident solar radiation

NS

z2=2

1

Atmosphere

P

z=0

1.0, u)

; gi'bundrcﬂection K

Iz, u)

FIG. 3. A three-dimensional model.
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third term, pure diffusion reflection due to the existence of
the ground reflector K.

Thus @Q,, captures the intuitive physical notion of mth-
order approximation. Furthermore, Q,, can be easily “up-
dated” from m to m + 1. Indeed,

Qm+l =Qm +AQm$

where

(5.5)

AQ,, = exp(— a(p)/w2K(rK)™+ ! + tK(rK)™ !
+ K(rK)" 7] + tK(rK)" 7, (5.6)

We recall that operators in (5.6) are in integral form.
For convergence, the norm

| fpuu')I(1')| = f ff(p,u,u’)l(u’)du du’

and the sup norm

| £l = sup | fp,u,u' ) I(u') |
r4
are used. Then
1A II<NrK ™+ IK 142 + N2 1| + 7] + Nz )| 171} (5.7)
If the system is dissipative, i.e.,
ISll<1 and ||K|I<1,
then

AQ, I <5]IrK ||+ (5.8
Since ||rK || < 1, ||AQ,. || =0, and (5.8) gives the (m + 1)th-
order of convergence. '

To compute @,, and @, . , in (5.4) and (5.5) it is nec-
essary to obtain the solutions of Sec. II for p, ¢, 7, and 7,
which in this setting is more cumbersome than in the Chan-
drasekhar problem. A detailed discussion of these solutions
is beyond the scope and intention of this paper. However,
there are several techniques that can be used: (i) the succes-
sive order-of-scattering method of Bellman ez al.?'; (ii) the
extended adding procedure of Pom and Ueno??; and (iii) the
modified WKB method of Duddley and Wang.”
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On the Levinson theorem for Dirac operators
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For the Dirac equation with potential ¥(r) obeying f§ (1 + #)|V(7)|dr < « we prove a
relativistic version of Levinson’s theorem that relates the number of bound states in the
spectral gap [ — m,m] to the variation of an appropriate phase along the continuous part of
the spectrum. In the process, the asymptotic properties of the Jost function as E— + m are
analyzed in detail. The connection with the nonrelativistic version of Levinson’s theorem is

also established.

1. INTRODUCTION

In this paper, we consider the Dirac equation for a parti-
cle moving in a central electrostatic potential V(). Separa-
tion of variables leads to the following systems of equations

HK(C)¢=C((1) _01)'/”

mc® + V(r) K/r )
+ ( K/r —mc + V(r) 4
_ i ¥ (r) )

on 0 <7< . Here, m is the mass of the particle, c is the
velocity of light, E is the energy (in units where # = 1), and
K is a nonzero integer. We assume that V(r) satisfies

J A+ n|V(r)|dr< «. (1.2)
0
This condition guarantees that the differential operator H is
limit point at zero' (it is always limit point at infinity®) so
that H, can be viewed as a self-adjoint operator in the Hil-
bert space of vector-valued functions ¢ satisfying §&° (|¢,|>
+ |#,]*)dr < . The spectrum of H, is absolutely contin-
uous on ( — 0, — mc2]U[mc? o ) and consists of at most
finitely many (simple) eigenvalues in the gap [ — mc®,mc?].
There is a deep connection between the continuous part
and the discrete part of the spectrum. In the Schrodinger
case, this is the content of Levinson’s theorem.> Here we
study its relativistic analog. In order to facilitate the com-
parison with other authors, we make the substitution
#= (% 3)¥, which converts (1.1) into

= ( K/r

mc—c W) +c'E —K/r

(1.3)
Henceforth, we will only consider x> 1 which causes no loss
of generality since on interchanging the components of ¢ the
problem corresponding to «, V, E is equivalent to that corre-
sponding to — k, — ¥, — E. We now also set ¢ = 1 in this
section and in Sec. II. Under assumption (1.2), Eq. (1.3)
has a solution called the regular solution, which satisfies

/2« — 1) )
0 .
As r— oo this solution behaves like

lim r =g, (1) = ( (1.4)
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mc + ¢ V() —c“E)¢
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@ (E;r) =k ~*|F (E)|

( cos(kr — xkm/2 — 8,.(E)) )
k /(E — m)sin(kr — km/2 — 6, (E))

+o(1). (L1.5)

The parameter k =E? — m’ is defined by choosing a
branch of k such that k>0 for E>m and Im k>0 for
Im E>O0. Then k <0 corresponds to E < — m. This choice is
different from that in Ref. 4 where Re E>0 corresponds to
Im x<0. Also, due to different conventions, our phase 5, (E)
differs in sign from that in Refs. 4 or 5 for E > m but agrees
with it for E < m. Conceptually, the basic parameter for us is
E and not k. The function F, (E) is the analog of the Jost
function in the Schrodinger case. It can be written as

F.(E) = |F.(E)|*™®

=1 +f (@ (ED)V(D)f2(E,t)dt, (1.6)
0
where
K/ (E+m)1h_, (kr)
fo(Er) =k ( krh, (kr) ) (1.7)

Here, A, (kr) = n, (kr) + ij.(kr), where n, and j, denote
spherical Bessel functions.® Also, T denotes the ordinary
transpose and a superscript 0 indicates a solution of the un-
perturbed (¥ =0) problem. We recall that the zeros of
F, (E) areall simple, liein the interval [ — m,m], and corre-
spond to eigenvalues of H [see Ref. 4, Sec. 2, where &, (k)
corresponds to F,(E)]. The only exception occurs at
E= —m for k=1 when, if F,( —m) =0, the solution
@,( — m,r) is bounded but not square integrable at infinity
[see (2.9),(2.11) below]. Then we say E = — m is a half-
bound state.

Theorem (1.1): Let ¥(r) obey (1.2). Let N, (x>1) de-
note the number of eigenvalues of 4, in [ — m,m]. Then

N, = (/m) (6. (—m) —6,(m)), «k>2, (1.8)
N, = /m)(6.(—m) —6,(m))+ (1/2m)A, k=1,
(1.9)
where
A={0, E= ——m%s not a half-bound state, (1.10)
— 1, FE = — misa half-bound state.
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It is important to add that the difference 8, ( — m)
— 8, (m) may be viewed as the change of phase as we go,

through real values, from E=m to + « and then from
E= — o to E= — m. Relativistic versions of the Levin-
son theorem have been studied before, by Barthélémy* and
more recently by Ni® and Ma and Ni® and also in Ref. 7.
However, in Ref. 5, the authors point out that the results of
Refs. 4 and 6 are not correct in general and they go on to
derive a correct form of Levinson’s theorem in the case
where V(7) has compact support. We will comment on the
fallacy of Ref. 4 after the proof of Theorem (1.1). The hy-
pothesis (1.2) is weaker than that in Ref. 4 where
IEV(ry|rdr< « for n =0, 1, or 2 was assumed and for
Levinson’s theorem » = 2 (and n = 0) were absolutely es-
sential. The condition (1.2) is optimal for large r as far as
moment-type conditions go since if ¥~cr—2 as r— o then
Levinson’s theorem must be modified.? This remark should
answer to some extent a question in Ref. 5 concerning the
proper assumptions on ¥ which will insure that Levinson’s
theorem holds. Concerning the behavior as 7— 0, condition
(1.2) excludes a »~* singularity. It is conceivable to us that
the methods used in this paper can be extended to include
such a behavior. However, then the 7~ ! singularity cannot
be treated perturbatively, which leads to some complications
at the level of the unperturbed problem.

In Ref. 7, Dirac systems containing, in place of /7, a
coefficient p(r) such that {5 (1 + 7)|p(7)|dr < « were con-
sidered. In that case, p(r) can be included in the perturba-
tion which leads to some simplifications in the analysis. Con-
ceivably, such a term p(r) could be added to x/7in (1.1)
without essentially altering the analysis but we will not do so
here. The Levinson theorem for the Schrodinger equation
under assumption (1.2) was studied in Ref. 9. Although
both Refs. 9 and 7 have provided us with some guidance for
the present paper, we have encountered some unexpected
complications in the case where F,( + m) =0.

There exist several methods for proving the Levinson
theorem in the relativistic and nonrelativistic case. In the
relativistic case, the Green’s function method was used in
Ref. 5 and an approach based on the Sturm-Liouville
theorem was used in Refs. 10 and 8. This latter approach was
also used in the nonrelativistic case in Refs. 11 and 12. We
follow Levinson’s original proof for the Schrédinger equa-
tion® which is based on a detailed study of the asymptotic
properties of the Jost function whereby the main effort goes
into analyzing the case where F,_( + m) = 0. As in Ref. 9
but in contrast to Ref. 4 we do not work with the Jost solution
at all, only with the regular solution ¢, (E,r) since the latter
is better behaved as £— + m than the former [ compare also
Ref. 9, Corollary (3.31)].

Theorem (1.1) is proved in Sec. IL In Sec. III we discuss
the nonrelativistic limit ¢ — oo.

Il. PROPERTIES OF F,(E) AND PROOF OF THEOREM
(1.1)

The solution @, (E,r) defined by (1.4) satisfies*

@ (Er)=@2Er) + f K(Ernn) V(e (Et)dt,
0
Q.1
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where
K(Ert) = @ L(E (R (ED) — Y (En(@ 2 (ED),
(2.2)
krj._, (kr)
[k/(E—m)]krj.(kr))’ 23
(E—m)rn,_, (kr)

We first collect some results concerning the solutions at
E= + m which will be used later on. From standard
asymptotic analysis based on (2.1) it follows that

¢72(E,") =k _K(

24)

@, (m,r) =(71—m
F (m)r + o(r)
( [2m/(2 + D]F (m)r+' +o(r ") )
r—co, (2.5)
1 F (—m)r +o(r)
¢’x(—msr)=m( o(F-1) ),r—-»oo,-
(2.6)

respectively, where [by (1.6)]
F.(m)=1+ (2x— D!t r @2 (MOV(Ot —*dt, (2.7)
(]

F(—m)=1-2m(2x—3)! J'w Per (—m,1)
0
XV(t)t ="+ 'dt 4+ (2 — 1)

xJ; P (—mDV ()t ~"dt. (2.8)
The reason for having a term o(7*~ ') in the second compo-
nent of (2.6) is that r “fi@. ., (—mOV(t)t"dt
= o(7*~ ') which follows from the behavior of ., ( — m,?)
as t— oo and (1.2). Besides the solution ¢,, Eq. (1.3) has,
for E = m, a second solution @ satisfying

o(r—*-"

P (m,r) =(r"‘+o(r"‘))’ r— . 2.9)
Similarly, for E = — m, we have
- [2m/(1 —=2))' =" +o(r'—")
¢,(—m,r)=( r— 4o(r") )
r-o. (2.10)

Here, if we replace the o terms by zero we get exact solutions
of the unperturbed (¥ = 0) problem which are bounded at
infinity. By considering Wronskians, we see that ¢, and @,
are linearly dependent if and only if F, ( + m) = 0. If that
happens we set

P (Etmr)= —4.(m)g.(+myr) 2.11)
and deduce from (2.1) the representations
® 2m
A = 1 (mO V() dt
«(m) _[) @Pra (MO V(D) +2x+1
Xf P2 (MO V()" 1 dL, (2.12)
0
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A.(—m) =fw @ (—mDV(2)t* dt. (2.13)
A _

If E = m and F, (m) = 0, then, of course, there exists a
second solution y, of (1.3) such that W(@,,x,) = @.¥x2
— Xx1Px2 = 1. It satisfies

1 o +4o(7)
’V‘('"")=M([2m/(zx+1)];*+‘ +o(r"+‘))’
r— (2.14)
and
o(r=")
X (mor) = ( 2k — DHIF—* 4+ o(r=") ) =0 219
Similarly, at E = — m,if F, ( — m) = 0, then a second solu-

tion y, exists such that {again W(g,.y.) = 1]

> +o(~
Xx(—m,")=ﬁ—"n—)—( O:;xo—(l)))’ r-eo, (2.16)
_ o(r=") )
x,(—m,r)—((zx_l)!!r_x+o(r_x) , r—0.(2.17)

The solution y, will be needed later. At the heart of our
method is the following lemma whose proof we defer to the
Appendix.

Lemma (2.1): Let V(r) obey (1.2). Fix 6> 0.

(i) If F,,(m) =0, x»1, then

@ (Er) — @u ; (m) |[KCK2[r/(1 + kP) <Y, j=1.2,
(2.18)

for Ee[m,m + 6] where C depends on  but noton kand ».
(ii) If F,( — m) = 0 and x>2, then

|@er (Br) — @y ( — m,r) |[<KCE2[r/(1 4 [k |N)]S,  (2.19)
@z (Er) — @ ( — myr)|

KCEZ[(r/(1+ |k D)+ + /(1 + [k |N)], (220)
while if x = 1, then
@, (Br) — @, ;( — m,r)]|

KCllk|r/A+ |k + k2 /(A + |k|N], j=12,
(2:21)

for Ee[ — m — 8, — m].

The pertinent properties of the Jost function are sum-
marized in the next theorem. We denote the L > norm of a
vector function by || ||.

Theorem (2.2): Let V() obey (1.2), then

(i) F,(E) is analytic for Im E> 0 and has an analytic
continuation into the half-plane Im E < 0. Moreover, the ex-
tended function F, (E) assumes continuous boundary values
as E approaches the real axis from either above or below.

(ii) As |E |- o0, Im E>O0,

F (E)—eVo% (2.22)
(iii) If F, (m) =0, then

F.(E)=c,k*+o(k?), (2.23)
¢ = [(2c — D)I/2mA, (m) ||@. (m, )| (2.24)

as E—m uniformly in Oarg(E — m)<27.
(iv) IfF.( — m) =0 and «>2, then
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F.(E) =d_k?+ o(k?), (2.25)
d, = — [ —DIW2mA, (—m)]|l@.(m,)]|>

(2.26)

while if ¥ = 1, then
F.(E) =d_ k +o(k), (2.27)
d.=2mid, (—m), (2.28)

as E— — m uniformly in — w<arg(E + m)<.
Proof: (i) It follows from Ref. 4 that there is a constant
C such that for all E with Im E>0:

(@ar (BN|<C™™ 0"/ (1 + [k |N)]* (2.29)
and
|¢;,z (E,r)|<C|E + m|e™ P [r/(1 4 |k |r)]*+1.
Also,
IfS (E;r)|<KC(k%/|E 4 m|)e— Ambr
X[+ |k|r)y/r]<— 1, (2.30)
|fez (Br)|<Ce™ BT (L + [k |r)/rl", (2.31)
Hence,
. (B V(R FLUER|KCIV (|1 + 1),
|E + m|<8, (2.32)
. (ED)YV(rfUER|LKC|V(r)], |Eim|>333
33)

for any 6 > 0 with an appropriate constant C. Since @, (E,r)
is an entire function of E and f° ( E,r) is analytic for Im E> 0
and continuous for Im E>0 the bounds (2.32), (2.33) in-
sure that F, (E) has the asserted analyticity and continuity
properties. We get an analytic continuation into the lower
half plane by the Schwarz reflection principle because F, (E)
isrealfor —m<E<m.

(ii) Since the construction of @, (E,r) only requires
knowledge of ¥ on [0,7] the large E behavior of ¢, (E,r) can
be inferred from Ref. 4,

coslkr — km/2 — (L V(2)d1) )
sin(kr — kmr/2 — S5 V(t)dY)

+o(k ™",

@ (Er) =k “‘(
(2.34)

and also

SUE;r) = k*e/*r— /D ( ; ) +o(k"),
as |[E |- o on {E:Im E>0}. Owing to (2.29), (2.30), and
(2.31) we may insert (2.34) and (2.35) in (1.6) and apply
the Lebesgue Dominated Convergence Theorem. Then
(2.22) follows.

(iii) Suppose E> m. We break the right-hand side of

(1.6) into three parts, F.(E)=1I +1,+1I,, using
F (m) =0, where

L= f (@ (MD)W [FUED — f2(m,D)]dt,  (2.36)
0

(2.35)

L= f [(@. (BED)T — (@ (m))T | V(1) F2 (m,t)ds,
0
(2.37)
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L= J. [{@. (E)) — (@ (m))T V()
0

X [F2EL) — f2(m,p)]dt. (2.38)
Consider I, first. By (1.4), (2.9), and (2.11)
@ ; (M) |KC [F/(1+1)*], j=12. (2.39)
Moreover,
0
fe(En = ( (26— 1)!!r—~)
2m)~'(2m — )N~ ~+!
kz( (4) (26 — 3ty +2 )””‘2)
(2.40)
and
[f2, (Ery — 2, (mr)|<KCk2 [P~ /(1 4+ kr)2~*].
(2.41)
From (2.39), (2.40), (2.41), and (2.30) we find
I, =aKk2+o(k2) as k—-0(Elm), (2.42)
where
a, =M(r P (mOV ()t —*+1dt
2m o

+mr Pz (MO V(2)2 —"”dt) (2.43)
0

[with the convention ( — 1) =1].
Now consider I,. If we expand

@« (Er) =@, (myr) + (E — m)u,(myr) + O(k*)
(2.44)

and use (2.18), then by dominated convergence
IL=>5b.k*+ o(k?) as k-0,

where

(2.45)

b, = Qx— DU J-m (4,2 (m))YV(t)t —<dt.  (2.46)
2m 0

For later use we need to know the asymptotic behavior of
u,.(m,r) as r—~0 and r— «. Equation (1.3) for E = m has
the fundamental matrix

P (myr) X (m,r) ) i (2.47)

RK (r) - ( ¢x,2 (m’r) XA',2 (m’r)
where y, is the solution introduced before, see (2.14),
(2.15). Applying the variation of parameters formula to
(1.3), viewing (E — m) (3~} ) as the nonhomogeneous
term we find

u, (m,r) =f’RK(r)R;‘(t) ((1) _01 ):p,‘(m,t)dt.
° (2.48)

Therefore, by (1.4), (2.9), (2.11), (2.14), and (2.15) we
can say that

_ o(’x+l) )
e (mor) = ( reizaesr ) 70

u (m,r) = |l@.(m, )Py (mr)(1 +0(1)), r—co.
(2.50)

(2.49)
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Now, by (2.30), (2.41), (2.18), and (1.2) we have
“( kt

L|<Ck? f (

Il o \1+kt
Therefore, F,(E) = (a, + b,)k* + 0(k?) and it only re-
mains to reduce ¢, = a, + b, to the expression (2.24). This
can be accomplished by means of the following identities:

)2t|V(t)|dt=o(k2). (2.51)

f U, (mn V() ~“dt = fw t =@, (m,t)dt
(H

(¢

+ 4,7 (m)|@. (m,)|,

(2.52)
(2x—1) r @z (M)t ~% dt
0
= r @t (MOC2m — V(D)) ~*+1dl, (2.53)
0
-2 f " e (mt)e = i = f " e V(D)
0 (1]
Xt ~x+24t, (2.54)
To prove (2.52) we use the equation
, _ K/r V(r) )
i) = ( 2m—V(r)  —xtr) D
0o -1
+ ( 1 0 )qv,,(m,r). (2.55)

We multiply the equation wu.,(m,t) = (x/t)u,, (m,t)

+ V(tu,,(mt) —@,,(mt) by t ~* and integrate by
parts. The ©boundary term is u,, (m)t % §
=A ' (m)||@.(m,)|* by virtue of (2.14), (2.49), and
(2.50). Thus (2.52) follows. To prove (2.53) and (2.54) we
use (1.3) and multiply the individual component equations
by appropriate powers of ¢ and integrate by parts. Now
(2.52)-(2.54) are easily combined with (2.43) and (2.46)
which yields (2.24). Since F_(E) = F,(E),Eq. (2.23) also
holds if Eim along the lower edge of the cut [m, « ]. There-
fore, by a variant of the Phragmén-Lindelsf theorem'? (the
same argument was used in Ref. 7) we obtain the desired
uniformity in arg(E — m). Part (iii) is proved.

(iv) The proof is, of course, similar to that of (iii), but
the case x = 1 requires special attention. Also, the estimates
are more tedious because the two components of ¢, ( — m,r)
must be controlled by separate bounds, namely,

@1 ( —m,)|<C[P/(1 41> 1], (2.56)
@2 (—mNIKC /(1 + )], (2.57)

and similarly for the difference @, (E,r) — ¢, ( — m,r) ac-
cording to Lemma (2.1). Assume «3>2 first. Then

—2m(2x—3)!!r“+‘) (2 — 3)N
Er) = L2k =) 2
Se(En) ( (26 — Dltr—* 7k
— 7 Y m— [2m/ (26— 3) ]+
X r—K+3
+o(k?) (2.58)
and
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o (Br) —fo,(—m,r)|

<KCE?[F =%/ 4 |k | <11 + [7/(1 + |k [1)]?),
(2.59)

12, (Er) —f2 (—mr)|<KC(kr)2(1 + |k |2 (2.60)

So, if we split F, (E) in analogy to (2.36)—(2.38) with re-
spect to E near — m, we have that

L=ak?+0(k?, k-0(Et—m),

where

(2.61)

a, = — (26— 5)lm r Gt (—m)V(t)t —<*+3dt
(1]
+ (2’(;3)!! J‘m ¢K’2( _ m,t) V(t)t —K+2dt
(¢}

_&:.})_!!J-m @i (—mOV ()t~ dt
2m o

(2.62)
and
12=Bxk2+o(k2)’ k_"oy (2.63)
where
B, = (2— 3)!!f Uy, (= mt) V() — =+ dt
0
— ur U, (—mO V() —*dt.  (2.64)
2m 0
Here, u,(—m,r) obeys @ Er) =@, (—m,r)

+ (E — m)u, ( — m,r) + O(k*). By using dominated con-
vergence I, = 0(k?) so that F, (E) =d, k*+ o(k?) with
d, = a, + B. and we must reduce this coefficient to the
form (2.26). To this end we use the following identities, the
proof of which is similar to that of (2.52)-(2.54) and is
therefore omitted:

J.w U, (—mt)V(t)t —*dt
0

=f ¢K’2( - m,t)t —*dt
(]

- 2mj U, (—myt)t —*dt
0

+A47 (= mg (—m,)|> (2.65)
J: U, (—mV()t —"*+'adr
=Lw P (—mtyt ~*+ldt— (26— 1)
XJ: U, (—myt)t ~"dt, (2.66)
J: P (—m,t)t 7 dt
_ 2x_—11 Lw G (—mO V(D ~*+1ds,  (2.67)

-2f @i (—mt)t ~**1dt
0
=2mJ P (—m)t —"+2dt
0
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+f P2 (—mD V() ~*+2, (2.68)
0
(-3 r @2 (—myt)t ~"+2dt
0
= —f @1 (—m) V() 3 dlL. (2.69)
0

Finally, if « = 1, then 7, and I both are o(k) on account of
(2.21). Since  fo,(Er) —f2 (—mr) = —2mikr
+ O(k?) and f%, (E,r) — f2,( — m,r) = O(k?) we get

F(E) = —2mik Jm Pur ( — mO V(D dt + o(k)
0

= — 2mikA ( — m) + o(k). (2.70)

The uniform validity in arg (E + m) of (2.25) and (2.27)
again follows from a Phragmén—Lindeldf type argument.
This completes the proof of Theorem (2.2).

Proof of Theorem (1.1): As in Ref. 7, we choose a con-
tour in the closed upper half plane consisting of a semicircle
of radius R, two line segments [ - R, —m —¢€] and
[m + €,R] and two semicircles about 4 m of radius €. Then
we extend the contour into the lower half plane by reflection
and assign a counterclockwise orientation. For € sufficiently
small, all zeros of F, (E) except possibly those at + m lie
inside the contour. By the argument principle, the change in
8, (E) on this contour equals 27N, , where N, denotes the
number of eigenvalues that lie in ( — m,m). Since F, (E)

= F_(E) the change in 8, (E) on the top half of the con-

tour is the same as that on the bottom half. For x>2, the
change on the small circles centered at + m, respectively,
approaches, as € -0, the value

— 27, lfFK( +m) =0,
s = {o, £, ( 4+ m) 0. (2.71)
Thus
N, = (/)8 (—m) =8, (m)) + (1/2m)(n, +7 ).
(2.72)

Since N, also counts the eigenvalues at + m if there are any
we get (1.8) from (2.72) by dropping the term
(1/27) (9., + n_). Equation (2.71) also holds when « = 1
with respect to E = m. If x = 1 and F,,( — m) = O then the
change on the small circle centered at — mis — 7 if thereis
a half-bound state at — m and 0 otherwise. This establishes
(1.8) and (1.9) with respect to the above contour where now
€ =0 but R is still finite. Of course, we can let R — oo by
using (2.22) so that §,( — m) — 8, (m) can be viewed as
the change of phase over the continuous spectrum of H.
Theorem (1.1) is proved.

The version of Levinson’s theorem in Ref. 14 can easily
be seen to agree with ours because 8, ( + m) = 0(mod 7)
except for 6,( —m) which equals #/2(mod 7) when
F,( — m) = 0. In connection with Ref. 4 we recall that there
the concern was to find a relationship between the phase and
the number of eigenvalues in [0,m] and [ — m,0], respec-
tively. Let the former be denoted by N .}, the latter by N .
Suppose E = 0 is not an eigenvalue. Then again by a contour
argument (take a contour which lies in {E: Re >0} such
that it coincides with our previous contour for Re E> 0 and
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consists of a vertical segment joining iR to — iR) we have
that

NS = (1/m)6,(0) — 8, (m)), (2.73)

A similar formula holds for N if we replace 8, (m) by
8,(0)in (1.8) and (1.9). The discrepancy with Ref. 4 is that
the term &8, (0) is missing from the formula corresponding to
(2.73). In Ref. 4 (p. 146) the phase changes over two line
segments along the imaginary axis were said to cancel, but in
our setting these segments correspond precisely to the seg-
ments from iR toOand fromOto — iR, so the phase changes
add, giving rise to the term 7§, (0).

k>1.

lll. NONRELATIVISTIC LIMIT

The Jost function associated with (1.1) when c is no
longer equal to one can be obtained from (1.6) by making
the replacements E—c~'E,m—mec, V—c™ 'V [cf. (1.3)] so
that

F(Ec) =1+c" f (@ (Eed)T
0

X V() fA(E,ct) dt, (3.1)
where
o [k,ct/(E+mc2)]h,,_1(kct))
fU(Eet) = kc( k. th, (k.1) ,
(3.2)

with k, = ¢~ 'JEZ — m?**, and where we have modified our
notation in an obvious manner in order to exhibit the ¢ de-
pendence. We are interested in the nonrelativistic limit
¢— oo of F_(E,c) and its phase 8, (E,c) because by taking
this limit we should be able to connect the relativistic Levin-
son theorem with the nonrelativistic one. Recall that if
¢— o0, then the Dirac equation goes over into a Schrodinger
equation in a sense that has been made precise by several
authors, see Hunziker,'* Gesztesy et al.'> (and the refer-
ences quoted therein). The main goal of these papers was to
develop the perturbation theory of eigenvalues and eigen-
functions in powers of ¢~'. Some aspects of the scattering
theory (convergence of wave operators) in the nonrelativis-
tic limit were studied by Yajima.'® These authors admit gen-
eral, not necessarily spherically symmetric potentials. The
only paper we are aware of which specifically considers the
spherically symmetric case in a rigorous way is the old paper
by Titchmarsh.!” There it is shown that the solution
@. (E,c,r) has a convergent expansion in powers of ¢! al-
though under the strong restriction that Vis a bounded func-
tion. But it has been pointed out in Ref. 17 and is not hard to
verify that locally the integrability of ¥ is the only require-
ment for the results of Ref. 17 to go through. In order to
formulate our results we need some notation. Put F ' (e,c)
=F_(Ec) if E=mc*+e and F[ (ec) =F.(Ec) if
E = — mc®> — ewhereinboth cases e>0. Let L .+ denote the
Schrodinger operators

Liy= —(1/72m)y" + [k(k £ 1)/2mPly+ Vy=ep
(3.3)

[with y(0) = 0 when « = 1] and let f‘;—“ (e) denote the cor-
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responding Jost functions.® Also, put 6% (ec)
=arg F * (e,c) and 3,,* (e) =arg F',,i (e). Then we have

Theorem (3.1): (i) As c— w0, F.} (e,c) ~F*(e) and
F[ (e,c)— F 7 (e) uniformly on e>0.

(ii) IfFF } (0) #0, then 8 (e,c) 8. (e) uniformly on
>0 as c— oo, while if 7,7 (0) =0, then 8% (e,¢) -8, (e)
uniformly on e3€> 0 for any €. Analogous statements hold
for F - (e,c) with the difference that 8. (e,c) » — 8. (e)
{by ()]

(iii) Let n* denote the number of negative eigenvalues
of L * and let N, (¢) be the number of eigenvalues of H, (¢)
in [ —mc®,mc*]. Suppose Fx(0)#£0. Then N_(c)
=n' + n_ for ¢ sufficiently large.

Proof: We omit the suffix « from the solutions ¢, and /2
for this proof. Consider F .} (e,c). By (2.29) and (2.30) we
have :

@ B VDS (Ect)|
<C[ki/(e+2m ][IV O]t/ + kD]

<Ce | V(D)), - (3.4)

so this contribution to (3.1) vanishes as ¢— oo uniformly on
e>0 [here we are also using that the constants C in the esti-
mates (2.29), (2.30) can be chosen to be independent of ¢;
this follows from their derivation in Ref. 4]. Regarding the
second component we note the bound

@ Ee,t) V(D3 (Eie,t)|<C [ (e + 2mc®) /c?]
X[IV(|t/(1+k.0)]
<C(e/c* +2m)|V(1)|t. (3.5)

This shows that the theorem on dominated convergence is
applicable to (3.1). Alternatively, the middle term in (3.4)
can be estimated by

C(1/c +2m/e)|V(1)], (3.6)

(3.5) and £3.6) together imply that in order to prove
F } (e,c) - F. (e) uniformly on ¢>0 it suffices to prove

R
Ic_l J. ¢2(E,C,t) V(t)fg (E’c,t)dt
0

R
—f P& VOJ2 (e)dt | =0 (3.7)
0

uniformly on every bounded interval 0<e<e, Here,

$2(Et) = lim ¢ '@,(E,c,t) and f3(e,t) = lim f3(e,c,t).

c— o [ad

This is so because the difference [¢c~' §5 <<+ — fg --- | can
be made arbitrarily small uniformly in e by choosing R suffi-
ciently large and letting c— o [use (3.5) for e€[0,1] and
(3.6) for ee(1,)]. Another appeal to (3.6) then shows
that the difference in (3.7) can be made arbitrarily small
uniformly in e for e>e, by choosing e, large enough and
taking ¢— o0. To prove (3.7) for a finite energy interval we
estimate separately the integrals

~R
J (¢ @y (Ect) — §r(e,))V()f2(Ec,t)dt  (3.8)
0

and
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R

fo P VIO (Ect) —F2 (en)dt (3.9)
Since ¢ is restricted to a finite interval we can use the methods
of Ref. 17 (and also Ref. 1) to show that |c~'@,(E,c,t)
— @,(e,)|<Cec™?t". Since the techniques are standard we
omit the details. Inserting this estimate along with (2.31) in
(3.8) shows that the integral is O(c~2) uniformly on [0,e,].
Moreover, it follows that @,(e,7) is a solution of L ' y = ep
such that r ="~ '@, (e,r) »2m/(2x + 1)1 as r-0. Cons1der-
ing (3.9) we have to estlmate the dlﬂ'erence f° (E,c,1)
—F3 ety =kth (k) — k*h, (k) = (k% — ")h (k1)

+ k"(h (k.t) — h (kt)) where h (kt) = kth,(kt) and

k= lim k, =+2me. Clearly, k¥ — k* = O(c™?) uniformly

on cqw[O el Furthermore, |h (k.1) —h (kt)l
<(k, — k)t suplh (§)| where the sup is over Eelktk,1).
Now hi(&) = [(k+ 1)/ 1R (&) — K+x(§) and

|h (&)|<CE ~"(1 + £)"so that
k=\h (k) — h (kp)|
<Clk, — k) (k 7k )H(1 + k.t) /8y * 1. (3.10)

Since |@,(e,t)|<Ct*+! we see that the integral (3.9) is
O(c™?). This proves the uniform convergence of F * (e,c) to
f‘: (e) =1+ fg&@.(et) V(t);“z’ (e,t)dt. The identification
of F ¥ (e) as the Jost function for L * is a straightforward
computation using the relations »n,(kr)=(—1)*
X (w/2kr)V2 T _ .\, (kr) and  j, (kr) = (w/2kr)!/?
XJe1,2(kr) [and keeping in mind that @,(er) is
(2« + 1)1"/2m times the standard solution y of L fy =ey
with 7 =%~ 'y~ 1 as r-0]. In a similar manner, one proves
the statements about F,” (e,c). One has to remember that
since E < — mc? then k_, <0 and hence one also has to use
relations like J, (k) = ¢™J, (|k.|r) in the process. Thus
part (i) is proved.

The statements in (ii) immediately follow from the uni-
form convergence of the Jost functions and the fact that
F £ (e,c) does not vanish for ¢ > 0, and also not fore = 0 if ¢
is sufficiently large and F * (0) 0.

The assertion in (iii) is a consequence of Theorem (1.1)
since

N,.(c) = (1/m)8,; (o0,c)
+ (/7). (0,¢)

- 6: (O,C))

— 87 (0,0)) (3.11)

J

so that on letting c¢— oo the first term tends to
(/m)(B} () — 81 (0)) =n by the nonrelativistic Le-
vinson theorem® (remember our phase convention) and the
second term tends to (1/m)(6; () — 87 (0))=n] [since
F; (ec)— F[ (e)]. Theorem (3.1) is thus proved.

In closing, we remark that the weaker statement
N, (c)>n} + n_ for ¢ sufficiently large can also be de-
duced directly from the results in Refs. 15 and 14 where it is
shown (under somewhat different conditions on ¥) that

— m2e — 1 (L:'—z)_l 0)
(H,(c) c—2) —»( 0 0
and
0 0
('—HK(C)—mZC—Z)_l—'(O (Lx— _z)—l)

in norm as ¢— o (Im z7#0). By some additional arguments
one can also obtain equality [i.e., N, (¢) =n} +n ] and
one can extend the result to nonspherically symmetric oper-
ators [the condition F % (0) #0 then becomes a condition
on the absence of zero-energy resonances, resp., zero-energy
bound states, for the Schrodinger operators
- 2m) A+ ¥]. Moreover, note that if x=1 and
F [ (0) =0 then 6; (e) > (7/2) (mod ) as e—0 (Ref. 9,
Theorem 4.1, case /=0). In general, one will have
F [ (0,c)#0 for c large enough and so, since F,;~ (0,c) is
real, 8 (0,¢) = 0(mod 7). Thus in this case §;” (0,c) does
not convergeto — &; (0) asc— oo explaining the restriction
e>e>0in (ii).
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APPENDIX: PROOF OF LEMMA (2.1)

The method of proof is similar to that used in the Schro-
dinger case to prove a corresponding result (see Ref. 9, Ap-
pendix) but as already mentioned, there are several compli-
cations which need to be dealt with carefully. We give a
detailed proof of part (i) and then only indicate the changes
that are needed for part (ii).

(i) Let Ag, (E,r) =@, (Er) — @, (m,r) and define
A@?(E,r) and AyL (E,r) analogously.

Then using (2.2) we may write

Ap (E;r) =Apl(E;r) + Apl(E,r) f B2 (m))Y V() e, (mt)dt + @ 2(Er) f (AL (ED) V(D) @, (m,t)dt
0 0

— AP (Er) f (@2ENY V(D)@ (mit)dt — ¢ (m,r) J (Ap 2 ENY V(D@ (m,)dt
0 0

+f [P HUEDWUED) — L (EN @ UED) V(D) Ap, (Et)dt.
0

We denote the six terms on the right-hand side by 4, through
Ag. The idea is to estimate these terms so that Gronwall’s
inequality can be used at the end. Suppose now that
Ee[m,m + 8] for some § > 0. We use C to denote a generic
constant which depends on § and « but not on & and r. We
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(Al)
|
will frequently use the following bounds.
|krj, (kr)|<C [kr/(1 + kr)]< ), (A2)
|krn, (kr)|<C [ (1 + kr)/kr]%, (A3)
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|krj, (kr) — (kr)**1/(26 + DY

<C(ki')"+3/(l_ + kr)?, (A4)
|krn, (kr) — (kr) ~*(2c — 1|
SCLkr/(1 +kr)])2 " (A5)

In the following if we have a vector f= (/) and estimates
Ifi|<a1|f2| <a,, then we use the notation |f|< (&) to denote

this fact. We also set L(kr) = kr/(1 + kr):
1
0 — KT K
|@2(E,r)|<Ck ~*L*(kr) (r/(1+kr)), (A6)
W En|<ck L ~~tkn (}), (AT)
rri(l4r) (1)

(Er)|<Ck?———T"21{ "}, A8
|A@ 2(E,r)|< eSSt (A8)

1

14y 1l—x«

|AY2 (E,r)|<KCk ' **L '~ *(kr) (r/(1+kr)). (A9)

Combining 4, and A,, using ¢2(m,;r) = (2« — DHN_,)
and that the right-hand side of (2.7) is zero we get

A +A4,= — Ap°(E,r) f W2 (m,0)) V(). (m,t)dt,

(A10)
so that by elementary estimates
[A1+A2|<Ck“"L"+‘(kr)f -|—V(‘)) (1)
tK
(All)

Estimating the third term in (Al) yields
Vol g ( ) (A12)
o (148!
Similarly, for A4, and 45 we get

| 4| <Ck ' =L %+ (kr)

’M—dt(l), (A13)
b A+ 1\l

S 40
A|LKCk 1 =L <+ (kr J‘ | dt ( )
|45|< (kr) RN 1

The entries of the matrix @%(Er) (2 (E:1)"
— Y2 (E,r) (@2 (E,t))" are each bounded in magnitude by

| 4| <Ck 1= <L*+"(kr)

(Al4)

CL**Y k)L ~*~Y(kt)(1 +1). (Al15)

So if we set
u(E,;r) = (|Ap,, (Er)| + |A@,, (ER) )L ~ <~ (kr)k <!
(A16)

and combine (A 11)-(A15), then we arrive at the inequality

u(E,r)<C+ CJ [V(8)| (1 + t)u(E,t)dt. (A17)
0

Hence by Gronwall’s inequality » (E,r) < C which is equiva-
lent to (2.18). Part (i) is proved.

(ii) Here, Ee[ — m — 8, — m],k <O. It turns out that
the quantity k2L **'(|k |r) is not sufficient to control the
difference Ag, (E,r) =@, (Er) —@,.( —m,r), we must
also use k2~ *L *(|k |7). So we introduce

he(ry=k'="L**'(|k|r) + k*~"L=(|k|r). (A18)

189 J. Math. Phys., Vol. 31, No. 1, January 1890

Proceeding as in (i) we can then show that

|A¢x,l (E,")l

<Ck*— L[k |r) + Ck“L"(|k|r)J- L'=~(k|?)
0

X|V(0)| |Ap,, (Et)|dt + CL*(|k |r)

XI L ~“(Jk|0|V(8)||Ap,, (E,t)|dt, (A19)
o

for x>2, and
|A@.1 (E,r)|<CL*(|k|r) + Ck ~'L(|k|r)

xf V()| A, (E0)|dt + CL(k |7)
0

erL 1k DV ()] |Ap,, (Et)|dt,
(A20)
for « = 1. For all x> 1 we have
|A@,., (E,r)|<Ch,(r) + CL*(|k |r)

xf L =*([k |D|VD||Apy, (E0)|dt
0
+ CkL~*1(|k|r)

xf L ~~(|k || V() ||Ap,, (E,2)|dL
0
(A21)

Now when «=1 we set u(Er)=(Ap,,(Er)]
+ |A@,2 (E,r)|)/h (r) and when «>2 we set
u(E;r) = |A@,, (E;n)|/(k*~"L*(|k |} + |Ap,, (EL)|/
h,(r). Then u(E,r) is seen to obey an inequality of the form
(A17) and hence (2.19), (2.20), and (2.21) follow immedi-
ately. This concludes the proof of Lemma (2.1).
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The Dirac equation in Robertson-Walker spaces: A class of solutions
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Exact solutions of the Dirac equation in open and closed Robertson—-Walker spaces are
presented. A set of massive solutions is given for static metrics. In the case of nontrivial and
arbitrary expansion factors, massless solutions are obtained via a conformal transformation.
The set of massless solutions in open Robertson-Walker spaces is shown to be complete.

I. INTRODUCTION

Dirac spinor fields in the background of a gravitational
field have been the subject of many investigations. In the last
two decades, a number of such studies have been devoted to
the determination of the renormalized vacuum expectation
value of the energy-momentum tensor and the problem of
creation of particles in expanding universes.'™® As a starting
point, a complete set of solutions to the generalized Dirac
equation is desirable. For the flat and closed Robertson-
Walker (R-W) spaces, sets of exact solutions to the massless
and massive Dirac equations have already been
found."**%-!2 In the following, we present a complete set of
masless solutions in open R-W spaces using the Poincaré
(or upper half-space ) model of the three-dimensional hyper-
bolic space (H 3 ). Even if massless solutions in R-W spaces
generate a conformally trivial case, preventing any creation
of particles with expansion, these solutions can still be used
to evaluate back reaction effects of quantum spinor fields on
the gravitational field.

The sketch of the paper is as follows. In Sec. I, we brief-
ly introduce the generally covariant formulation of the Dirac
equation and we present its explicit form for the three classes
of R-W metrics (open, flat, and closed). Section III is devot-
ed to the description of the upper half-space model of the
three-dimensional hyperbolic space (H 1) and to a discus-
sion of its isometry group. In Sec. IV, the Dirac equation in
the space R X H } with static metric is solved under specific
requirements for the general massive case. Then a set of solu-
tions is generated by the action of isometries of H; and
massless solutions to the Dirac equation in open R—W spaces
are obtained by application of a conformal transformation to
the massless spinor determined for the static metric. In Sec.
V, the spinor solutions found in RX H } are rewritten in
terms of spherical coordinates. As a by-product, a transfor-
mation effected on the curvature parameter of these solu-
tions will give rise to solutions in closed R-W spaces. We
show that the massless solutions in open R-W spaces form a
complete set in Sec. V1. Finally, asummary of the results and
possible future developments are given in the last section.

Il. THE DIRAC EQUATION IN ROBERTSON-WALKER
SPACES

The covariant formulation of the Dirac equation in
curved spaces is presented in Lichnerowicz'* and Choquet-
Bruhat et al.'* First, we summarize some of the definitions
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and notations. Let M be a four-dimensional manifold en-
dowed with a hyperbolic metric g of signature
(+ — — — ). A Dirac spinor field y on Mis a (C~ ) sec-
tion of the vector bundle associated to the spin bundle corre-
sponding to (M,g) via the D/*? g D /2 representation
of SL(2,C). For each class of Robertson—Walker spaces, a
spin bundle exists and thus the spinor fields are globally well
defined. Moreover, the Levi-Civita connection associated to
g (with coefficients denoted by I'%, ) on the frame bundle
over M determines a connection on the spin bundle (spin
connection ), which then defines a covariant derivative of the
spinor field .

V.= (3, +2,)¥, (2.1)
where 2, u =0, 1, 2, 3, stand for the spin connection coef-
ficients. They take valuesina D /2% g D ®!/? representation

of the Lie algebra of SL(2,C) and satisfy the following equa-
tion:

a;,#

o T i + 2] =o. (2.2)
The ¥’s appearing in Eq. (2.2) are constrained by
VY PYE =21, (2.3)

With a choice of orthonormal frames {e, la= 0,1,2,3} on
M:
9
| ax*’
where a =0, 1, 2, 3, the standard Dirac matrices are re-
trieved:

Vo = €4 (X%, (x). (2.5)
If n,4 denotes the Minkowski metric, it follows from (2.5)
that the 9’s obey the relation defining a Clifford algebra on
Minkowski space:

Ya¥8 + Vo¥a =274p1, (2.6)

The covariant form of the Dirac equation in curved space is
then written as

(7 *(x)V, —m)yp =0. (2.7)

For instance, let us consider the R—W spaces with their
metric expressed in terms of spherical coordinates'’:

€x = €5 (x) (2.4)

g =§g,,dx"®dx"

= R%(t)(dt? — dr* — f*(r) (dO? + sin®0 d¢?)),
(2.8)
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where R(¢) is the expansion factor, and

(sinh kr)/k, with 0<r < o0,
Aary=4r, with 0<r < o, for the flat case,
(sin kr)/k, with O<r<n/k,

If we choose the following set of orthonormal coframes

{6°}:

0°=R(t)dt, 6'=R(t)dr, 29)

0% = R(t)f(r)d6, 8°=R(r)f(r)sin 6dg,
with

e, (6% =68, (2.10)
then the spin connection coefficients are given by

3,=0,

3, = —IR/BDIPY'],

2= —{R/R) AP+ v\ VD,

23= —J((R'/R) fsin 8[¥°,¥’] — " sin O[¥',¥°]

—cos 8[A7°]), (2.11)

where the prime indicates the differentiation of the function
with respect to its argument. Substituting this into equation
(2.7), we obtain the generalized form of the Dirac equation
for the R-W spaces:

G +—)+""R14+r(" %)

ar f
+f_(_¢2_+cot0) i —]1//=0.
f\a6 2 fsin@ d¢
In the massless case, a reduction of the Dirac equations

in R—W spaces to the Dirac equations in spaces with static
(R (t) = 1) metric can be achieved with the conformal map-

ping'®:
g, =R _z(t)g’

(2.12)

(2.132)
and
¥ =R3>*()y. (2.13b)

As a result, a solution to the massless Dirac equation in
R X H 3 is also a solution to the massless Dirac equation in
open R—W spaces up to the above-mentioned conformal fac-
tor. Before showing solutions to this reduced equation, we
review in the next section some properties of H } that will be
useful.

lil. THE THREE-DIMENSIONAL HYPERBOLIC SPACE

We will work with two models of the hyperbolic mani-
fold (H3}). One of them, which is more natural, is the geo-
desic model. In this model, H 3 can be viewed as the set of all
triplets (7,0,¢) with range 0<r < 00,007, and 0<¢ < 277,
called spherical coordinates. In these coordinates the metric
tensor has the form

h =dr* + (sinh kr/k)*(d6? + sin® 6 d¢?),
where £ is a positive constant.

(3.1)
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for the open case with curvature equal to — k2,

for the closed case with curvature equal to k2.

r

In the second model, H ; is described by the upper half-
space of the three-dimensional Euclidean space with coordi-
nates (x!,x%,y), where y> 0, endowed with the metric

h=((dx")? + (dx*)* + dy’ Yk~ (3.2)

Both models are related to each other by the following trans-
formation:

1 sin @ cos ¢
coth(kr) —cos 8’
2 _ sin & sin ¢

coth(kr) —cos 8’
and

y = (cosh(kr) — sinh(kr)cos 8)~1, 3.3)

where the origin of the spherical coordinates is mapped to
the point (0,0,1) of the upper half-space model.

The group of isometries of H; is PSL(2,C). It can be
realized using quaternionic notation for the upper half-space
coordinates (x!,x%,y) (Ref. 17):

g=x"14+x*i+y}j,
’ 1 2. ) (34)

g=x"14+x-i+y"j
The action of PSL(2,C) on ¢ corresponds to a fractional
linear transformation,

= (49 + B)(Cg+ D)™}, (3.5)

where the matrix [¢ 7] belongs to PSL(2,C).

Let us restrict ourselves to the subgroup leaving invar-
iant the point (0,0,1) in the upper half-space model. One
verifies that this subgroup of PSL (2,C), which is SO(3),
preserves the origin in the geodesic model. It can be de-
scribed as the SU(2) subgroup of SL(2,C) quotiented by its
center, parametrized by

[ ae (e, + tez)b
(—e, +iey)b ae
wherea®? +b*=1,¢2 +¢5 = 1, and O<y < 27.

Its action on a point of H; can be written explicitly in
terms of the variables x!, x?, and y:

] eSuU(2), (3.6)

, 1
x'= X[x‘ —2(e;x! + ex?)e, + %el] - % e,

x'? = %[x2 —2(ex! + ex?)e, + %ez] —4.,

b
Y =y/A, (3.7a)
where
A = (bx' — ae))* + (bx* — ae,)* + b2 (3.7b)

A further geometrical meaning can be attributed to the
transformation (3.7) if we look at the H} analogs of the
Euclidean planes the so-called horospheres, which are de-
fined by the equation
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(b'y—(c/b)) + (b'x' —d'e})?

+ (b'x* —d'e;)* = (¢/b')?,
wherec>0,a2 +b%=1,and e} + ¢} = 1.

If we fix @', b’, ¢}, and ¢, we obtain a one-parameter
family of surfaces which we call a family of parallel horos-
pheres with direction ((a’/b’)e;,(a’/b") ;). When b’ #0,
this family is composed of the spheres of radius ¢/b ’ tangent
to the plane y = 0 at the point ((a’/b')e;,(a’/b") €;,0). If
b’ = 0, we have the family of parallel horosheres with direc-
tion ( 00,00 ) which consists of the planes y = 1/2¢ and can
be thought of as a family of spheres of infinite radius tangent
to the plane y = 0 at the point (c,00,0). It can be shown
that the transformation (3.7) maps the set of parallel horos-
pheres with direction ((a/b)e,,(a/b)e,) onto the set of par-
allel horospheres with direction (w0, ).

Moreover, for each set of parallel horospheres with di-
rection v = ((a/b)e,,(a/b)e,), we can define a family of geo-
desics with direction v by the equations

3.8)

1 a a
X[x‘ —2(ex' + e;x%)e, + Te,] - Te, =C (3.9a)
and
i[x2 —2(e;x' 4+ e;x%)e, + ie2] — 4 ¢,=D, (3.9b)
A b b

where C and D are constants.

The transformation (3.7) also maps the family of geode-
sics with direction v onto the family of geodesics with direc-
tion ( 00,00).

- l -~ 2 -~
go—dr, 9= 529 p_ W 49
ky ky ky
with
&.(0%) =62, aB=0,1.23. (4.3)

From (2.2), we derive the spin connection coefficients in
terms of the Dirac matrices {y* }:

20 - 23 = 0,
3, = — (/2773
3= — (/273

The generalized Dirac equation (2.7) in RX H 3 can then be
written as

P P P}
Ay A S - S
[’)DatJr o t R 53

(4.4)

+ky7’3%—k7’3+im14}¢=0, (4.5)
where, for explicit calculations, we will use the representa-
tion of the Dirac matrices given below:
_ [0, 02] _ [02 - ia3]_
7)0_[02’ 0, n= —io, 0, [
0, -1 0, i 46
_ V2 — 1] _|Y% o I]
7/2 1 02 ] ’ 73 io 1 02 ’
with the 0,’s (i = 1,2,3) standing for the Pauli matrices.
Let us determine spinor solutions propagating along the
y axis. If they stay constant on the horospheres with direc-
tion (00,0 ) (corresponding to the y axis), then they can be
expressed as

IV. SOLUTIONS IN R X H; ¥ =e"'g(y), (4.7)
In this section, we find explicit solutions to the massive  where ¢(y) satisfies the equation
Dirac equations in the space R X H ; using the upper half-
space model of H ;. In this model, the nonzero coefficients of kyp? 9 + (iwy? — ky® + im1,)¢ = 0. (4.8)
the Levi-Civita connection are dy
r,=T%=r}= -1/ A general solution to (4.8) is
D T2 =1/ (4.1) .
n=1ln= y: () = E ¢,y v, (4.9)
We choose the following set of orthonormal frames and co- d=1
frames on RX H }: where the c,’s are complex constants;
|
ay=a, =1+ (m* =)k, az=a,=1—m>—uw?)/k,
i 0 Jm> = uw? —m —iw
b= Jm?—uw? —m+iw b= 0
' \)mz—ﬁz-—m—iw’ 2 0 ’
i 0 —Jm —uw? —m—iw
e —Jmr =W —m+iw b = 0
3 _ '—2-——u—’2-m — —m— iw ] 4 0 ’
| 0 —Jm* = —m+iw
are, respectively, the eigenvalues and eigenvectors of the matrix:
1, + Gw/k) Py + (im/k)Y. (4.11)
Thus any solution of (4.5) with direction (0,00 ) can be put in the form
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4

p(ty) =™ Y ey,

a=1

(4.12)

Let us mention that the plane wave spinor solutions in Minkowski space traveling along the y axis are recovered in the zero
limit of the curvature parameter k£ with the substitution y + (1/k) for y.

In order to obtain spinor solutions moving in the direction ((a/b)e,,(a/b)e,), we apply the transformation (3.7) that
maps the family of horospheres with direction ((a/b)e,, (a/b)e,) onto the family of horospheres with direction ( «0, o0 ). Since
these transformations leave the metric invariant, the solutions to (4.5) in the direction ((a/b)e,,(a/b)e,) are

V(tx'x%y) = St(a,be,e)¥(ty), (4.13)
where Srepresents the D /29 g D ©1/2 §1(2,C) representation of the rotation Z of the orthonormal frames induced by (3.7),
that is

SYSt= (AN (hj=123), (4.14)
with

=, (4.152)
I -2
|z12 TP meR ) TTz—y—z["I"z‘“‘)z— (7 + )+ 77 — )],
(9, = | Gy [l @ = @7 4N + (= 7] 1t [amen) + 4y
= — 7
12+ 2P+
- 2y 2 1 7
|Z|2 2[(82—e§)z —28,8222],
|—z|—2——2—y—-[(el — )7 —2ee2'], |, (4.15b)
¥
l2|* +»* j
I

where #7 is the transpose of the rotation matrix 7, Jis the
Jacobian of the transformation (3.7), z'=x'— (a/b)e,,
22=x? — (a/b)e, z=2z' + iz%, and e=e, + ie,. Explicitly'®:

u O,
S(a’brel’eZ) = [02 u*], (4~16)
with
*
u= # [zy: e ]eSU(Z) (4.17)
Iz +y7 Lye

Hence, the spinor solutions with direction ((a/b)e,,
(a/b)e,) to the Dirac equation in R X H ; have the following
form:

W (tx'\x%y)

<2115 o
a=1 ¢ A 02 uT ¢

= o E (4.18)
From this set of solutions, we obtain massless solutions to
the Dirac equation in open R—W spaces by letting m = O and
by applying a conformal transformation (2.13):

YRW =R 3()¥, _o, (4.19)

where &Y and ¥,, _, denote, respectively, massless solu-
tions in R—W space and the solutions (4.18) with m = 0.
We note that the limit of the curvature parameter k to
zero in (4.18) leads to a set of plane wave spinor solutions in
Minkowski space. In order to perform this limit, it is more
appropriate to go back to the “Ball model” of H; (Ref. 17).
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V. SOLUTIONS IN SPHERICAL COORDINATES

For completeness, we present the spinor solutions found
for the open R-W spaces in terms of the usual spherical
coordinates. A simple modification to these solutions will
allow us to introduce a set of solutions to the Dirac equation
in closed R—W spaces.We recall that the spherical coordi-
nates are related to the upper half-space coordinates by Eq.
(3.3). However, the transformation of the spinor fields re-
quires the SO(3,1) transformation (A) between the two sets
of orthonormal coframes:

6= Az0°%, (5.1)
with A given by
[ 1 0 0 0
~ 0 cos 7 —sin g 0
[Alz = 0 . .
cospsiny cosgcosy —singd
0 singsiny sindcosny  cos¢
1 0 0 0
0 e¢ — 27/3INL + Ly + Ly) g8Ly gLy
=1 o ,
| 0
(5.2)

sin 6
[cosh kr — sinh krcos 8]’

sin g =
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cosh kr cos 6 — sinh kr

= : ) (5.3)
[cosh kr — sinh kr cos 6 ]

and L, stands for the generator of rotations around the ith
axis (i=1,2,3). The generators satisfy the commutation
|

rules of the SO(3)
(i, jjk=123),and €,,; = 1.

With respect to our choice of Dirac matrices (4.6), the
D120 g DOV/2 8] (2,C) representation of A can be writ-
ten as

algebra: [L,L;] =€, L,

~ ~ 1[{(, +i(o, + 0, +035)W 0, ]
S(A =—[ . , 54
(A) 2 0, (1, —i(o, — 0y + 03) * (54)
where
ve—e~ i(¢/2)a,e— i(n/2)0; _ 1

(cosh kr — cos @ sinh kr)'/?

(cos 9 _ ie*”"? sin i)
2 2

. [
(—zcos——e""/2
2

cos —,
2

sin —0—)sin ﬂ, (cos i + ie*"? sin f—)cos L2
2 2 2 2 2

¢

( —icos 6 + €*2 sin i)sin i,
2 2
(5.5)

Consequently the spinor field, defined in terms of the upper half-space coordinates, will undergo the following transforma-

tion:
V(t,r,60,6) = S(A)W(t,x'x%y).

(5.6)

It follows that Eq. (5.6) will give rise to solutions of the Dir_ac equation in spherical coordinates if ¥ (#,x",x%,y) has the form

(4.18). The resulting spinor solutions are

fwt
e

4 1 ]aa
L 4 g, :e’ = a .
(tr.6.4) 2 ag, ¢ [A(cosh kr — sinh kr cos 8)

w [U*(lz —i(0y — 03 + 03))u’

0, (1, +i(0y 4+ 05+ 03))u

where A and u are expressed in terms of spherical coordi-
nates via Eq. (3.3). With the conformal mapping (2.13b) of
(5.7), we get the spherical coordinate representation of
massless spinor solutions in open R-W spaces, that is

YRW (4,1,0,6) =R ~32()Y,, _o (1,1,0,8). (5.8)

Let us note that our choice of parameters a, b, e, and e, for
the solutions in the upper half-space model does not lead to
simple expressions when transcribed in spherical coordi-
nates. However, a more suitable parametrization is derived
if, first, the spinor solution in the direction v = (0,0 ) is
mapped to spherical coordinates by (5.6), and then the
spinor is transformed by the SO(3) isometries.

Finally, we observe that changing the parameter & by ik
and restricting the variable r to the interval [0,(7/k)] in the
open R-W metric, we retrieve exactly the closed R—W class.
Applying this transformation to (5.8), we get a set of spinor
solutions to the Dirac equation in closed R—W spaces. These
solutions are well defined everywhere on S?, except at the

[iw( y/A) ™
n 1 —iw(y/A) ™
¢(tﬁ,w) _—16_17’1' o
0
|
u(xlaxz’y;ﬁ) 0, 1,2
x[ 02 u*(-xl)xzzy;ﬂ) ¢(t,x ’x ’y)
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0: ,]ua, (5.7

|
poles r = 0, 7/k. Let us mention that the massless solutions
found in Refs. 2, 10, and 11, which can be expressed as Jacobi
polynomials in “cos 8 or “cos #,” differ from the above.

VI. COMPLETENESS OF THE SET OF MASSLESS
SOLUTIONS

In the following, a sketch of the proof of completeness of
the massless solutions in open R—W spaces is presented. It is
understood that the set of solutions (4.19) with m =0 is
complete if any solution to the massless equation (4.5) can
be expressed as a linear combination of them. For simplicity,
we consider the case when the curvature parameter k = 1.
We also ignore the expansion factor R(?), since the confor-
mal map (2.13) preserves the completeness.

As a generalization to hyperbolic space of the spatial
Fourier transform for massless spinors, we define

0
IW( y/A) 1+ iw
— iw( y/A)'—"“’_
17,2
dx' dx dy, (6.1)
ys
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with the inversion formula

. u*(x‘,xzy,ﬁ) ]
waxtay) = [ L y [ ,(x 5
— iw( y/A)l fw
X IW( y/A)l + iw
0

where = (a/b) ec dH> (boundary of H?), u is given by (4.17), and A = (|x —

x=x'+ ix%

0
" dp, dp, dw
o t’ s ’
—iw(y/A) — ™ Y(Bw) (1+|81H?
—iw(y/A)y+ "]
(6.2)

B2+ ) /(1 + |B]*)(3.7b), with

In this representation, we can write the general solution to Eq. (4.5) with zero mass as

,
P(tx x2y) = f j [“ ' 2%p8) 0,
aH’

0, u”(x' X y;B)

__lw(y/A)l—tw

w( y/A)

where t?/(O,B,w) stand for the “Fourier transform” of the
initial data.

The consistence of equations (6.1) and (6.2) follows
from the formula

+ o
f f uf(xll 21 ylﬂ)
— H?

(yl/Al)l—iw(y/A)l+iw 0 ]

0 (y//Ar)l+iw(y/A)l—iw
2 dw dp, dp.
X u(xLx2y:8) w 1 852
(x'.x*p:B a1 BEP:

= 167y°6(x — x',y — y')1,. 6.4)

In order to verify this identity, we first split the w depen-
dent matrix in its w even and w odd parts, that is

(yl/Al)l—iw(y/A)l+iw 0 ]
0 (y//Ar)l+iw(y/A)l—iw

(RO RO
@G
6) @)

Substituting (6.5) in (6.4), the w odd part vanishes once
integrated over w, leaving only the w even contribution. The
residual integral can be reduced to the form

+ o ]
J f ut(x' x,y38) u(x' x2pB)
AH ?

(6.5)
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___iw(y/A)l—iw

dp, dp, dw

$(0,5, ,
YO T B

IW( y/A)1+iw-

(6.3)
I
X[(y_l)l—iw(L)l+iw wzdwdﬂl dﬂz
A’ A (1+8»?
=1678(x —x', y—y')1,. (6.6)

Since the identity (6.6) is invariant with respect to the
action of any isometry of H>on (x' ,x2, y’') and (x',x%y), we
can put without loss of generality: x' =x*=x' =x* =0
andy’ = 1. In other words, the group of H 3 isometries can be
used to map (x',x%, ') to (0,0,1) and (x',x%y) toa point on
the positive y-axis, relabelled (0,0,y). As a consequence,
(6.6) is simplified to

-+ oo
f j 4'(0,0,1,8) u(0,0,9:8)
— o aH?
[y(1+|.8|2 ]‘*"’” w’ dw dp, dp,

¥+ B (14182
= 167y°5(x,y — 1)1,. 6.7)
We obtain from (4.17) that
1'(0,0,1;,8) u(0,0,9;8)
_ 1
YUBTP+ DUBIP+ »)
*+y —B*(-p
g1y hrey b 5

The integration over the parameters 5, and S, can now
be carried out. Inserting (6.8) in (6.7) and passing to polar
coordinates: 8=, + i, = |B| €7, where 0Ky <2m, we
find that the off-diagonal integrals over the angular variable
y vanish while the diagonal contribution becomes
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SN -
Cw o (1+I1B1 yABF+ DB+

2 1+ iw
% y(l+|ﬁ|)] e,

¥+ B2

= 1678 (x,y — D1, (6.9)

We evaluate the second integral on the left-hand side of
(6.9) using the following substitution:

Bl=JA+0/(1 -0,

where — 1<#<1.

(6.10)

After integration, Eq. (6.9) is transformed to

2ay°"21(p)
(1+»*(1—y)
where

+
1(y)=f dwsze{y

=167y°6(xy — 1), (6.11)

—l/2+iw+y 1/2 — iw
172 —iw

The change of variables, y = ¢f, where £ € R, allows us to
rewrite (6.11) as

(— 1/4 sinh £ cosh(£ /2)) I(£) = 87%°8(x,p — 1),
(6.13)

]. (6.12)

where

o J~+oo (eié‘(w+(i/2))_e—ig(w+(i/2)) ) 2 4
= w” aw.
©=].. — iw + (i/2))
(6.14)

Differentiating I(£), we find that
I'(€) = 4 cosh(£ /2)8" (). (6.15)

A symbolic expression for I(£) can be derived with help of
the following equalities'®:

cosh (£ /2)8" (£) = 8" (£) (6.16)
and

cosh(£/2)8(£) =6'(8). (6.17)
In fact, we get from Eqs. (6.15) and (6.16):

I'(&) =4wé" (£). (6.18)

Using (6.17), the integration of (6.18) gives rise to
I(&) = 4w cosh(£ /2)8' (&), (6.19)

where the constant of integration vanishes since 7(£) and
&' (£) are both odd distributions.

Finally, inserting this last result in the identity (6.13),
we arrive to

— &(&)/sinh £ = 8mP8(x,y — 1). (6.20)

The validity of this identity is shown below. It enables us to
conclude that (6.4) is verified, and consequently, that (6.1)
and (6.2) are consistent.

In order to justify (6.20), we use spherical coordinates.
First, we note that |£ | can be identified with the variable rin
(3.3), which is the geodesic distance between (0,0,1) and
(x',x%,9). The identity (6.20) is then confirmed by verifica-
tion of the next formula for any test function f; expressed in
both the upper half-space coordinates (x',x?y) and the
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spherical coordinates (7,6,¢):

1 2
— 87| y8(xy — 1)ﬂx’,x’y)di‘;f—d”
- r sinh? r dr J' sin? 6.d6 dé fir,0,4) 2
o sinh 7

(6.21)

Vil. SUMMARY

We were concerned in this paper with Dirac fields in the
background of R-W metrics. In the case of open R-W
spaces, a set of explicit massless solutions to the Dirac equa-
tion has been found. Each solution propagates along the di-
rection defined by a set of parallel horospheres, the analogs
of the planes in flat space. For this purpose, we have used the
upper half-space representation of the three-dimensional
spatial submanifold. In the limit of zero curvature, one can
show that spinor plane-wave solutions in Minkowski space
are retrieved. We also expressed the open R~W spinor solu-
tions in terms of spherical coordinates. It follows that the
substitution of the parameter & by its imaginary form and the
restriction of the domain of the spatial variable » lead to
closed R-W spinor solutions. Finally, it has been verified
that the set of spinor massless solutions presented for the
open class is complete, a property which is certainly very
important for quantum field theoretical considerations.

Let us recall that only massless solutions have been de-
termined for metrics with nonconstant and arbitrary expan-
sion factor R (#), since a conformal map of the static metric
was carried out. It would be interesting in a future investiga-
tion to exhibit massive spinor solutions in R-W spaces with
nontrivial expansion factors, as worked out for the flat case
in Ref. 12.
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18The spinor transformation S has been determined from the normal eigen- te E cmppns p2 *e 12
vector (#) corresponding to the eigenvalue 1 and the two other eigenval- J. W Ag)cosh 2 &"(§)sinb” & df = J - )8 (§)sinh” £ df
ues (e* ™) of . The canonical homomorphism between SU(2) and
SO(3) is then used to arrive at w( = cos(a/2) — i7i-& sin(a/2)).

1911 the formulas (6.16) and (6.17), the absolute value of the variable £ will and
later be interpreted as the spherical coordinate r introduced in Sec. III. If N 5 N
we consider test functions f{£), (6.16) and (6.17) are proved by showing ® ( () )sinh’ gE— J' ® (5’(5) ) inh? £d
that the following relations are satisfied, respectively, o A& sinh £ cosh(& /2) sl - O sinh & sinh” §d¢.
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An extensions theory setting for scattering by breathing bag
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A model of the scattering of a structureless pointlike particle on a spherical bag with an
internal structure, imitating “quark” degrees of freedom, is considered. It is assumed that the
bag is a dynamical object and its radius plays the role of additional dynamical variable. The
energy of the collision is distributed among the quark excitations and the vibration degrees of
freedom of the bag surface. In the frame of the theory of extensions the Hamiltonian of the
coupled bag-quark system interacting with the pointlike particle is constructed. The formal

multichannel S matrix of the problem is obtained.

I. INTRODUCTION

Let us consider two conservative quantum systems Q,
and @, with Hamiltonians H, and H, acting in Hilbert

spaces 57, and #°,, respectively. We assume that the system

O, consists of two noninteracting subsystems Q” and Q7. Let
the Hamiltonian H, of the system Q, be a direct sum of the
corresponding Hamiltonians H® and HY, which determine
independent evolutions of the subsystems: H, = H® & H? in
the Hilbert space #°; = #”° @ 5. The total Hamiltonian
H,, of the system Q,U Q, is represented as a tensor sum of the
operators H,, i = 1,2,

Hy=H,9I,+ 1,9 H,. (D

Because of the decomposition #°, = #*° & #, the rela-
tion (1) can be written in the form

Hy= (H’sI,+1,8H,)
e(H'L,+1,0H,)
=L, oL, (2)

One could switch on an interaction between the subsys-
tem in the composite quantum system Q,UQ,, as was done
in Ref. 1. The method of the paper' deals with the situation
in which the total Hilbert space is a direct sum of its sub-
spaces. An interaction arises as a result of construction of a
set of self-adjoint extensions of some symmetric operator.
This symmetric operator is the result of the restriction of the
direct sum of initial Hamiltonians L, & L,. This set, in par-
ticular, contains the initial Hamiltonian of the composite
system. Any other self-adjoint extension can be interpreted
as the total Hamiltonian determining the coupled dynamics
of the subsystems and the interaction between them.

In this paper we use the techniques of Refs. 14 for the
operators L;, i = 1,2, of special structure (2), i.e., in the case
when the total energy of the subsystems Q”, @7, and Q, is the
sum of the subsystem energies. We consider the scattering of
a pointlike particle on a dynamical quark bag® (DQB) as an
illustration of the scheme described above.

In this interpretation the operator H® determines the
dynamics of the DQB surface, H? corresponds to the inter-
nal (quark) degrees of freedom, and H, is the operator of
kinetic energy of the pointlike particle. We construct an in-
teraction between the abovementioned degrees of freedom

) Present address: Freie Universitit Berlin, Berlin (West), Germany.
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on the base of the extensions theory.'™ It will be shown that
this approach leads to a nontrivial scattering matrix.

il. MODEL

Let us assume that the dynamics of the bag surface is
given by the self-adjoint operator acting in the Hilbert space
%b = L2(09°° )5’

1 d*
Hby = ( - V(R ) , 3
Y M 4R 2 + V(R) |y (3)
with boundary condition
x(0) =0. (4)

To simulate the breathing character of the system one should
choose the potential ¥(R) with confinement: V(R) — « as
R- .

In this case the Hamiltonian H® has the pure discrete
spectrum o(H?) = {¢,; }7_, and its eigenfunctions form
the basis in the Hilbert space .

The dynamics of quark degrees of freedom inside the
DQB is determined by a self-adjoint operator H?, acting in
an abstract Hilbert space 2. The nature of the Hamilto-
nian H® can be treated in different ways. It might be under-
stood as the few-body Schrédinger operator with confining
potentials (if one needs a nonrelativistic description); or as
some relativistic Hamiltonian. Since there is no adequate
mathematical description of multiquark dynamics at dis-
tances of the order of the confinement, we use the informa-
tion about the structure of the spectrum of the Hamiltonian
H? only, omitting concrete details of the evolution of inter-
nal (quark) degrees of freedom. In this case the bound states
of H? can be treated as quark excitations of the DQB.

Finally, the role of the operator H, is played by the
Hamiltonian of the free particle

r>0, (5)

u(0) =0, 6)

in the Hilbert space L, (0, « ). Let us assume that the interac-
tion between the particle and DQB switches on if and only if
the coordinates R and r are equal, and the pointlike particle
does not penetrate into the bag. As a consequence, the con-
figuration space #2  is divided by the line y = ax into
two sectors V* ={y><ax}, where a= (m/M)"?,
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x =+y2M R, y = \[2mr, and the scattering should be consid-
ered in “physical” sector ¥ * only.

The condition of nonpenetrability into the bag leads to
the following rather simple model of an interaction between
the quantum systems Q° and Q,. One needs to solve the
Schrédinger equation in the physical sector V *:

ar a2
(—ﬁ > + V(x) - )1/'(x,y) =0, (7
with the boundary conditions
¢(x’y)|y=ax =0, l/l(x,O) =0. (8)

To include the interactions between the systems Q°, 07,
and Q, in accordance with Refs. 1-4, let us restrict the do-
main of the operator L, to the set of all smooth functions in
thesector ¥ ¥, which vanish at the vicinity of the line y = ax.
The symmetric operator L,,, restricted in such a way, has
infinite deficiency indices. The boundary form'™ of its ad-
joint operator L ¥, can be calculated as follows:

(L) — <¢,Lrocp>—f(a VE—a,pWdy, (9

where d,, denotes the normal derivative of the functions ¢, ¢
on the curve y. [Of course, the expression for the boundary
form (9) on the domain & (L *,) needs some regulariza-
tion. But for further purposes it is sufficient to consider the
boundary form (9) only on the class of smooth functions,
which do not satisfy any boundary condition on the line 7. In
this case one does not need any regularization and (9) holds
in the ordinary sense. ]

The next step of the scheme!™ is the restriction of the
operator L, to some symmetric operator L,,. Since the oper-
ator L, = H, + H, acts in the tensor product of the Hilbert
spaces 7 ® 7, we shall restrict the domain of the operator
H? only, so that the fixed elements 8 from 77 be the defi-
ciency element for the restriction H §,

D(HE) ={(HT— i)~ "¢, 9eH06}. (10)
We call the coeflicients € of the decomposition
u=uy+er HY(H—i)™'0 + e (H?— il)6,
ucZ (H3), ueZ(HE) (11)

of arbitrary element  from the domain of the adjoint opera-
tor HZ, the boundary values. In a general case, the bound-
ary values €* of the elements « from & (L %,) become the
functions of the variable y and the boundary form of the
operator L %, is given by

(Laup) — (u,L %) = f [z e

—& O & ]dy, (12)
In order to construct a self-adjoint extension H of the opera-
tor L,,® L,,, in accordance with our general method, one
should impose on the line ¥ such boundary conditions that
nullify the sum of the boundary forms (9) and (12). One of
the simplest possibilities to do it is to study the following
boundary conditions, mixing all the channels together:

d.9¥l, =Be~ (»), € () =8Y|,, BeR". (13)
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IIl. SCATTERING PROBLEM

The spectral analysis of the total two-channel Schro-
dinger equation

(H-E)¢=0 (14)

can be reduced to some boundary-value problem in the sec-
tor ¥V *. More precisely, it can be shown* that the boundary
values €* on the solutions of the problem (14) are connect-
ed with the relation

- d? )
€ =Q|E+—|eT ().
67 Q( +3 x 69
Here Q(E + d?/dy?) is the integral operator acting in the
space L2(R ', ) with the kernel Q(y,y',2),

QWy'.2) -1 ff ADro(y —y',z — )G,
27 Jr

where ro(u) = (H, — z) ! is the resolvent of the operator
— d?/dy* with boundary conditions |, _, = 0, A({) isthe
Schwartz integral of the spectral measure of the operator
H?, and the counter I encircles the spectrum of the Hamil-
tonian H? in the complex plane (&).

Equality (15) reduces the problem (14) to the search of
the components of the wave function ¥ in the space
F9 ® 7, as the solutions of the following boundary value
problem in the sector ¥ *:

(15)

(16)

az az )
—— 4V =0, 17)
(-5-2 SV —E ) (
with energy-dependent boundary conditions
0,41, =8°0(E+ ), (18)
'plx=0 = 0! (19)

and appropriate asymptotic conditions at infinity. All the
information about internal degrees of freedom penetrates
into the boundary-value problem (17)-(19) through the
Schwartz integral A({) of the Hamiltonian H?,

A +1
A= | =£ E,0,0), 20
(9} ,1_;'“ ,6,0) (20)
m:f/uEg. @1

Here 857 is a vector parameter of the theory [see (10)].
The function A({) is an analytical function with a positive
imaginary part in the upper half-plane of the complex vari-
able &. If the Hamiltonian H? is a finite-dimensional self-
adjoint operator with a simple spectrum, A, are its eigen-

values and E; are the corresponding orthogonal
eigenprojectors, then A(¢) is a rational function,
A, +1
A =3 > (E00),. (22)

The formal solution® of the problem (17)-(19) can be
represented in the form

Vo (x9) =3 {Spne ™" =S, k. (x),  (23)

where k, = \[E — €, are the reduced channels momenta.
Substitution (23) into boundary conditions (18) yields
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the following set of equations:
S {8me " (@ d, + 84 +iky) = Spe™”

X(ad, +gd, —ik,)|x,(x))} =0, (24)
where p, = ak, are renormalized channels momenta and
g = B4 1 + a2. To determine the operators A 7 one needs
to calculate the action of the integral operator Q(E

+ d?/dy?) on the elements £ (x,p) = e**y, (x) consid-
ered as the functions of the only variable y = ax,
d 2
E + _) n:t / a,
o(£+3 3 i 0/a)

=e*?*Q (E + (& 3, + ik,,)z)x,, (x)

_ ei‘”-—l_é MA@ = (xE — £)dE
2mi Jr

= —etPTLE|y,). (25)

Here the functions @ F (x,4) are the L? solutions of the
boundary-value problem

[(V/a)d, + ik, 1’ +ApF =Xn» @Flico=0
(26)

If the channel 7 is opened, Imk, =0, theng = @ . .

Formally, the S matrix can be determined by projecting
the system (24) on the basis {y, }. In this case the system
(24) can be written in terms of the matrices W* , playing the
role of the wave operators

Wk = (mle* " (ad, +g4 F Fik)ly,) @27
in the following way:

WHS=Ww-. (28)
On the opened channels we obviously have

W) =W,

IV. RESUME

The next step is the studying of analytical properties of
the suggested S matrix

S=(WH'w-. 29)
It will be done anywhere. Let us note here the following
circumstances.

(1) The scheme of the exclusion of the channels #*
and 777 described above demonstrates that the scattering on

DQB can be reduced to some effective matrix-many-channel
problem in the space 77,

2
(-13 ®I+B—E)<I>=O, (30)
dy
with energy-dependent boundary conditions
S|, _, = Z(E). (31)
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Here B is a diagonal matrix of thresholds

B = diag{e, }, (32)
P(E)= —iK'*(W++W~)~!
(W —W™)K'? (33)

is a P matrix’ of the problem,

K = diag{k, }. (34)

(2) In the opened-channel approximation we can use
the finite set of equations

S WhSu=Wa. (35)

n=1

Denoting by A" the determinate of the matrix W *,
A =det W+ =A™ (kkyoik,),
we find

St = (1/ATYA* (kyKyenorky _ s KoKy 15000k

Here we treat the channel momenta k,, as independent
variables and consider matrix element S, as the function of
these variables.

The studying of analytical properties of the S matrix can
be reduced to the investigation of corresponding Fredholm
determinants A+ (Ref. 8).

Nevertheless the most interesting question is to study
the limit N— « and analytical behavior of the the total §
matrix.

In conclusion, we have demonstrated that the new
method of coupling of different degrees of freedom in the
system proposed, leads to a rather interesting scattering
problem here. For more realistic simulation, the peripheral
interaction in the Hamiltonian H,, as well as higher partial
waves in the corresponding channel, should be taken into
account.
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A general framework for understanding Kepler-type dynamical symmetries is presented. The
main concern is the geodesic motion in Euclidean Taub-NUT space, which approximates the
scattering of self-dual monopoles for long distances. Other examples include a test particle
moving in the asymptotic field of a self-dual monopole and two other related metrics.

1. INTRODUCTION

In this paper we present a general method for under-
standing Kepler-type dynamical symmetries. Our main in-
terest lies in explaining those symmetries found recently in
the long-distance limit of monopole-monopole scatter-
ing,’~* as well as for a test particle in the asymptotic field of a
self-dual monopole.®

In the long-distance limit, the relative motion of two
monopoles is approximately described in fact by the geode-
sics of the Euclidean Taub-NUT space of parameter
m = — }, with the line element

ds* = (1 + 4m/r)(dr + *(d6? + sin® 8 d¢?))

+ [(4m)¥/(1 +4m/r)](dY + cos 0dB)2.  (1.1)

For m >0, (1.1) is just (the space part of) the line ele-
ment of the celebrated Kaluza-Klein monopole of Gross
and Perry and Sorkin.® The problem of geodesic motion in
this metric therefore has its own interest independent of
monopole scattering. The relativistic aspects of such metrics
have been studied recently by Gibbons and Ruback? in great
detail. Here we explore instead the relation to dynamical
symmetries.

In the Taub-NUT limit the electric charge g (the
Neether quantity conjugate to d /dy) is conserved and, for a
fixed ¢, symplectic reduction’ leads to the three-dimensional
Hamiltonian

h=}p%/ (1 +4m/r) + (1 4+ 4m/r) (g/4m)?), (1.2)

where p = (1 + 4m/r)v = 3£/dv — gA, where A is a Dirac
monopole vector potential. The fandamental Poisson brack-
ets {p,p;} = —qeu (F/P), {r,p;} =6, correspond to
the symplectic form

Q =drAdp + (9/2P)€, ;. ¥ dr Adr* (1.3)

on the phase space, according to {fg}=Q(X,.X,),
df = Q(X,,).

The second system we study here is a spinless test particle
moving outside the core of a self-dual monopole. The Higgs
field @ can be identified with the extra space component of a
pure Yang-Mills field in four dimensions. The equations of
motion can be obtained from the Kerner-Wong® equations
in 1 4+ 4 dimensions by dimensional reduction.® For large
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distances, the only surviving gauge field component is the
one parallel to ®. The particle’s isospin projects into the
conserved electric charge ¢.° This leaves us with an effective
Dirac monopole and a long-range scalar field ®~1-1/r.
Our particle is described by the same symplectic structure as
in (1.3) and the Hamiltonian

h=4(p* +¢'(1-1/r]%), (1.4)

where p is the ordinary momentum. This system was studied
previously by McIntosh and Cisneros and Zwanziger' be-
cause of its remarkable symmetries, but without its present
physical interpretation. Such a role has been hinted at by
Schonfeld.!! See, also, Refs. 5 and 12.

For both systems, the clue of the solutions is provided by
a conserved Runge-Lenz-type vector, which allows one®* to
prove that the trajectories are conic sections. We shall main-
ly consider the bound motions. We mainly concentrate on
the more recent and less explored Taub—-NUT problem.

Observing that the conserved angular momentum vec-
tor j and the rescaled Runge-Lenz vector k [ (2.8)] form an
0(4) algebra for the bound motions and an 0(3,1) algebra
for the scattered motions, the Pauli method!? allows one to
recover the bound-state spectrum and the Zwanziger meth-
od!? allows one to derive the § matrix.?

The 0(4)/0(3,1) symmetry can be extended into
0(4,2). For example,? application of the so-called “Kus-
taanheimo-Stiefel”’* transformation carries the Taub-
NUT system into a harmonic oscillator. The latter admits an
sp(8, R) dynamical symmetry; those transformations that
preserve the charge constraint form an su(2,2) ~o0(4,2).

In Barut’s method"® (for the Taub-NUT system, for
example?), one starts instead with the time-independent
Schrodinger equation AW = e¥. Assuming that e<gq?/
32m?, one multiplies the Schrédinger equation by (7 + 4m)
and redefines position and momenta as

R = (¢/4m)? —2er, P =p/\(g/4m)? — 2e.

After rearrangement, the Schrédinger equation takes the
form

{1R(P*> +1) + ¢*/2R}Y
= (4m[e — (¢/4m)?1/(g/4m)* — 2¢)V¥.

(1.5)

(1.6)
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On the lhs of (1.6) one recognizes Iy, the generator of an
0(2,1) group, to which one can add*'* 14 more operators, cf.
(3.11 a~g) which generate an 0(4,2) operator algebra inde-
pendent of the energy constraint. Therefore, the solution of
the eigenvalue equation (1.6) can be deduced from the spec-
trum of T',. The same procedure works in the other cases.'

The method we present here consists in completing f:(r,
p) — (R,P) into a canonical transformation. We do this by
unfolding the system into Souriau’s'®“espace d’évolution”
(evolution space) & = M XR, which is endowed with the
presymplectic structure o= Q + dhAdt. [§ can also be
viewed as the seven-dimensional “energy surface” lying in
the eight-dimensional extended phase space T*(R>XR)"".]
The classical motions are the characteristic curves of o. This
is basically a generalized variational formalism’S: If @ is a
potential for o, d0 = — o, then the classical action is
SE=1(0.

The quotient (#",w) of (& ,0) by the characteristic foli-
ation of ¢ is Souriau’s “espace des mouvements” (space of
motions).'6 In this framework, a symmetry is a transforma-
tion of & which preserves ¢ and thus permutes the classical
motions: it projects into a symplectomorphism of (A4, ).

The information on the global structure is encoded into
the topology of 4", A fixed ¢ = ¢, section N, of the evolution
space is the “phase space at £,”'%; the restriction of o' to N, is
symplectic. The mapping N,—.#" (obtained by composing
with the projection & —.4") is injective and symplectic, but
may not be onto. In the Kepler problem, for example, the
phase space N, does not intersect those motions that hit the
center at ¢ = t,.'"® Therefore, N, may not reflect the global
structure of the space of motions.

The situation is similar for the Taub-NUT system. The
metric (1.1) is singular for r = 4}m|, which should be ex-
cluded. The energy is positive for 7> 4|m| and negative for
r < 4|m| and, by energy conservation, no motion can cross
the singular sphere S = {r =4|m|}. Hence the space of
bound motions has two connected components. The nega-
tive-energy part & _ of the Taub-NUT evolution space &
contains the tightly-bound motions (.#"_) and the positive-
energy part &  contains the lightly-bound motions (A" ,).
For us, & . is more interesting since the Taub—-NUT approx-
imation is justified only for large .

In both components, the radial motions leave their re-
gions and hit the singularity. In other words, for m <0 the
Taub-NUT space is not a complete Riemann manifold.
Consequently, the spaces of motions.#", = & , /Ker oare
not Hausdorff.

A regular system is one whose presymplectic form de-
fines a foliation with one-dimensional, infinite curves: Its
space of motions is a Hausdorff manifold. Regularizing the
Taub-NUT problem requires imbedding it into a regular
“unphysical” one by an injective, symplectic mapping f
whose image is a dense, open subset. Those “unphysical”
motions, that correspond to the Taub-NUT motions that
leave the evolution space can be made infinite by restoring
their points not in Im f. Identifying the preimages in the
Taub-NUT space of motions, we obtain a smooth Hausdorff
manifold, namely the “unphysical” motion space.

We choose the following regular “unphysical” system
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(A, 2,): We consider in fact those zero-mass, helicity-s,
coadjoint orbits (M,,m,) associated with the action of
SU(2,2) on twistor space.'®?! The su(2,2) =~o0(4,2) genera-
tors are the classical counterparts of those operators in Refs.
4, 15, 21, and 22. Choosing the generator I', [(3.12a)] as
Hamiltonian and adding a “fake time” T, we obtain an “un-
physical” evolution space .#,= M, xR endowed with
3, =@, + dHAdT. The 0(4,2) generators are extended to
4, s0 as to remain constant along the trajectories. The
space of “unphysical” motions, .4 ,/Ker X, is globally sym-
plectomorphic to the T = 0 phase space which is (M,,®,).
This system has a manifest C', (3,1) =~SU(2,2)/(center)
symmetry.

To summarize, our canonical transformation f allows
us to regularize the “physical” problem as well as exhibit its
“hidden” conformal symmetry. Our method is particularly
useful in discussing global problems.

This transformation is found by completing (1.5) with
the rule of transforming the time,

T = [J(¢/4m)* =2k /4mh ]

X{ —p'r—((g/4m)? — 2h)t}. (1.7)

Equation (1.7) is chosen to compensate for the noninvar-
iance of dr A dp under (1.5), due to the energy being a func-
tion rather than a constant. The pullback of the “unphysi-
cal” presymplectic form is the Taub-NUT presymplectic
form. (The Lagrangians differ by a total derivative.) °

The regularized lightly-bound Taub-NUT motion
spaces .4, are thus shown to be symplectomorphic to
(M,,,). The same is true for the tightly-bound motions
A .. Therefore, both carry a C'', (3,1) conformal symme-
try.

In the McIntosh—Cisneros (MIC)-Zwanziger case no
regularization is necessary and M, is thus also the space of
bound test-particle motions in the asymptotic monopole
field. (M, is the space of regularized motions of the Kepler
problem.”! Our method also yields the C', (3,1) symme-
try. 12

The space of twistors can also be viewed as the phase
space of a four-dimensional harmonic oscillator from which
the “unphysical” system is obtained by reduction.?!%?

In Sec. V we study the scattered motions. We show that
the space of regularized hyperbolic motions is symplecto-
morphic to the orbit (M,, &) and hence carries (unlike in
the Kepler case'®) an action of the conformal group.

We end this paper by a short discussion of two other
(closely related) metrics whose geodesics are also 0(4,2)
symmetric. The first metric (which is new) can be viewed as
a curved-space model for a particle in a self-dual monopole
field and the other has been found recently in describing
some special motions of a closed string in the Taub-NUT
background.

Applied to the Kepler problem, our method would yield
an imbedding into M, which is the standard regulariza-
tion,"*'®23 since My=T *(8%) = T*(S)\ (zero section).
The conformal symmetry is obtained for free.
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Il. CLASSICAL MOTIONS IN TAUB-NUT

Neglecting radiation, the motion of two self-dual mono-
poles is approximately described by the geodesics in the
space of solutions of the Bogomolny equation, called the
moduli space.! The moduli space is the product of R>XS!,
the manifold of the center-of-mass motion, with a curved
four-manifold whose metric was found by Atiyah and Hit-
chin.! The latter describes the relative motion of the mono-
poles. In the long-distance limit exponential terms can be
neglected and we obtain a Euclidean Taub-NUT space of
parameter m = — }, with the line element (1.1). The geo-
desic motion of a spinless particle of unit mass in (1.1) is
described by the Lagrangian

£=1g,%%x" =}((1 + 4m/r)v*

+ [(4m)?/(1 + 4m/r)1( + cos 68)?),
2.1

where v =rf. Here r>0 and the angles 6, ¢, ¥ (0<0<m,
0<¢ < 2w, 0< ¥ < 47) parametrize S*. The points r = 4|m]|,
where the metric (1.1) is singular, are excluded. The con-
served Noether quantity

g = (4m)*[ (¥ + cos 68)/(1 + 4m/r)] (2.2)

associated to the cyclic variable ¢ is the relative electric
charge. From now on we choose and fix a nonzero value for
g. It is convenient to introduce the “mechanical momen-
tum” p = (1 4+ 4m/r)v. The equation of motion is then

dp v r vXr
— = —-2m—r4+-———qg—=— 23
7 Rl hl (2.3)

We have the following conserved quantities. First, the ener-
gy,

e=1(1+4m/r)[vV* + (¢/4m)?], 2.4)
and next the monopole angular momentum

i=rXp+q(r/n). (2.5)
Finally, we have the Runge-Lenz-type vector

a=pXj -—E(4m(e— (g/4m)?). (2.6)

Hence the trajectories lie simultaneously on the cone
Jr/r = g and also in the plane perpendicular to

n=ga+ 4m[e — (¢/4m)?]j, 2.7

because of the relation n'r = ¢( /* — ¢*). They are thus conic
sections. !

For energies smaller than (g/4m)?/2 (which is only
possible for m <0) the motions are bound. We assume
henceforth that m <0.

Under the Poisson bracket and for e < (g/4m)?/2, the
angular momentum j closes, with the rescaled Runge-Lenz
vector

k= =
[(g/4m)* — 2e|
_ DX — (1/r) (4rle — (g/4m)Y) (2.8)
[(g/4m)* — 2e|

into an o(4) dynamical symmetry algebra. For
e> (g/4m)*/2 we instead obtain an o0(3,1) algebra.’
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Via (2.4), the sign of the energy depends on r being
smaller or larger than 4|m|. The excluded points form a sin-
gular sphere

S = {reR®|r = 4|m|}, 2.9

which divides the space into two regions. Energy conserva-
tion implies that a particle cannot go from one region into
the other (although it can hit the boundary S, see below). If
a finite-energy motion approaches S, its velocity |v| goes, via
(2.4), to infinity as (1 — 4|m|/r) —1/2, jts momentum p
hence goes to zero as (1 — 4|m|/r)!/2 Those motions in the
interior of S have negative energy; they are the tightly-bound
motions.//"_. Those motions in the exterior and having ener-
gy 0 <e <¢*/32m? are the lightly bound motions ¥ ... We
shall focus our attention on .4/, .

In the generic case the orbital angular momentum rxXp
is nonzero, and the cone has opening angle a(cos a = |g|/
13])- Such motions avoid S. Indeed, we see from (2.5) that
for nonvanishing orbital angular momentum, j cannot be
radial. However, when hitting the singular sphere S, the or-
bital part necessarily vanishes requiring j to be radial.

Consider now the radial motions. Fixing a direction, we
work with 7, p. If the initial velocity is inward, the particle
reaches the singularity in finite time, and leaves the “phys-
ical” space. If the velocity is outward (but sufficiently low as
to remain bound),

v =((2e — (¢/4m)")r + ¢/4|m[)/(r + 4m) (2.10)

shows that there will be a unique turning point r, > 0 where v
vanishes, namely at

ri = 4|m|{(g/4m)*/[(g/4m)* — 2]} > 4|m|. (2.11)

After reaching ,, the particle returns and falls inward until
it disappears in S. At this very moment, another radial mo-
tion leaves the singularity and follows the same phase-space
trajectory backward. When passing to the quotient, any two
neighborhoods of these two motions intersect. In order to
obtain a Hausdorff topology, such motions should—and
will—be identified. All motions then become periodic.
The set of outer turning points of radial motions is

B°XR ={(r,p,0)| |r| > 4|m|,p =0} (2.12)
and the set of inner turning points is
S XR = {(r,p,0)| |r| = 4|m|,p = 0}. (2.13)

The situation is basically the same for the tightly-bound
motions. The nonradial motions are ellipses which avoid the
origin as well as S. A radial motion has an internal turning
point at 0 <r, < 4|m|, according to (2.11). All radial mo-
tions fall into S in finite time from the inside, with infinite
velocity and zero momentum: Such a motion should be iden-
tified with the motion that leaves S in the opposite direction
along the same trajectory.

1Il. SOME MANIFESTLY 0(4,2)-SYMMETRIC SYSTEMS

A twistor'®?° can be represented by a pair of spinors

Z°= (w7 ) inT = (C2XC?)\{0}. (Here 7. plays the
role of a generalized coordinate and w* plays that of a gener-
alized momentum.) The conjugate of Z“(a =0,1,2,3) is
Z* =(m*%, (0*)') = ((7,)* (&@")*) (the asterisk means
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complex conjugate). The space of twistors is endowed with a
Hermitian quadratic form of signature (2,2) given by

Z°Z* =o' + 74 (0*)*, 4=01;4'=0,1"" (3.1)
To each real number s we associate a (real) seven-dimen-
sional manifold T,, namely the level surface

QZZ%) =}Z°Z% =s. (3.2)

Here T carries the (by construction) U(2,2) invariant one-
form

0= — (i/2)(Z°dZ* —Z*dZ*) (3.3)
whose exterior derivative
—df@=idZ“NdZ* (3.4)

is a symplectic form on T. The Poisson brackets are thus
{Z*Zz3} = — i53. The restriction @, of ( — d6) to the lev-
el surface T defines a one-dimensional integrable foliation
and @, descends to M, the quotient of T, by the characteris-
tic foliation of &, . In this way M, becomes a six-dimensional
symplectic manifold. Explicitly, the characteristic curves of
o, (the Hamiltonian flow of Q) are circles,

Zo, e~ W2Z% Z¥*.eP2Z% 0<p<ién,
which identifies M, as T,/U(1). ,

The unitary group U(2,2) leaves invariant the quadrat-
icform (3.1) and thus, also, the level surfaces T,. The action
of U(2,2) on T, is clearly transitive. The action of the diag-
onal U(1) subgroup of U(2,2) on T, coincides with the flow
(3.5). Therefore, it is only SU(2,2) that acts on the quotient.
In this way we obtain a transitive, symplectic action of
SU(2,2) on (M,,w,). Souriau’s moment map'® therefore
identifies (M., @,) with a coadjoint orbit of SU(2,2), en-
dowed with its canonical symplectic structure. M, can also
be viewed as a U(2,2) coadjoint orbit, where s is an element
in the center of the Lie algebra.

For s7#0 the Poincaré subgroup of SU(2,2) already acts
transitively, so that M, is actually sumplectomorphic to the
Poincaré orbit (2, ., ), the space of motions of a relativis-
tic, zero-mass, helicity-s, elementary particle. 7

For s = 0 the action of the Poincaré subgroup on M, is
no longer transitive and M, is rather the space of motions of a
helicity-zero, mass-zero particle in compactified Minkowski
space S! X S>. M, is obtained from the zero-mass Poincaré
orbit (2, , ) by adding those motions that lie along the
generators of the light cone at infinity.

As will be clear from the parametrization below, all
zero-mass Poincaré orbits are diffeomorphic to
R*X (R*\ {0}). This is thus the topology of M, for s#0. The
topology of M, is, in turn, $* X (R*\{0}). Indeed,

R* =0k, mim,.,

3.5)

(3.6)

where the o, are the Pauli matrices, determines, for any 7,
€C>\ {0}, a unique future-pointing light-like vector (R *)

= (R,R) (R = |R|) in Minkowski space. Conversely, those
7’s that solve Eq. (3.6) for a given R belong to a circle. This

is clear from the following:
cos (8/2)e ¥+ 972
Ty = m( sin(e/z)ei(—lﬁ-f- 2 |
The vector R has the polar coordinates R, 6, ¢. The map

3.7
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.. - Ris thus essentially the projection of the Hopf fibering
$%_, 8% its (multivalued) inverse is the Kustaanheimo-Stie-
fel' transformation.

Choosing 7. to a pair (P,R) in R*X (R*\ {0}) we can
associate a twistor Z ® = (w*, 7,.) by setting

o' = i(P*o,** — i(s/R)o, A )m,.. (3.8)

For any choice of 7. (i.e., of the phase ¥)Z “ belongs to T,
and the whole of T, is obtained. Thus the pairs (P,R) para-
metrize those circles in Eq. (3.5) and thus the quotient
manifold M,.

For s =0, To=ToUT?, (TSNT?, =0), where T
= {(0"*, 7, )€Ty|m,. #0} and T°, = {(0*, 7,.)|w* #0,
m,. = 0}. The complex projective lines in PT meeting PTC,
corresponds to points at infinity in (compactified and com-
plexified) Minkowski space. Therefore, the orbit M, is de-
composed as

Mo= ﬁ0,0’+ UM(:O,
M° =T° /UQ1).

ﬁo,o, + = Tg/U(l)’
(3.9)

As anticipated by the notation, &, , is a zero-mass, zero-
helicity Poincaré orbit because the Poincaré subgroup of
SU(2,2), leaves the constraint 7. #0 invariant. Here M°,
describes those motions that lie along the generators of the
light cone at infinity. The decomposition (3.9) also shows
that M, is symplectomorphic to T +S>, the cotangent bundle
of the three-sphere with its zero section deleted. Indeed, R* is
(by stereographic projection) S* without its north pole; the
Poincaré orbit 7., , is R*X (R*\{0}) =T+ (S’\{N})
and M° =T 3 (8.

The action of su(2,2) =~0(2,4) on T is generated by the
matrices

Yk = — Vx> K.L=0,.,3;5,6). (3.10)
[Our convention for the metric on R** is gx, = diag(g,,,
&sss g66) = ( + l’ - 1’ - 11 - 1, - 1’+ 1)] The matnces
in (3.10) leave invariant the quadratic form (3.1) and the
symplectic form (3.4). The components of the moment map
are Jx; = Z* (¥, )3Z%. In dynamical group notations,"
on each orbit we have the 15 generators

Jos—To=R[(P*+ 1)/2] + £/2R, (3.11a)
jeudi =3 = RXP + s(R/R), (3.11b)
P21 s R
Jy-K=R ~P(RP)—2J+4
¥ RP) =g I+ 2k2
=PxJ — (R/R)T,, (3.11c)

Cordani, Fehér, and Horvathy 205



P24+1 s R
Je—-»U=R —~P(RP)—=—J+¢
¢ 2 RP) -2 T+ 2R?
=PxJ- (R/R)T,, (3.11d)
Js¢—»D= —RP, (3.11e)
Jo-V= —RP, (3.11f)
P18
Jso— T4 =R —_ 3.11
so— 14 2 2R ( g)

In particular, 'y, T'y, and D generate an 0(2,1) subalgebra;
those generators that commute with T, are J and K, which
form an o(4) subalgebra—the “invariance algebra” of the
Hamiltonian I'y. The remaining 0(4,2) generators are some-
times called “noninvariance” generators.

From (3.11) we see that

R=U—-K, P= —V/R; (3.12)
thus from the 0(2,4) relations {Jx. Jyn} = gxndim
+ 8rmIxn — 8xmIxr — 8inIxy We derive the symplectic
forma, of 7, . :

@, =dR,\NdP, + (s/2R*)e;, R ' dR’NdR*.  (3.13)

Now we construct a classical dynamical system which
has a manifest SU(2,2) symmetry. Consider, in fact, the evo-
lution space

M, =M xXR={RP,T}, I, =am +dHACT,
(3.14)

where @ is the symplectic form of the orbit M, and the
Hamiltonian is

HR,P) =T((R,P). (3.15)

Let us extend the 15 generators of 0(4,2) in (3.11) to
A , such that they remain conserved along the trajectories:

H-=H=T,, (3.16a)
J-=1J, (3.16b)
K~ =K, (3.16¢)
U;=U,cosT+V,sinT, a=1,2,3,5, (3.16d)

Vi=—-U,sinT +V,cos T, a=123,5, (3.16e)

where we have introduced the “Bacry-Gyorgyi”** four-vec-
tors (U,) = (U,D) and (V,) = (V,T,).

Combining (3.12) with (3.16) yields an explicit inte-
gration of the equations of motion:

R(TY=U~cos T—V~sinT—K,
P(T)= — (U sinT 4+ V~cos T)/R(T). (3.17)

Equations (3.17) show that the orbits are ellipses, with peri-
od AT = 27. The Runge-Lenz vector K points from the ori-
gin into the center of the ellipse. The orbit is the intersection
of the cone R-J = s, with the plane normal to the vector

N= —U-XV~ =sK+T,J. (3.18)

The quotient of (.#,, X,) by the characteristic foliation of
2, is the space of “unphysical” motions. Since every motion
is infinite and depends regularly on the initial conditions,
this quotient is globally symplectomorphic to the T = O phase
space, which is the SU(2,2) orbit (M,,m,). The projection
m M ;— M, maps a point (R, Py, T,) into the pointat 7= 0
on the unique classical motion through (R, P, 7).
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The group SU(2,2) acts on .4, = M, X R by acting on
the first factor alone, without changing 7. The center of
SU(2,2) acts on the coadjoint orbit M, trivially. Therefore,
the Lie algebra action(3.16) integrates into a global sym-
plectic action of the adjoint group of SU(2,2), which is the
conformal group C', (3,1).

Notice that the “unphysical” energy function H = T,
satisfies H>|s| and equality is only achieved for
R = |R| = |s| and P = 0. A particle with the initial condi-
tions |R(0)| = |s|, P(0) = Ois in equilibrium.

Let us consider a motion with the initial conditions
R(O0)=R,, P(0)=0 at T=0. Since now
U™ = (Ry/R))T47, V- =0, — K~ = (Ry/R,)T" the mo-
tion oscillates on a line segment between the turning points
Iy + I'; according to (3.17):

R(T) = (Ry/Ry)(I'y —T'; cos T, ,
(3.19)

P(T) = — [U/|R(D)|]sin T.

Notice that
IXR ={0<R<|s|, P=0,T}, resp.,
EXR={R>|s,P=0,T} (3.20)

are the sets of the inner, resp., outer turning points.

IV. REGULARIZATION

The classical flow of the Taub—-NUT evolution space is
not complete: The radial motions leave it. Simply adding
S X R would not solve the problem since from the points of
S XR infinitely many motions start, all with zero momen-
tum. Therefore, we regularize by relating the Taub-NUT
problem to the regular “unphysical” dynamical system of
Sec. III. Let us first study the lightly bound case.

Our guiding principle is that the “hidden” 0(4) symme-
try generators j and k of Taub-NUT should go into the
manifest 0(4) symmetry generators J and K of the “un-
physical” problem. This is achieved by setting s = ¢ (#0)
and defining f(r,p,?) = (R,P,T), where

R=(¢/4m)* —2hr, P =p/J(¢/4m)*=2h,
T = [V(¢/4m)* =2k /4mh ]

X (—pr —((g/4m)> — 2h)), (4.1)
and /4 is the Taub~-NUT Hamiltonian (1.2). The first two of
Egs. (4.1) ensure that fintertwines the 0(4) generators and
the last makes f canonical:

[*2, =f*(@, +dHAdT) = Q 4+ dh Adt = o,
4.2)

where
H=14m{[h — (¢/4m)*1/(q/4m)* — 2k }. (4.3)

Expressing through the new variables R and P shows that H
is the generator I'yin (3.11a), which we have chosen for the
“unphysical” Hamiltonian.

Now fi(r,p,t)— (R,P,7) maps the positive-energy
Taub-NUT evolution space & _ into the “unphysical” evo-
lution space #,=M,XR. The formal inverses are
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(rap9t) =f_l(R,P,T), Wlth
2 p=H T ~7p

r=4|m| ) ’
HFE =% 4]m]
2
o )
HFJH*— HZITJH”—
(4.4)
where ¢ = s and the energy transforms according to
h=[VH*=5/(4m)*}(+t H—JH*=§). (4.5)

In order to obtain a positive sign for 4, we have to choose the
upper signs.

Clearly, f cannot be a symplectomorphism because
(% ,.,0) is not complete, while (#, 3,) is complete. In
fact, f=f|& . isnot onto—but this is what we need. Denote
M\ = by M?, where 2 is given in (3.20).

Proposition: Consider the dense, open subset
M° = (M,\Z) X R of the unphysical evolution space. Then
(1) £(F ,,0) - (A2, 3,) is a (pre)symplectic bijection and
(ii) the inverse (4.4) extends naturally into a continuous
mapping 4 ;- & U (S XR). Here f ! carries the whole
3 X R into the singularity S X R.

Proof: Since f'preserves directions, it is sufficient to work
with the absolute values r=|r|, p=|p|, R=|R|, and
P = |P|. Also, since T depended on ¢ linearly, we can—and
will—drop the time variables when studying the global
properties of f.

We first show that Im £ does not contain those points
{0 <R<|q|,P =0}, i.e., the subset = C M,. Indeed, P = Ore-
quires p = 0. Then, by (4.1), R = |q|(+/4|m|)"/*> |g| since
r>4|m)|. Thus Im fC .#°. In order to prove that Im f fills
4", it is convenient to introduce some more points (cf. Fig.
1):

A'=(r=w,p=0),
C=R=0,P= ),
and we set B®={(r>4|m|, p =0} [cf. (2.11)] and B’

={(rp(r))}, where p(r) = (|q|/V4|m|)1/r + 4m/r.
Here B belongsto & _ ,but B ' does not. As we have seen, the
interior points of the region whose boundary is

A=(R=w,P=O),

Toub - NUT c unphysical

o 4
>

r=dimt ° r L Rz[sl

FIG. 1. The canonical transformation fin (4.1) takes the lightly-bound
Taub-NUT evolution space & , symplectically onto .#° = (M, \XZ) XR.
The image of the entire = X R by the inverse £ ~' is the singularity S XR.
Similarly, the tightly-bound evolution space & _ is carried into
(M \E)XR and now f~'(EXR) =S XR. The unbound part %, is
symplectomorphic to the full .. Only the absolute values are shown and
the time variables are dropped.
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{S}U{4'}UB" are carried by finto .#° and f(4') =4
ABY =E,fABH)=C.

Let a be an arbitrary non-negative number and let us
consider the hyperbolas #”, = {r'p =a} and #, = {R-P
= a}. The Taub-NUT evolution space is clearly the bound-
ary B ° plus the union of its intersections with the hyperbolas
. In turn, #° is = plus the union of the hyperbolas #.
Each hyperbola intersects the “upper boundary” B ! at exact-
ly one point, which is sent into C. Furthermore, the hyperbo-
la 77, is carried into 7, since R-P = r-p. It follows that
A NE ) = ,. Adding the bottom line B ® whose im-
age is =, we conclude that the image of fis the entire .#°.

Finally, fis injective: A point (R,P) in E is the image of
(r=4|m|(R /5)? p=0) from B otherwise it lies on a
unique hyperbola 7#°, and thus has a unique preimage in
", N& . This proves (i) of the proposition.

To prove (ii) of the proposition, observe that (4.4) is
naturally defined for any point of .#". However, for a point in
SXR, H=R /2 +5*/2R, so that H— (H*—s*)"*=R
since R /2 — s*/2R is negative for R<|s|. From (4.4) we in-
fer that

STHEXR) = (4|m|,0,R),

whichisin theboundary § XR = {r = 4|m|,p = 0} X Rand
doesnotbelongto & | . The extension f ~'is clearly many-to-
one. Q.ED.

Regularizing Im fC.# _ is trivial: It is sufficient to add
those turning points that we have excluded, i.e., ZXR [cf.
(3.20)]. For Taub—NUT this amounts to gluing together
the branches of the radial motions. When passing to the
space of motions, this means identifying those points that
thus far represent different (not infinite) motions and whose
neighborhoods are not separated. This procedure yields a
smooth, Hausdorff topology, namely that of M,. To summa-
rize, we present the following theorem.

Theorem: The map f: (%, ,0)— (#,, Z,) regularizes
the Taub—NUT problem: It intertwines the time-indepen-
dent o(4) symmetries. Here (/" , @), the space of regular-
ized lightly-bound Taub—-NUT motions, is symplectomor-
phic to the SU(2,2) orbit (M,,&,) and hence carries a
symplectic action of the conformal group C', (3,1).

The results in Sec. II are consequences of what we have
found in Sec. I1I and the properties of the canonical transfor-
mation /. For example, it follows from (4.1) and (3.17) that
the trajectories are ellipses in the plane perpendicular to the
vector n in (2.7),

n = gk + 4m{[e — (¢/4m)21/J(784m)? — 2¢}i, (4.6)

which is (up to normalization) the image of N in (3.18).

The pullbacks of the 15 generators in (3.16) by fyield
0(4,) symmetry generators of the Taub—NUT system: They
coincide with the classical counterparts of the quantum op-
erators written in Ref. 4. Without regularization, this would
only yield an 0(4,2) algebra.

The period of a Taub~-NUT motion could be obtained as
the image under fof the “unphysical” period 2. This would
yield a “generalized third Kepler law.”

Essentially the same argument works for the tightly
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bound motions. The restriction of f to E _ is injective, but not
onto: The inverse (4.4) (with the lower sign now) maps the
E*XR={"R>|s|, P=0, TeR} into S XR, again in a
many-to-one manner. The space of regularized negative-en-
ergy motions is thus once more the orbit M, and therefore
carries a symplectic action of the conformal group
C' (31).

Let us now consider the MIC-Zwanziger system (1.3)
and (1.4). In the bound motion region 0 < e < ¢°/2 we apply
the transformation similar to the one used in the Kepler
problem,'” namely

R= Va —2h(l';l)), P=p/\JE —Zh(]',p),
(4.7)
T= [V@ —2h(r.0) /¢°1 ((¢* — 2h(r,p))t + P).

The transformation (4.7) maps the MIC-Zwanziger
system into the “unphysical” one and the pullback by (4.7)
of the “unphysical” presymplectic form X, is ) + dhAdt,
where h is the Hamiltonian (1.4). Therefore, Eqs. (4.7) are
canonical. The energy transforms as

H=q/¢& —2h. 4.8)
Since g0 by assumption, (4.7) can be inverted:

ro=[H(R,P))/q"1R,, P,=[¢*/H(R,P)]P,

t= (H(R,P,))/q)*[H(R,P,)T—R,P,]. 4.9)

No regularization is needed in this case because the “MIC-
Zwanziger” system is itself regular: No motion reaches the
center. This is clear from r = (H/|q|) (R /|q|) >R /|q].

The point r = 1, p = 0 (the image of R = |s|, P=0) is
now a regular equilibrium point. It is just where V(r)

= ¢*(1 — 1/r)? takes its minimum. It has no physical role,
however, because the “MIC-Zwanziger” approximation to
test particle motion in a self-dual monopole field already
breaks down for much larger distances.

We conclude that for the MIC-Zwanziger system, (4.7)
is a global symplectomorphism. The interpretation of the
symmetry generators is analogous: For example, K corre-
sponds to the rescaled Runge-Lenz vector

k= (1//@ = 2h)(pXj — ¢ (r/1r)), (4.10)

etc. The trajectories are ellipses in the plane perpendicular to

n = gk + (¢°/\g> — 2h)j. (4.11)

This proves the C' _(3,1) dynamical symmetry for the
MIC-Zwanziger system, with generators givenin (3.11), cf.
Refs. 12 and 15. As a secondary result, we also obtain the
equivalence between the regularized Taub-NUT and MIC-
Zwanziger systems, cf. Ref. 25.

V. UNBOUND MOTIONS

Now we give a brief account of the unbound motions.
We start with another “unphysical” system described by .#',
=M, XR and o, = @, + dHAdT [thus far identical to
(3.15)], but instead choose the Hamiltonian

H=T,=}{R(P*>—1) +5/R}. (5.1)
All motions of this system are infinite and thus the space
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of motions .# . /Ker o, is globally symplectomorphic to the
T = 0 phase space, which is again (M,,&.).

The generators (3.11) of the action of the conformal
group are extended into .#; as

r4' =T, (5.2a)
J =3, (5.2b)
U =, (5.2¢)
K =KchT+VshT, (5.2d)
D =DchT+T,shT, (5.2e)
V =KshT+VchT, (5.20)
I'g=DshT+T,chT. (5.2g)

Combing with (3.12) we deduce that the trajectories are
R(T) =U(T) —K(T)
=U—-K chT+V shT, (5.3)

which are hyperbolas with the center at U and perpendicular
to

N=K XV =sK+T,J. (5.4)

For the initial condition R(0) =Ry, (0<|Ry| < ),
P(0) = 0, we obtain a semi-infinite radial motion

R(T) = (Ry/R)(T'5ch T—T7Y),

P(T) =(&) ! thT,
R/ 1—(T;/T3)(1/ch T)

whose (unique) turning point is at R(0) = R,. The set of
turning points is

AXR = {(RP,T)|0<R < 0,P =0} (5.6)

Now we turn to the “physical” systems. Let us first as-
sume that we are working with the m <0 Taub-NUT case
and with the energy e> (g/4m)?/2, so that the motions are
hyperbolas. As for the bound case, nonradial motions avoid
the singular sphere S. All radial motions hit S in finite time,
with infinite velocity and zero momentum. Such a motion
should be identified with the one bouncing off at the same
moment along the same phase-space trajectory. An unbound
motion has a single turning point, which lies in .S XR.

Let us now relate these two systems by an appropriately
modified version of (4.1), f(r,p,t) = (R,P,T), with

R =2k — (¢/4m)’r, P =p/\2h — (¢/4m)?,

2h = 2

T= ~N2h — (g/4m)” (pr — (2h — (g/4m))?t). (5.7)
—4mh

Again, (5.7) is canonical and f*(@, + dHAdT) = o for

H=4m[h— (¢/4m)*)/\2h — (¢/4m)* =T,. (5.8)

The same argument as for the bound motions shows that
f is injective, but not surjective: Im( f) = ., \(AXR).
The formal inverse of (5.7) carries AXR into {r =4|m|,
p =0} XR. In this case, the regularization amounts to re-
storing the turning-point set A X R. The space of regularized,
hyperbolic Taub-NUT motions hence becomes globally
symplectomorphic to (M,, &, ). Therefore, it carries an ac-
tion of the conformal group C', (3,1). This is in contrast
with what occurs for the Kepler problem, where the scat-
tered motions only have a Lie algebra symmetry, which does

(5.5)
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TABLE I. Regularization and group action in various cases.

Bound Unbound
Regularization Group action Regularization Group action
m>0 no bound motions no yes
Taub-NUT
m<0 yes yes yes yes
Asymptotic
BPS no yes no no

not integrate into a group action.'® Those generators com-
muting with the Hamiltonian (5.1), namely J and U, form
an 0(3,1) subalgebra. It is now U (rather than K) that goes
into the rescaled Runge—Lenz vector k under £. Thisisnot a
surprise since (5.7) could have been obtained by requiring
(besides canonicity) that the time-independent 0(3,1) alge-
bras go into each other.

The remaining cases are analogous: For m > 0, the origi-
nal Kaluza-Klein monopole situation, the metric is every-
where regular, including at the origin.?® All motions are hy-
perbolic and none reaches the center, but rather has a
turning point [still given by (2.11)]. The transformation
(5.7) yields a global symplectomorphism between the phase
space N, (which is now a global chart of the space of motions
for g#0) and M,. Therefore, we have a global C'_(3,1)
conformal symmetry.

For a test particle in the long-range self-dual back-
ground unbound motions arise for e>¢*/2. No motion
reaches the center and thus no regularization is necessary.
Equation (4.12) (with a sign change under the root) is again
an injective symplectic mapping: Its image is, however, only
the positive-energy part H > 0 of .« ;. Therefore, there is only
a Lie algebra action, which does not integrate into a group
action because the group trajectories leave the positive-ener-
gy part. The situation is summarized in Table 1.

Vi. OTHER 0(2,4)-SYMMETRIC GEODESICS

Curiously enough, the same type of 0(2,4) symmetry is
encountered for the geodesics of some other metrics. Let us
first consider the metric obtained from the Taub—NUT line
element (1.1) by “rescaling”:

(dy + cos 0dg)*
(1—=1/n?

ds® ={dr + r*(d6” + sin” 0d¢*)} +
(6.1)

Here d /dyisaKilling vector, the Kaluza-Klein analog of an
internal symmetry. The associated conserved quantity
g = (1 — 1/9)2(¢ + cos 64) is again an electric charge. The
geodesics of (6.1) satisfy

d’r, r;

ar P
where v =F and a = ¢°/4m. However, this is exactly the
equation of motion one obtains for a test particle in the
asymptotic field of a self-dual monopole whose electric
charge is ¢.° Observe that (6.2) is the equation of motion for
the MIC-Zwanziger system (1.3) and (1.4) (with the Cou-
lomb coefficient replaced by a); thus it admitsa C',_ (3,1)

ry r;
+aep 5 +d =, (6.2)
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conformal dynamical symmetry with all its aforementioned
consequences.

The metric (6.1) has the Kaluza—Klein form

_(g,-,-+A,.A,./V A,-/V)
8=\ 4w v )

whereg; = 6, (i, j = 1,2,3) is the flat Euclidean metric, 4, is
a Dirac monopole vector potential, and the “Brans-Dicke”
scalar V= (1 — 1/r)?is the square of the asymptotic Higgs
field of a BPS monopole: It can therefore be considered as a
curved-space model for a test particle in the long-range self-
dual monopole field. The metric (6.1) is singular at r = 1,
yielding a singularity in the definition of the electric charge
q. This is consistent with the behavior of a test particle in the
monopole field. (Both the “MIC-Zwanziger” approxima-
tion and the definition of the electric charge are only valid for
r>»1.)

Yet another example was found very recently by Gib-
bons and Ruback,”” who consider a closed string (a “wind-
er”) in a five-dimensional static Kaluza—Klein space-time
8245 [4,B=0,1,2,3,5],

(6.3)

— 8oo
8 +AA/V AV

AV Vv

(6.4)

84 =

(goo = 1). The string motion is governed by the Nambu-
Goto action

1 x4 Ox®
S= L _detg,y PO gt a,
21ra'.[ \/ s S e

where u' = o is periodic with period 27 since the string is
closed and u? = 7. Gibbons and Ruback?’ assume that the
string moves entirely in the internal space, winding m times
around the internal circle: More precisely, they assume that
x> = mRyo,x* = x*(7), where R, is the radius of the inter-
nal circle at infinity. Substituting this ansatz into (6.5) and
integrating over s reduces the Nambu-Goto action into that
of a relativistic particle with rest mass m = mR,/a’":

§= _(me)f _hﬂud_xﬂﬂ dr,
a dr dr

where the new metric 4, is 4,, = g,,/V. If, in particular,
the original K~K metric is that of a Kaluza-Klein monopole
¥V =1+ R, /2r, the new metric is simply

de?

= ——% i a¢
1+ R./2r

geodesics correspond to the

(6.5)

(6.6)

(6.7)
The Hamiltonian
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h=(p* +>)/V and phase space symplectic structure
dr Adp, where p = u dx/dt. Gibbons and Ruback®’ then
point out that the geodesics of (6.7) lie in the plane perpen-
dicular to the conserved angular momentum j = rXp and
are ellipses, parabolas, or hyperbolas depending on the ener-
gy square ¢* being smaller, equal, or larger than the rest-mass
square > This is explained by the conservation of a
“Runge-Lenz” vector

a=pXj— (r/r)(€R./4). (6.8)

Furthermore, j and k = a/y/ (,u2 —hd) generate a Kegler-
type (in contrast to the “MIC-Zwanziger-type”)
o(4)/0(3,1) dynamical symmetry. The energy levels

& = pu*(8n*/u*R%) (Y1 +u’R%/4n — 1)

(n=1,2,...) are n? degenerate.
Our method provides an insight into the above state-
ments. One inverts the energy relation

(6.9)

n=(R,/4)(/u* = &). (6.10)
Define now a transformation (R,P,7) = f(r,p,?):
R=yu>—h’r, P=p/ > -7,
2 2
L T [“ —h t+r-p]. (6.11)
R, 2> —h* h
It is easy to see that (6.11) is canonical,

dR./\d.P + dHAdT = dr Adp + dh A\ dt,if thenew Hamil-
tonian is
H= (R, /4)(h*/Ju* — h?). (6.12)
Substituting 4, expressed by R and P, into (6.12), we obtain
H=T,=4R(P*+1), (6.13)

which is the SU(2,2) generator (3.11a) for helicity s =0,
i.e., the Hamiltonian of the geodesic flow on S* expressed in
stereographic coordinates.

We conclude that f in (6.11) is an (injective) symplec-
tic mapping from the “reduced string system” into the mass-
zero helicity-zeroSU(2,2) orbit &y~ T +8° whichis'®® the
space of regularized motions of the Kepler problem. In this
case R and P are only local coordinates obtained by stereo-
graphic projection. Now f'is not onto; those points not in
Im( f) can be used to regularize the problem along the same
lines as before.

It follows that the geodesics of the metric (6.7) have an
0(4,2) conformal symmetry, with the generators (3.11)
(for s =0).

Vil. CONCLUSION

In this paper we have only studied the classical mechan-
ics. Quantum aspects are found in Refs. 1-4 and could (in
principle) be obtained from implementing the canonical
transformation (4.1) at the quantum level. ‘

The complications arise because of the collisions, which
require regularization. The quantum motions actually be-
have better than the classical ones: Intuitively, the Heisen-
berg uncertainty relations make the collisions irrelevant. Re-
markably, it is for the radial motions that the “Atiyah—
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Hitchin” and “Taub-NUT” motions differ the most.!

The Taub—-NUT approximation is only valid for large
distances, when the exponential terms are small with respect
to those in #~!. In the “real” (Atiyah—Hitchin) case the
relative electric charge may not be conserved; the trajector-
ies may not stay in a plane, etc."?® However, numerical as
well as theoretical calculations?® show that the system still
admits bound motions; for large angular momentum the real
spectrum is very close to the one in the Taub—-NUT limit.

An isospinor test particle in the long-range field of a
monopole>!! has similar properties. In particular, for large
angular momentum, the “‘real” bound motions peak far out-
side the monopole core and the spectrum quickly converges
to the “MIC-Zwanziger” one.”

Finally, notice that the evolution space formalism has
been useful in the past in understanding the symmetries of
the Dirac monopole.*
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Holomorphic quantum mechanics are studied from the point of view of stochastic quantization
in Minkowski space which involves the introduction of two stochastic fields, one in the
external space and the other in the internal space. The equilibrium condition is given by Z,
symmetry between the external and internal fields. In the nonequilibrium case, N = 2 Wess—
Zumino quantum fields are arrived at giving rise to supersymmetry. This helps to define the
supercharge operator Q when the Hamiltonian is given by H = Q2 and an index theorem is
derived for an interacting case when the superpotential is given by V(¢) = 44", ¢ being
complex with n > 2. It is found that the vacuum is degenerate and is in conformity with the
result obtained by Jaffe, Lesniewski, and Lewenstein [ Ann. Phys. 178, 313 (1987)] in the two-
dimensional N = 2 Wess—Zumino quantum field model.

I. INTRODUCTION

Recently Jaffe, Lesniewski, and Lewenstein' have con-
sidered the ground state structure of the two-dimensional
N =1and N = 2 Wess—Zumino quantum field models and
have pointed out that the N = 2 quantum mechanics has
degenerate vacua. The space of vacuum states is found to be
bosonic and its dimension is determined by the topological
properties of the superpotential. The physical interpretation
of N =2 Wess—-Zumino quantum mechanics has been dis-
cussed and the feasibility of realizing holomorphic quantum
mechanics has been pointed out with special reference to a
spin } particle in an external SU(2) gauge field and in the
study of nuclear matter interacting with a pion condensate.
Here we shall show that holomorphic quantum mechanics is
realized in stochastic field theory also when stochastic quan-
tization is achieved in Minkowski space, introducing a doub-
let of fields corresponding to the fields in the external and
internal space. This can also be generalized to finite tempera-
ture when the formalism of thermofield dynamics is utilized
identifying the internal field with the fictitious tilde field in-
troduced by Takahashi and Umezawa.? We shall study here
the supersymmetric properties of such fields when the equi-
librium condition of Z, symmetry between the external and
internal field is destroyed and shall show that we can unique-
ly define a supercharge for such a system. The index theorem
for such a system representing holomorphic quantum me-
chanics is then discussed and it is found that the space of
vacuum states has its dimension determined by the topologi-
cal properties of the superpotential in conformity with the
results obtained by Jaffe, Lesniewski, and Lewenstein® in the
two-dimensional Wess—Zumino quantum field model.

Inarecent paper,” it has been pointed out that stochastic
quantization in Minkowski space as well as its generalization
at finite temperature leading to the formalism of thermofield
dynamics necessitates the introduction of a doublet of sto-
chastic fields. This doublet can be interpreted as comprising
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two fields, one corresponding to the field in the external
space and the other corresponding to the field in the internal
space. This internal field is also necessary to have a relativis-
tic generalization of Nelson’s formalism of stochastic quan-
tization and the quantization of a Fermi field.* The equilibri-
um condition for such a doublet of stochastic fields is given
by the Z, symmetry corresponding to the time reversal sym-
metry of the two fields. The nonequilibrium condition gives
rise to supersymmetric quantum mechanics.

Here we shall point out that the doublet of stochastic
fields may be taken to give rise to holmorphic quantum me-
chanics in four dimensions and the break down of Z, symme-
try gives rise to the N =2 Wess~Zumino quantum field
model. Moreover it is found that the two-dimensional result
of Jaffe et al. regarding the degeneracy of the ground state
except when the superpotential is quadratic is also valid here
and theindex i(Q, ) is found to be identical with the degree of
JdV, where V is a polynomial of degree n>2.

In Sec. IT we shall recapitulate the main features of sto-
chastic quantization in Minkowski space and its generaliza-
tion to finite temperature utilizing the formalism of thermo-
field dynamics. In Sec. III we shall formulate holomorphic
quantum mechanics from stochastic field theory and shall
derive supercharge for such a system. In Sec. IV we shall
discuss the index theorem.

il. STOCHASTIC QUANTIZATION IN MINKOWSKI
SPACE

Nelson’s stochastic quantization procedure is based on
the assumption that the configuration variable ¢(¢) is pro-
moted to a Markov process ¢().° The process ¢(¢) is deter-
mined by two conditions; the first is the hypothesis of univer-
sal Brownian motion and the second is the validity of the
Euler-Lagrange equation. In a recent paper,* it has been
shown that in Nelson’s formalism, the relativistic general-
ization as well as the quantization of a Fermi field is achieved
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when an anisotropy in the internal space of a particle is intro-
duced and it is taken into account that there are universal
Brownian motions both in the external and internal space. In
this formalism, the configuration variables are denoted as
Q(t,&,), where &, is the fourth component (real) of the in-
ternal four-vector £, which is considered to be the attached
vector to the space-time point x,,. We assume that Q(#,§,) is
a separable function and can be denoted as

Q1) = q(1)q(&o). (1)
The process Q(1,5,) is assumed to satisfy the stochastic dif-
ferential equations,

in (t,§o) = b,-(Q(t,é'o),tyfo)dt + dwi (1), (2)

dQ,(t,£,) = b (Q(1,£p),1.60)dE0 + dw; (&), 3)
where b(Q(1,£,).t,E0) and b [(Q(¢,£,),1,£,) correspond to
certain velocity fields and dw; are independent Brownian
motions. It is assumed that dw, (¢)(dw; (£,)) does not de-

pend on Q(s,s’) for s<t (5'<&,) and the expectations have
the following values at 7= 0 and T #0:

(dw; (1)) r_0 =0, 4)
(dw,; ()dw; (")) r_o = (fi/m)6; 6(t——t )dtdt', (5)
(dw;(£6))r—0 =0, 6)
(dw;(£0)dw;(£4)) 70 = (F/7°)6,;6(&, — £4)dEy dE ;,
)
<dwi(t)>1‘;é0 =0, (8)
6 & fw, (¢t —t'
(dw, (P dw, (")) 1 40 =ﬂ—’fngae U= dr !, (9)
(dwi(go»T;eo =0, (10)

o

<dw,-<§o)dw,.<§a)>m—— S enhioge deg (1)

n= —a

with w, = 27n/ph.

It is easily seen that in the limit S—a Eqgs. (9) and (11)
give Egs. (5) and (7), respectively. The form of Egs. (9) and
(11) is dictated by the KMS condition. To make the descrip-
tion time symmetrical in both “external” and ‘“internal”
time we also write

dQ, (&) = bMQ(1.6,).1,E0)dt + dw¥ (1),
dQ;(t,&,) = b"MQ(1,£0),t.E60)dE, + dw} (&),

(12)
(13)

where dw* has the same properties as dw except that
dw*(t){dw*(£,)) are independent of Q(s,s’) with s>t
(s’>§o)-

From the stochastic differential equations considered
here, the following moments can be derived.

(Q:(t80)) 10 ={Qi(1.£6)) s 720 =0, (14)
(Qi(tigo)Qi(t,’§6)>T=0
ﬁ ﬁ —w(t—t),— Wk —E&p
=___5 ( ) [
2mw 270 ue ¢ )
(t>t'€0>£0)s (15
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(Qi(tigo)Qj(t’:gt') ))T;éo

___i a eiw,,(t—t')
Bm .~ . wtw?
1 a e"wn(go—§6)
X 2 o (16)

with w, = 2mn/ph.

This follows from the fact that Q, (£,£,) can be written in
aseparable way g, (¢)g; (£,) and we can utilize the results for
the moments of g; (¢) as derived by Moore®

(q,-(t)>r=o = (q.'(t»T;eo =0, aa7n
(9:(q;(t"))r_0 =i5ije_w“—") (t>t'), (18)
2mw
5:" a eiw,,(t —t)
(qi(t)qi(t'»r;eo:_J z (19)

an=—a w2+wf, )

These results can be extended to the variable g,(£,) in an
analogous way:

(9:(0))7—0 = <q,'(§o)>r;eo =0, (20)
% _ g
(g (§0)4j (£6)r=0 = m 61_’/e Wik §o(§0 >£0),
(21)
xw,,(r—t’)
(qr(é'o)qj(é'é ))1‘7&0 (22)

Z wl2 + w2
Let {e;(x)} denote the complete orthonormal set of eigen-
functions of the three-dimensional Laplacian — A:

Ae,(x) = — K¢, (x). (23)

Also we denote {¢;(§) } as the set of complete orthonormal
set of eigenfunctions of the three-dimensional Laplacian
— A’ in terms of the variables £,

az 62 az
a=9_,9 )
( g} dE3 93
so that

Nej(§) = — wle;(§). (24)

Now we can construct a stochastic field ¢ which can be
expressed as an orthonormal expansion in terms of
q:(2),e;(x), q;(&), €;(§) and write

d(x,0,6) = Zq; ()e; (x)g; (fo)e,(g)
[

Now from the moments of g, (),g; (§,) we can determine the'
moments of ¢(x,t,£),

(25)

<¢(x!t9§))1‘=o = (¢(x)t)§))7'=0 #0’ (26)
(¢(x,t,§)¢(x’,t’ £)
d3k k(x —x') _
W [areme—rgi—r)
(27) fd%re“'“ $ig(&—£5), (27

whereg(¢ — ') and g(£, — £¢) are given by Eqs. (18) and
(21) for T = 0 and by Eqs. (19) and (22) for T 0. Substi-
tuting these relations, we find
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(P(x,6,E)S (X't V) ro

d 1(k (x—x"))
(217')4.[ (k,k) + m?
1 d*nr et(ﬂ(é’ £ (28)
Qm*)  (mm) + 7%

Here (A,B) denotes a Euclidean product and the units
have been chosentobe #i = m = 7° = 1. In the case of T’ #£0,
we find

(¢(x)t9§)¢(x’,t ’35 ,) ) T #0

= | d%k exx—x" - e "(t t")
(217-)3Bmf ¢ n_z—a w +w
a &g —£))
d’m ™68 € 0
(217) BTTOJ- e 2 T
(29)

Now fora particular mode n = 1, we find that the expres-
sion becomes

eku(t_t )

) Bm 3K kX = %) - ! 5k — w0)dky
X amn B d’memEmE
X%—ié—) 8(my — w,)dm,
B (217)4 f d:}’:’:‘)"’: mxz)) 276 (ko — wy)
% ,3770 (217-)4 d:;;.l;”’(j;:) 208 (my — w,),

(30)

where 7° corresponds to the quantity in the internal space
analogous to the mass of the system.

Now from the relations (21) and (27) we note that for
&, = & § = 0and integrating over the internal space variable
g the correlation function just reduces to that of the scalar
field in Euclidean space,

(B, (x",t"))r 0
41, Lk (x — x))
_ 1 J' d*ke . 31)
(2m)* k,k) + m?
In a similar way for T #0, we find from (22) and (27) con-
sidering one particular mode n.= 1,

<¢(x,t)¢(x’9tl)>T=0

4g ik (x—x))
__1 fd ke stk —w)) (32)
@m*) (kk)y+m
normalizing B=7m"=m= 1.
}
ik +m 0 0
Nk
E+m=U""! 0 NE? +m 0
0 0 —ikT4+m
0 0 0
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This is the Euclidean Markov field result which has
been obtained from Nelson’s real time formalism of Brow-
nian motion and in this sense gives rise to the equivalence of
these two formalisms as advocated by Guerra and Ruggiro.”

Now if we introduce an anisotropic feature of the inter-
nal space-time corresponding to the variable §,,, we can ob-
tain the fermionic propagator in Euclidean space-time. To
this end, we introduce the anisotropy by having two opposite
orientations of the internal variable £, (and hence of
m, = i6/6§,) and take into account that each orientation
denotes a separate field and the two opposite orientations
depict two separate fields having two internal helicities cor-
responding to particle and antiparticle configurations. From
Eq. (28), we note that it is effectively a correlation function
in eight-dimensional space-time, four dimensional in the ex-
ternal space-time variable and four dimensional in the inter-
nal space-time variable. To make it an effective four-dimen-
sional expression in the external space-time variable we may
take into account that k(x) is an implicit function of 7(£).
For simplicity and dimensional reasons we take the form
k2= (k'mw), m*>=m'n", where (k',m) is the Euclidean
product and each component of k is given by k; = \/_, ;. So
from the new field variable §(x,,£) where this mapping is
taken into account, we find from Eq. (31) the correlation
function for T'=0,

(Bt EG (X, E ) ro
iVE T (E) — X' (£7)
¢
= dyk'm
(k'sm) +m'n®
f ei(\/Fﬂ)(X(é’) —x'(£)

(k') +m' 7N — (k" 7) + m'7°)
xd*k'r. (33)

Now taking into account that i/m and — i\ corre-
spond to two different internal helicity states and denote two
separate fields and particle and antiparticle states, for a sin-
gle particle state with a specific internal helicity, we should

take —iJ7 (oriym) as a vanishing term. Taking
— i/m = 0, we see that the expression (33) reduces to the
form

(BOESX' ' E ) p = d*k,(34)

1 J‘el(k(x x)
en*) Wi i m

where we have chosen the unit m = 7° = 1.
Now we can choose a matrix y,k, + m = £ + m with

two degenerate eigenvalues + iJk? + m, which can be di-
agonalized by a unitary matrix U:

U (35)
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Thus we just get the fermionic propagator in Euclidean
space-time

<$(xst9§)$(x'9t ”5 ! ) ) T=0

__1 J‘d‘ke‘(k(x x) (36)
2m)* E+m

This shows that when a direction vector giving rise to an
internal helicity in an anisotropic microlocal space-time is
taken into account, we can have the quantized fermionic
field from a Brownian motion process. This result will be
valid for T #0also. Indeed, in a similar way we find from Eq.
(32) for a particular mode n = 1,

(a(x,t,f)a(x',t ,9§,))T=0

47, ik (x— x))
- (2117)"fd ";+m 278 (kg — wy) (37)

normalizing B=7"=m = 1.

From this analysis, it is noted that the statistics of the
particle depend on the internal space-time variable £, . That
is, when £, appears as a direction vector with a fixed orienta-
tion in the structure of the particle so that it gives rise to two
opposite internal helicities which correspond to particle and
antiparticle states, we get a Fermi field. Indeed, the fermion
number is associated with this internal helicity. Again when
there is no anisotropy in the internal space so that there is no
manifestation of £, in the external space we get a boson.
Now the effect of temperature should definitely affect the
internal motion and as such it may happen that at high tem-
perature the anisotropic feature of the internal space will be
destroyed and the fermion will be transformed into a boson.
This is, a massive extended body depicting a fermion can
have such a phase transition. However, this does not mean
that fermion number conservation will be violated as Lor-
entz invariance and the equilibrium condition will not allow
such a process to occur. The only effect of such a phase tran-
sition will be that a thermal pair of opposite statistics will
emerge as zero energy modes at the critical temperature pos-
sibly leading to a nonequilibrium state corresponding to a
supersymmetric phase.® Indeed the stochastic nonlocal field
#(x,,§, ) which is assumed to satisfy the condition of sep-
arability ¢(x,,£,) = #(x,)¢(£,) can be written as a ther-
mal doublet (ﬁfgg ) as the thermal effect on £, may be such
that it may alter the statistics of the particle. However,
though x and £ represent two different spaces, yet as the
external motion may be thought to be a manifestation of the
internal motion, a mapping of x and £ is possible. In that case
x may be represented in the functional form x (£) and the
simplest form of the mapping can be taken to be x = c§,
where c is a suitable constant. In view of this, there should be
a mapping of @(x) and @(£) also. We can assume that
(&) = /1¢'(x) = &* (x), where A is a suitable parameter.
Thus the thermal doublet (${3} ) can be written as (7., ).
This helps us to consider that there exists a conjugate Hilbert
space H associated with the Hilbert space H such that H is
the set H with the scalar multiplication A,£ — A&, where AeC
and £eH and with scalar product (£,7) — ( £,7) with &,7eH
and (&,7) — (£,7) is the scalar product of H. In effect H is
the Hilbert space associated with the external space and His
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the conjugate Hilbert space associated with the internal
space.

Now we write the bosonic field function in terms of the
thermal doublets

_ ¢(x))=(¢(x))
¢(x)—(¢(§) 0
_[(4d 2 2
- S L6(0)6" — m)
a+(p)) i (T (p)> } 38
X[(c'm @/ o/ ) (38)

#(x) = (¢*(x)) _ (qg*(x))

#1®) "\
d*p
- 22-60056* — )
a_(p)) . (al (p)) ,,] 39
x[(a*_(p)e e, @/ T 9

In the case of fermions, we have to introduce the aniso-
tropic feature in the internal space so that it can generate two
internal helicities, corresponding to particle and antiparti-
cle, and in view of this we can obtain the Dirac propagator
when the external space-time variable x, is considered to be
a function of the internal space-time variable £, . But it may
be remarked that we may do the opposite also, i.e., the inter-
nal space-time variable £, may be taken to be a function of
the external space-time variable x,, and we may obtain the
Dirac propagator in the internal variable £, and conjugate
m,, when an anisotropy is introduced in its attached vector
x,, . That is, we can write Dirac functions #(x) and #(£) in
Hllbert spaces H and H, respectively, in a symmetric way. It
may be noted that when at high temperature the anisotropy
of the internal £ space is destroyed, the spinorial characteris-
tic of the field (x,, ) which is acquired through the anisotro-
py of the attached vector £, will be changed to a bosonic one,
but the spinorial characteristic of the conjugate field (£, )
which is acquired through the anisotropy of the attached
vector x, will not be altered and as such we will have a
thermal doublet of opposite statistics. This indicates that at
that critical temperature, we will have a nonequilibrium
state corresponding to a supersymmetric phase and as such
fermion number conservation will not be violated due to
such a phase transition.® This is similar to the features of Z,
symmetry which arises in the finite temperature formalism
of quantum field theory in Minkowski space as proposed by
Niemi and Semenoff.? Indeed, the field function in the inter-
nal space here corresponds to the ghost field introduced by
these authors and the corresponding Z, symmetry is mani-
fested in the anisotropic feature of the internal space leading
to the generation of two opposite internal helicities. As ar-
gued by Niemi and Semenoff, the broken Z, symmetry leads
to a nonelquilibrium state. Our present formalism also leads
to.a similar situation when at the critical temperature, the
internal helicity is destroyed leading to a nonequilibrium
state. Now introducing the mapping ¥(£) = Ay¥'(x)

= it]r* (x) we can write the Fermi field ¥(x) in terms of the
thermal doublets as follows.
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P(x) = (¢ ()
i =(_50 )= [-&0msu -3 |(

This doubling of field may be suitably represented
through the complexification of space-time variables. In-
deed, if we write the doublet as

#(x)) .
(o) = + e (42)

it implies that the space-time coordinate is given by
z=x+if. As we have constructed the stochastic fields
from the stochastic variables g(¢) and ¢(&,) we can write for
the configuration variable in complexified space-time

q(z5) = q(t) + ig(&y). (43)
From this we have the correlations at T=0
(g(20)) = {q(1)) + i{g(&,)) =0, (44)

(9(20)q(zy')) = (q(t + i&,)q(t’' +i€4))
= {g(q(t")) — (g(£x)q(£5))

+i[{g(1)g(£5)) + (g(&o)g(t")) ]
(45)

Now introducing the mapping Aq(z) = q(&,), we find
(9(2)q(25)) ={q(Dq(t"))[1—A2+2iA].  (46)
Noting that
(g(q(t")) = (Fifl2mw)e "~ 7, (47)

we finally have

(9(20)q(25)) = (B 2mw)e = *U = [1 + A2 — 24 ].
(48)
Now we can choose
(1—A%e~ =" =cosw(t—1"), )

2le~ ¥ =sinw(t—1t'),

which implies that A is a suitable function of the dimension-
less variable w(¢ — ¢') with the constraint

(14+A%e 20— =1, (50)
So we can write
(9(20)9(2)) = (H/2mw)e™C ~ 1", (51)

As we have constructed the stochastic fields from the
configuration variables through the relations

#r (x)) ) ' ) ~
((¢1 (x) (P (x),8,(x))) =

(¢:(x)gr (x))

(M)) . (b*_ (M)) . ]
5 —_ M V ipx . ipx
u/ﬂ(x)) f (2m)? (P0)(p" — m?) [(bT+ (.A) (pA)e™ "+ . (oA) V(p,A)e?*}, (40)
b_(pA)

. 1% — ipx b'+ (p"{) )"' 'x]
Bt (M))V(M)e P +(—iI3+(M) V(pA)eP*t.  (41)
$(x) = ze,-(X)q.-(t),
‘ (52)
#(&)

= Ze,-(g)qj(éo),
where ¢, (x) [Jej (§) ] are the set of orthonormal eigenfunc-
tions of the Laplacian
— Ae;(x) =K, (x),
— A'e;(§) = wle, (E).
We can now derive the two-point correlation using the map-

ping x = ¢, k= (1/c)m, and Aq(2) = q(&,) for the com-
plex field

(53)

#(2) = ¢(x) + i$(&) = Pp(x) + idgT(x)
= @r(x) + ig, (x).
Indeed, we find

(#(2)$(2)) = (g (%) + iy (XINQr (X') + idh; (x')))
= <¢R (xX)pr(x")) — (¢1(x)¢1(x’))

+i[($r (X)$ (X)) + (B, (x)dr (x'))].
(54)
AT (x), we find from Eq. (54)

(@(2)(2)) = () (X)) [1 — A2+ 2iA].  (55)
At T=0, (¢(x)¢'(x")) is given by
(B(x)'(x"))

= (2;)3fd3k e == a(t)q(t"))

Now using relation ¢, (x) =

= (21 )3fd3k ek(‘_x,)-71—8~w(‘_")(ﬁ= m=1).
T w
(56)

Now utilizing the relations (49) and (51), we can finally
write from Eq. (55)
(¢(2)¢(2))

— 1 JdSkem(x—x’) 1 o
(2m)? 2w
i d4k eik(x—)() (57)
_(27)4f k:—uw?+ie
When we write ¢(2) = ¢ (x) + id,(x) as the doublet, we
find from Eqgs. (54) and (57)

jw(t—t')

(P (X)r (X)) (P& (x)¢; (x'))
(¢1 (x)¢1(-xl))

_ fd3k ,,‘(x_x,)[cos w(t—t")/ 2w
2m)3 sin w(t — t’)/2w

sinw(t—t')/ 2w ]
—cosw(t—1t") 2w

; 4 ik(x — x')
i k e
(277) —w? +iE 0 — 1
216 J. Math. Phys., Vol. 31, No. 1, January 1990 Bandyopadhyay, Hajra, and Ghosh 216



Thus we get stochastic quantization in Minkowski space at 7 = 0. This is identical with the result obtained in the path integral
formulation at 7= 0 excepting the matrix [; _,°]. The matrix corresponds to reflection invariance representing Z,
symmetry, which is the criterion for equilibrium condition. When this Z, symmetry is destroyed, we have nonequilibrium
statistical mechanics and it corresponds to supersymmetric quantum mechanics.® This is in conformity with the idea that the
current velocity in the internal space is related to the osmotic velocity in the external space which helps us to interpret the
Heisenberg uncertainty relation from the inherent stochastic nature of the internal space-time variable.'®

This analysis can be generalized to the fermionic case also. Indeed writing

¥(2) = P(x) + iP(€) = Y(x) + i, P (x) = Pg (%) + iy, (x)
and taking the doublet

_ ¢(x)) _ (¢R (x))
v = (¢(§> “\v
we will have correlations at 7= 0

_ ¢R(x)) , ,)_ i 4 ey 1 1 o
<¢(z)¢(i)>—<(¢l(x) (¥r (x'),9,(x")) —(zﬂ)‘,fd pe ,s—"_m+us[o _1]. (59)

These results can now be generalized to finite temperature using the formalism of thermofield dynamics when we identify

$(&) = ¢,(x) ='(x) and P¥(&) = ¢, (x) = iP'(x).

From these we can write

(TGeso = 0B

é(x)

P (x))(¢*(y),$(y))|0(ﬁ)>

= ﬁ —ip(x—y) 1/(p* — m* + 0) 0 R

_f ik VB(h’l’B)( 0 B l/(pz_mz_m))m([pm) (60)
10 1
(6(x0 — yo) [6(x),8'ON]) = (0 l)io(xo'-}’o)A(x—y) = — 1(0 ?)Am (x—y), (61)
i¢f(x) ’ o (217.)4 F
1/(p—m+ 0 0

(VT 1/(p_m_m))”“"’”" (62)

- 10 0
(0G° — ") (x9N} = (0 l)(inn +m)if(x" — Y )A(x —p) = — ((1) l)iSm (x—». (63)

The matrices ¥, and V. are the coefficients of Bogoliubov transformations given by

v (| | 8 = (cosh 9(|p|,ﬁ) sin 0(|p|,ﬂ) )_ ( 1/ [1— ¢ Be® e B2y [T 5= Be® (64
s tIP, ) = sinh 8(|p|, B) cosh 8(|p|, B) - e~ Bew2y [T = Be®) /Y1 — e Pe® ) ’

cos v(|p|), B) — €( p%)sin V(IDI,B))
e =(,
F(P B =\ Ppo)sin v(|p|, B) cos v(|p|, B
( I § e B® — €( p°)e“9‘“”/2/‘/—1W) 6
- (65)
€( pPe—Fe® 72/ [T | ¢~ Be®) 1/31 4 e 5P
-
@) =0T+ m>, €(po) =0(po) — O( —po)- = W(/2)V, 0, — mWp — YU — i/2)7,3,, — m}P
(66) .
-— ’ R4
This suggests that in the case of free charged scalar field and =9 (7 YuOu — m):ﬁ . (68)
free Dirac spinor field ¥, the total Lagrangians are given by It is noted that the vacuum is now temperature depen-
L,=a,—-4d, dent and satisfies the relation
=0, 0%, ¢ —m¢'$—03,679,4 + m 4 (H—H)|0(B)) =0 (69)
1 0 1 0 and the total Hamiltonian is given by
—_— -+ - 20+ — _~
=09 (o -1)a"¢ m'é (o -1)"” (67) H=H-H. (70)
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Jil. STOCHASTIC FIELD THEORY, HOLOMORPHIC
QUANTUM MECHANICS, AND SUPERSYMMETRY

From our above analysis, we note that we can construct
holomorphic quantum mechanics when for the configura-
tion variable we take the complexified space-time z, = x,
+ i§,,. In fact, we can now depict the fields ¢ * (z) = ¢(x)
+ i¢(£) and can consider that ¢+ is holomorphic in z. Now
defining the operators '

o=t (L12) =L (2410
2 \dx 73 2 \9x ot

we can write for a free field, the Hamiltonian
H= —233+ m*¢p—o™* . (71)

Identifying #(£) as ¢ (x) as discussed in the previous sec-
tion, we note that the Hamiltonian H corresponds to the
system of free fields where the Lagrangian is given by L s in
Eq. (67). Now if we identify ¢+ (z) = F i2 9V we can
construct two operators @, and Q_ such that

Q_=(8V id )’

i — (dN*
(6 id )
Q*”( 3 —ov)’ (72)

and the Hamiltonian H given by Eq. (71) can be expressed
as

H=TrQ,Q0_ (m=1), (73)
where
_ .1 O
0.Q0_=(—-82 + 19V} 0o 1/ (74)

Since @, Q_ is the sum of two positive operators, it has no
zero mode. Besides, we note that this maintains the equilibri-
um condition of the Z, symmetry between the external and
internal fields as the expression is invariant under the trans-
formations, ¢(x) - — ¢( &), x— —§&.

However, from expression (72), we note that we can
construct another operator Q_Q, which is given by

0 —i(3*Y)
0.0.=0.0 +(, 50 9 ")
This expression for Q_Q, contains nondiagonal elements
and the presence of the term d >V breaks the reflection invar-
iance ¢(x) - — ¢(£), x— — &. Thus the system describes
the nonequilibrium condition and corresponds to supersym-
metric quantum mechanics. Indeed, we can now define an
operator ¢ such that

(75)

0 Q_)
= (76)
o=(5. %
and we can construct the Hamiltonian H given by
Q.0 0 )
Hy=Q%= ( * . amn
== 0.0

Evidently, the system given by the Hamiltonian H breaks
down the Z, symmetry of reflection invariance of the exter-
nal and internal fields. In fact, due to the presence of the
operator @_Q, in Hy, it possesses zero modes as has been
explicitly shown by Jaffe et al.’ Thus we can define the super-
charge Q such that the Hamiltonian is given by Hg = Q?
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when the stochastic field theory involving external and inter-
nal fields is described in terms of holomorphic quantum me-
chanics.

Moreover, following the procedure of Jaffe et al.,! we
can show that this formalism of holomorphic quantum me-
chanics for stochastic field theory gives rise to N = 2 Wess—
Zumino quantum mechanics. In fact, we can also choose for
the Hamiltonian Hy the following expression:

Hy=Q%= —3d3 + |9V |

— 3, 32V — Py (32V)%, (78)
where
¥ = 3(Yo — iv3), = i1 +iy2),s
b= — i), Ya=irs+irs), (79)
with

—(OI) —(0 io"') =123 (80
70_10’ ‘}’,— —la'j 0" J=1,4,3. ( )

These fermionic degrees of freedom satisfy the following an-
ticommutation relations at equal time:

{;01»'»&2} = {!7’2"/’1} =1,

7.7 (81)
We can now define two conserved charges given by
Q1 = ithd — iy (IN*, 2)

Q, = iYd + iy, 3V,
so that the supercharge Q,’is given by

0=0,+0, (83)
The Lagrangian for such a system can be taken to be'
L=z + (it + bothy) + 6,9, 3V

+ a1, (37V)* — |V I, (84)

where V'= V(z) is a polynomial of degree n. The action
SL dtis invariant under the following infinitesimal transfor-
mations:

oz = '_ﬁlfs o6z= E'ﬁzs 8y, = — (IN)*e,

59, = ize, OY,+ ize, 8P, = (IN)e.

Thus we find that we can derive N = 2 Wess—Zumino
quantum mechanics from stochastic fields in a complexified
space-time. The supersymmetric quantum mechanics arises
through the introduction of nondiagonal elements which
breaks down the reflection invariance between the external
and internal fields which is necessary for equilibrium condi-
tion. Also we note that through this formalism of holomor-
phic quantum mechanics we can derive a supercharge Q
such that the supersymmetric Hamiltonian is given by
Hg = Q2. This links up the inherent supersymmeric feature
in the stochastic quantization procedure as we first pointed
out by Parisi and Sourlas!! with the conventional formalism
of supersymmetric quantum mechanics.

(85)

IV. STOCHASTIC FIELD THEORY AND INDEX
THEOREM

Jaffe et al.! have shown that the N = 2 Wess—Zumino
quantum mechanics has degenerate vacua. The space of
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vacuum states is bosonic and its dimension is determined by
the topological properties of the superpotential. The same
result can be derived from the stochastic field theoretical
formalism using the formalism of thermofield dynamics.

The index theorem for a free field theory has been de-
rived from the stochastic field theory using the formalism of
thermofield dynamics in a recent paper.’ Here we shall gen-
eralize this result in the presence of a superpotential. In the
free field case, we can define two Klein operators

6= (—1)F0=(-1)F (86)

where 8 = J6J, J being an involution operator with the prop-
erty J2 = 1. As discussed in Sec. I, the tilde function is asso-
ciated with the internal field and the total Hamiltonian of the
system is given by

H=H-H,
where
H=JHJ. (87)

In this formalism, the vacuum is temperature dependent and
we have the relations

H|0(®) =0
(4) =40(B)|410(B)). (88)
Now it is noted that for the Klein operators 6 and 8 we have

010(B)) =810(B)) #10(B)),

810(8)) = 6610(8)) = 0(B)). (89)
We can define an index for the ground state given by
Q) =Tr(— DFe~#|,_, (90)

where F = F + F, H = H — H. This can also written as
i(Q,) = (0(B)|6610(B)) .. (91)

As we have mentioned in Sec. II, the thermodynamic
equilibrium is maintained as long as Z, symmetry (time re-
versal symmetry) is operative in nontilde and tilde objects
corresponding to the external and internal space. That is, the
orientation in the external space should be opposite to that in
the internal space. However, this formalism of stochastic
field theory suggests that there may exist a critical tempera-
ture 7. when the orientation of the internal space is changed
leading to a nonequilibrium state. Indeed for the thermal
doublet of a bosonic field ¢(x) = (§(7)) = (g,‘(":) ) it may so
happen that the isotropic feature of the bosonic field
#(&) = @' (x) is lost at this critical temperture and an inter-
nal helicity is generated for this field giving rise to an aniso-
tropic feature leading to the generation of a fermion. Thus
beyond this temperature 7. we have the supersymmetric fea-
ture due to the breakdown of the Z, symmetry which will
then give rise to thermal doublets of different statistics which
will appear as zero energy modes as suggested by Matsu-
moto et al.?

Now to find out the index theorem in the supersymme-
tric phase we note that the equilibrium condition demands
(0(B) |68 |0(B)) = 1 = f 8(F+ F)dF. (92)

In the nonsupersymmetric case, for a bosonic thermal doub-
let F= F=0. However, for a supersymmetric phase, we
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may have F = + 1 depending on the orientation of the inter-
nal helicity developed leading to an anisotropy in the inter-
nal space. Thus we will have the index

i(Q,) =0(B8|0(B)) 5

=f5(Fj; 1)dF=1. 93)
However, in an interacting case with a superpotential given
by

Vigyime* + 3 a;¢f
j=3
with complex ¢, a,#0 n>3 as we have identified
¢+ = F iv2 gV, we note that we will have (n — 1) images
of such thermal doublets. So for an interacting case, with
superpotential V(¢) = A¢" we will have

i(@,) = (n—1){0(B)|6810(B))5_..
=(n—Df&Fi1MF=n—l=dQ8V

this is identical with the result obtained by Jaffe ez al.! in the
two-dimensional N = 2 Wess—Zumino field model and we
can conclude that the holomorphic quantum mechanics
constructred from the stochastic field theory will also lead to
a degenerate vacua in the interacing case when the superpo-
tential is given by V(@) = A¢" n>2.

V. DISCUSSION

We have shown here that the relativistic generalization
of Nelson’s stochastic mechanics as well as stochastic quan-
tization in Minkowski space helps us to construct holomor-
phic quantum mechanics when in the nonequilibrium condi-
tion we can realize N=2 Wess—Zumino quantum
mechanics and supersymmetry. In the equilibrium condi-
tion, we get stochastic quantization in Minkowski space and
we have Z, symmetry between the external and internal
fields which form a doublet. When this reflection invariance
is broken, we get supersymmetric quantum mechanics
which imply that supersymmetry gets broken in a multiply
connected space.

The inherent supersymmeric feature in stochastic quan-
tization leading to Euclidean quantum field theory from a
Langevin equation incorporating a fictitious time was first
pointed out by Parisi and Sourlas.!' However, it was not
clear whether this supersymmeric feature which involves in-
variance of the action under certain supersymmetric trans-
formations is equivalent to the conventional supersymme-
tric quantum mechanics which defines a supercharge Q such
that the Hamiltonian is given by H = Q2. Indeed in that case
the action involves fermionic variables only through the de-
terminant which arises in the averaging procedure and hence
the invariance of the action under supersymmetric transfor-
mation in this case does not imply the existence of the super-
charge Q as well as the existence of the grading operator ¥
such that H = Q?and yQ + Qy = 0. However, here we have
pointed out that stochastic quantization in Minkowski space
introduces two stochastic fields, one in the external space
and the other in the internal space; in the nonequilibrium
case we can construct holomorphic quantum mechanics out
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of these two fields, which becomes equivalent to N =2
Wess—Zumino quantum mechanics and gives rise to the su-
percharge operator.

Finally, it may be pointed out that this formalism helps
us to study finite temperature field theory as well as finite
temperature supersymmetry through the methodology of
thermofield dynamics when we identify the tilde field with
the stochastic field in the internal space. Indeed in a recent
paper,” we have pointed out that there exists a critical tem-
perature 7, below in which supersymmetry is broken and
the zero energy mode is given by a thermal doublet of oppo-
site statistics and in the case of a free field theory the index
i(Q,)=n, —n_,wheren, =dimkernelQ isfoundto
be 1. It may take the value } also when the zero energy mode
is given by a thermal doublet of the same fermionic statis-
tics.® Here we have pointed out that in the interacting case
when the potential is given by V(¢) = A¢",¢ being a com-
plex scalar field, and n > 2, the vacuum is degenerate and the

220 J. Math. Phys., Vol. 31, No. 1, January 1990

index takes the value n — 1 = deg dV. This is identical with
the result obtained by Jaffe e al. in the two-dimensional
Wess—Zumino quantum field model.
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New class of nonlinear realizations of extended graded anti-de-Sitter

supersymmetry OSP (N,4), N>2
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_The nonlinear realizations of N-extended graded anti-de-Sitter supersymmetry with three
different ways of splitting into linearly and nonlinearly realized sectors of OSP (N,4)
superalgebra are considered. Nonlinear transformation laws are derived for Goldstone
fermions and Goldstone scalars that describe a spontaneously broken sector in extended anti-
de-Sitter supersymmetry. Cartan forms on the supercosets are derived and corresponding
nonlinear Lagrangians for Goldstone fermions and scalars in anti-de-Sitter space are
constructed. The contraction of OSP (2N,4) supersymmetry to Poincaré supersymmetry with

central changes is discussed.

I. INTRODUCTION

A geometric description of spontaneously broken sym-
metries and supersymmetries may be achieved within the
framework of nonlinear realizations. In the late sixties it was
realized that the interactions of Goldstone fields can be geo-
metrized by introducing the framework of o models and
nonlinear realizations of internal symmetries.'? On the oth-
er hand, it is interesting to recall that the first field-theoretic
example of supersymmetry>* was described by nonlinear re-
alizations on the supercoset parametrized by spin-} fields
called Goldstone fermions.

In Ref. 4 Volkov and Akulov considered the following
supercoset:

Ky =8Py/0(3,1) XU(N), (L.1)

where SP, is the N-extended super-Poincaré group and
U(N) is the internal symmetry group. The supercoset K is
parametrized by the four space-time translations and 4.V an-
ticommuting fermionic degrees of freedom describing super-
translations. These 4N fermionic degrees of freedom de-
scribe the fermionic Goldstone fields. On the supercoset
(1.1), which is a homogeneous space, the supergroup SP, is
realized nonlinearly, only with its subgroup O(3,1) X U(N)
realized in a linear way. Using standard procedures in non-
linear realizations theory!** Volkov and Akulov introduced

Cartan forms on Ky and by taking their fourfold outer prod-

uct they obtained the invariants under the transformations
of the supergroup SP,. These invariants can be interpreted
as the Lagrangians of the interacting Goldstone fields. Later
the nonlinear realizations of N-extended Poincaré super-
group SP;, with } N(¥ — 1) central charges were also con-
sidered.5’ In Ref. 6 Ferrara did show that their coupling to
N-extended supergravity provides the simultaneous occur-
ance of Higgs and super-Higgs effects. In this case with a
maximal number of central charges the whole internal sym-
metry subgroup U () is spontaneously broken, and the su-
percoset under consideration has the following form:

K =SP4,/0(3,1). (1.2)

In all the cases discussed above the Goldstone fields are con-
ventional D = 4 Minkowski fermionic fields.
In order to have a better analogy with nonlinear realiza-
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tion of internal symmetry group, it is appropriate to consider
anti-de-Sitter extended supersymmetry described by semi-
simple supergroup OSP(N,4). Zumino,® by applying the
standard theory of nonlinear realizations to supergroup
OSP(1,4), derived the nonlinear transformation laws for the
four-component Goldstone-Majorana spinor implemented
by spontaneous breaking of N = 1 global supersymmetry in
anti-de-Sitter space. In the anti-de-Sitter case the action for
the Goldstone field contains the mass term proportional to
the inverse of the anti-de-Sitter radius R. There exists also
the formulation of anti-de-Sitter supersymmetry with super-
field realization on the superspace described by the superco-
set OSP(1,4)/50(3,1).>'° Keck'! has constructed the cor-
responding superspace and has studied superfields, which
were reduced to its irreducible parts. Further, Ivanov and
Sorin'® did show explicitly how to construct OSP(1,4) in-
variants from superfields and used them for the construction
of the nonlinear Lagrangian densities. Recently, Azcaraga
and Lukierski'? proposed a superfield extension of the Vol-
kov—Akulov method of constructing nonlinear realizations
of extended Poincaré supergroup. Their formulation de-
scribes partial supersymmetry breaking (N = 1 supersym-
metry remaining unbroken), but it was shown that the mod-
el contain ghosts.

It has been shown that there is a connection between the
superfield approach to the supersymmetry and nonlinear re-
alization of the Volkov—Akulov type. Ivanov and Kapustni-
kov in Ref. 13 and Sammuel and Wess in Ref. 14 gave the
formulas that describe the transition from nonlinear realiza-
tions to the linear ones, with Goldstone fermions described
by constrained linear Goldstone superfield.

In this paper we provide a group theoretical framework
for the model invariant under extended anti-de-Sitter super-
symmetry with spontaneously broken generators by consid-
ering nonlinear realizations of OSP(N,4) supergroup on the
following supercosets:

(a) OSP(N,4)/80(3,1) XO(N);

(b) OSP(N,4)/580(3,1);

(c) OSP(N,4)/50(3,1) XU(N).

We are reminded of the nonlinear transformation laws
and deduce the nonlinear Lagrangians constructed from
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Cartan forms. After the discussion of basic formulas of non-
linear realizations (Sec. II) we investigate the supercoset a
(Sec. III). The formalism describes the generalization of the
Zumino model® to arbitrary N. Using Cartan forms we ob-
tain a nonlinear Lagrangian of ¥ interacting Goldstone fer-
mions. In Sec. IV the nonlinear realization on a product of
symmetric supercosets is discussed. Such a formalism is ap-
plied to the second supercoset b, with the spontaneously
broken sector described by N Goldstone fermions and
} N(N — 1) scalar Goldstone fields. We propose the nonlin-
ear Lagrangian which describes the interactions of all these
Goldstone fields in anti-de-Sitter space. The last supercoset ¢
describes the nonlinear realization of the OSP(2N,4) super-
group. By contraction to the OSP(2N,4) superalgebra, pro-
posed by Lukierski and Rytel,'* one can obtain the nonlinear
realization of a N-extended Poincaré supergroup with
} N(N — 1) central charges, given by Ferrara in Ref. 6. In
Sec. V we construct the nonlinear realization on supercoset ¢
and perform the contraction to SP}.

Il. BASIC FORMULAS DESCRIBING NONLINEAR
REALIZATIONS ON COSET SPACES

A. Global nonlinear realization on symmetric spaces

Following Ref. 16 we consider the Lie algebra (superal-
gebra) G in the form .
G=HeS
and
[H,,I-I 1=d Hk, [H.5]
[S,,S] = ¢} Hk, .10

where Hj are the generators of subalgebra H called symmet-
ric subalgebra. We denote the group elements by

s =exp §-§= exp §"§j,
22)
where £ and A are the Lie group parameters. By S we de-
note coordinates, parametrizing the coset, and subalgebra H
generates the subgroup H. If H is a connected subgroup and
if the relations (2.1) hold, then the coset G /H is an example
of a symmetric space.'’

Every element g of a Lie group G can be written in the
form

g=sh,
where s belongs to the coset and 4 belongs to H.

We now consider the transformation of s under the ac-
tion of the group element g. We evaluate first the case in
which g, = h,cH,,. Then g, = exp A ’H and we have

S’ =gosA(g5 ") = hosA(hg ') = hosh 5!
= exp(4 "I?,-)exp(g“'.?,.)exp(/l "I?,.) = expf ”'§,.,
In this case the transformation is linear and has the form
&' = (exp B), &/, (2.3)
where Bj = 4 “b}; and b }; are given by the relations (2.1).

Consider now the case when g,€S, so we have g, = exp £(S,.
Then, because A(s) = s, we have

S =gsA(gs ') =exp£5S, exp £'S, exp £45,.

h=expA-H=exp /VI?,-,
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Using the Baker—-Haussdorff formula we find
exp 2§ ’j/‘s\:i = exP[2§i1§i + 2§'§_ 3 [[§'S,§0'S],§‘S]
+ higher commutators

+0(ESy 4]

=exp 2§ ":S\'j.
So finally using the relations (2.1) we obtain
288 =24 — 3 Chb né "E €Y + higher-order terms.
2.4)
We see that the transformation is nonlinear.

B. Nonlinear realization on a homogenous space

In many cases of physical interests the algebra G hasnot
the form given by (2.1) and hence the formula (2.4) are not
valid. However in infinitesimal case under some assump-
tions it is possible to derive the formulas of nonlinear group
action on a coset space.

We assume now that G' has the form

(B8] =a}f,; 5] =
[S,,S] —c’"H +d¥ Sk, (2.5)
Asin the previous case every element g of the group G can be
represented uniquely in the following way”'S:
g=s5h=[exp g‘-g‘ 1h; heH.
The action of the group element g, on the coset is the follow-
ing:

goef'g" = e55h,. (2.6)
Now #, is a function of g, and &. As before, if g, = h,eH we
have

hoesS = hoetSh o thy = e 5h,.

The condition [?I,g] cS implies

S =hetShy
and the transformation law of ¢ is linear.

Let us consider the case in which gues, i.e., go = e,
Equation (2.6), in general, is not solvable, but if g, is
infinitesimal then A, is also infinitesimal, and using the nota-
tion introduced in Appendix A, Eq. (2.6) can be written in
the form

“ESINES — [(1— D /(EDINGES=h, — 1,

g=1+4+¢ X £¢ is infinitesimal. 2.7
On the right-hand side of the equation we have an element of
the subalgebra H This implies that the coefficients multiply-
ing the generators S on the left-hand side of Eq. (2.7) must
be equal to zero. In such a way we are able to find 5§’ and

h — 1. The condition that the coefficients of generators S;
must be equal to zero gives the following relation:

8 =60 — ) [chbim€bE 6™+ EELEd [d ) ]
+ higher-order terms.
We see that if we put /,, = 0 we obtain in the case of sym-
metric coset space the formula (2.4).
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C. Cartan forms on the coset space

Cartan form @ is the Lie algebra valued form defined on
the coset®

w=e3detS= -S4 v 7,
where u'(£°,d£") and v/(&,dE’) are the ordinary differen-
tial one-forms. The transformation law of w is easy to derive
if go =ho = H. We get

@' = hoe = 5Sh g \hodeSSh g ' = hogwh g . (2.8)
On the other hand, if g, = eg'3 one can check that

o =hoh'+hdh[! 2.9)
or more explicitly

wS=hpShit,

vH=hyvHR +hdhi (2.10)

So we see that w, &', and v/ transform in both cases by the
element of subgroup H, but in the second case #, depends
nonlinearly on the coset coordinates £’ and on the param-
eters of g. Because G acts on the form @ by the transforma-
tion belonging to H, therefore every H-invariant constructed
with g’ will be also invariant under entire group G. In these
invariants the coordinates £ will transform linearly under
action of subgroup H and nonlinearly under remaining
group elements. If H is the Lorentz group such invariants
can be used as nonlinear physical Lagrangina densities. This
will be discussed in next paragraphs.

1ii. NONLINEAR REALIZATION OF SUPERGROUP
OSP (N,4) ON THE COSET OSP (N,4)/S0(3,1) x O(N)

A. Algebraic considerations

The superlattice OSP(N,4) has the form'®
{00.05} = 8"V apPa + m[8(™VV) (s Mas

+ (PP)ap T);
[P.,Qa]=1im(y,¥5)Q0;
[T,.Q.] =W 7F(Q)as
— [ MMy ] = Nac Mpq + MpaMac
+ BaaMop + N Mag;

[PosPp] = — im*M,;
— i[Mab’Pc] = Nacly ~ Mo Pas
[Ty T =6uTy+6;Ty — 6, Ty —8;Ty;

P l1=[T;M;,]=0, m=1/R,

[T

where ijj = 1---N, and B,a = 1---4 (we use the four-com-
ponent Majorana formalism), so we have 4N real super-
charges Q.. Besides 0,, =1 [¥.,¥5 ], where a,b=0,1,2,3
and ¥* are the real Dirac matrices satisfying

{}/a.yb}=277ab; Nab =dlag( - 1’1’131)
and TV = — T# = J9T"describe O(N) generators expand-
ed in the N XN matrix basis denoted by J¥= —J/
fr=1---N(N —1)/2]. The Lie algebra O(N) describe the
internal symmetry group. Real supercharges extend the Lie
algebra SO(3,2) X O(N) to superalgebra OSP(N,4). The
extension is possible because the fundamental spinor repre-

[Mabigfx] = i(aabQi)a;

3.1
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sentation of SO(3,2) Lie algebra is a real four-component
Majorana spinor. One can introduce five 4 X 4 real matrices
I',, which describe real spinor representation of the
S0O(3,2) Clifford algebra as follows:

{PA ’FB} = 21 45,

N5 = diag( — 1,1,1,1, — 1); 4,B=0,...,4

and choose ', = (7,,%5)-

Zumino has derived the nonlinear realization for
OSP(1,4) supergroup.® It is easy to see that SO(3,2) Lie
algebra is a symmetric subalgebra of OSP(1,4). On the other
hand, SO(3,1) Lie algebra is a symmetric subalgebra of
SO(3,2) Lie algebra [but is not symmetric subalgebra of
OSP (1,4) !']. Thus according to the general scheme 2a,
OSP(1,4)/S80(3,2) and SO(3,2)/S0(3,1) are symmetric
spaces. This implies the following parametrization of the co-
set®:

exp(6Q)exp( — ix°P,), (32)
where 0 is the Grassmann parameter describing fermionic
coset OSP(1,4)/50(3,2) and x° are the parameters describ-
ing the coset SO(3,2)/80(3,1) (Ref. 8). We shall proceed
similarly for general OSP(N,4) case. Now the reducible Lie
algebra SO(3,2) X O(N) form the symmetric subalgebra of
OSP(N,4). Generalizing the previous particular OSP(1,4)
case we can write

OSP(N,4) _ OSP(N4) S0(3,2)
SO(3,1) XO(N)  SO(3,2) XO(N) ~ SO(3,1)
So the supercoset (3.3) is the product of two symmetric
spaces and has the following parametrization:

exp(0°Q,)exp( — ix°P,).
Now we can apply the general scheme from Sec. II B.

(3.3)

34)

B. Nonlinear realization for arbitrary &

Following Sec. II B we shall study only infinitesimal
transformations. Because the considered coset is the product
of two cosets, the supergroup OSP(N,4) acts in the follow-
ing way:

goeaiQi = ealith(o l',80); (3.5)
he™ % Fe=e™ " (8,0 x%); (3.6)

1,eSO(3,1) XO(N) = L.

First let us study the case when the group element g, belongs
to subgroup L. So we have

8o =1l=1+}i"M, +4A7T,,

where v** and A ¢ are infinitesimal parameters. The formula

(2.7) gives
LA lpe
e~ ix'°P, = loe_ ix‘P,,lo_ 1

The transformation law of 8 ‘ and x° is linear

@'Q,»l —1
o]

hy=1,=1, (3.7)

04 =0, —A¥(J)u(TH"™(6,), —1v*(0.,0"),
x'?=exp[} ﬁ/“bMab]‘c’xc.
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Next case is given by g, = h, = exp( — is"P, ), s° is infinitesi-
mal. The SO(3,2) X O(N) Lie algebra is symmetric subalge-
bra of OSP(N,4) superalgebra, so we have

o= hoea‘Qih o ! (3.8)
and this implies

01 =0 +1ms, (Y107,
The next step gives

hge ™ e = ¢~ "ol (57, x7). (3.9)

Here we should deal with the nonlinear realization of
SO(3,2) group on the coset SO(3,2)/S0(3,1). This exam-
ple of nonlinear realization is treated in Ref. 8. The transfor-
mation law of x“ under the action of group element
h, = exp — is® P, is nonlinear and inhomogenous

x° =5+ (Yymi? cothym®3* — 1) (s° — x’s,x/x?) .
(3.10)

Now we shall consider the case g, = exp @;Q". We should
use Egs. (3.5) and (3.6). Equation (3.6) has the same form
as (3.9), but now 4, depends on Grassmann parameters 6°
and a'. Therefore x° has the same form given by (3.10), but
now s” is the function of @/, and aj,. If ' are infinitesimal
then using (3.5) one can write

e“élgla Ql' @'Qi §,Q’6e@,g"
= —is(8'@)P, +}iv*(8'a )M,
+ 4965 T, = h,('87). (3.11)

As it was mentioned in Sec. II B we can obtain from this
equation the transformation law of 6 and the parameters
s°(0'a’), v*(8'a’), and A “(6',a').

The result is the following (see Appendix B):

so'=a'+ $T LU p, B, G
(2k)! B
where B,, _, are the Bernoulli numbers and
B4k = (im)* [— 38‘2:: .06, +20’0m02k 2
+Dg_—__20191], (3.13)

where 2 {_, = . This the recurrent formula. We have also

Sa=ei7’a7;77'i; Vab=maiaab77|§ 'i'ij=m@i77]i§ (3.14)
and
) k=4N+1 2(22"—' —1)
i = —_____B
7 P [ 20! 2k
__1 k+122k i
_((2)—k)'sz_1] gﬂ“ (3.15)

In fact the sums in (3.12) and (3.15) are not infinite. The
term 5%, when 2k>4N + 1 will vanish identically due to the
anticommutating properties of the spinor components (see
also Appendix B). For example, in the (OSP 1,4) case we
haveonly 3; and 5 . If we shall makes now the use of (3.14)
and (3.10) we get the transformation law of x“ under action

of g, =expa, Q-
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C. Cartan form on the supercoset OSP(N,4)/S0(3,1)
X0

According to the general scheme in Sec. III C, the Car-
tan form is given by the formula

ix"P,e —B0' d (ea,»Q ’e - ix"P,)

w=e

=w,Q'—
where w;, 1% v*®, and 9 are the forms that depends on x°, 8,
dx°, d0°. Using the method given in Appendix B we can find
the components of Cartan form . The result is the follow-
ing:

@ = ch } ym’x75j, — (1/¥x7)sh § Vm*X*x 07,75
po = + (ch Jm 2—1)(s*'+ X5 )

iu’P, + 1 iv*M,, + p'T,

i

sh ym*x%t **x,

b b
- 1) (dx" + 2 dxz"x )] ,
X
Pij=m§i77§!

2.2
yoab = m f sh ymZx*x%"
V x

2
m b
-2 _x2 ch ym?>x? t“x,x°,

m-x

+ [ x4 (sh Jmx?

m-x

where
s =8V 1% = imB,0™n;;
. k=N 1 o
T & @k o
k=4N41 1
7= — — 3%
o (2k+2)

2% 18 defined by (3.13) and now g =d6".
The generators P, belong to the coset OSP(N,4)/
SO(3,1) XO(N) and therefore the transformation law for
the one-form u“ has the form

ueP, =p°P,,
where €S0(3,1) X O(N) and it is defined by the relation

he =g “Pa(9x%a')
and A, is determined by relations (3.14).

The forms p* transform only under SO(3,1) part of L,
because of [T;,P,] =0. We deal here with the local
SO(3,1) transformations, because L, = L,(8'x%a’) de-
pends on the parameters x° that we interpret as the space-
time coordinates in anti-de-Sitter space.® We shall interpret
6 'as the spinor fields 8 ‘(x), with the following transforma-
tion law:

A9 =60+ 6x°9,0".

Following Zumino® we define

wou' iy = — a* % dx® dx'dx? dx*.
It is easy to check that

0,1,.2.3

WO = det(L)pp' iy,
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where u’® = (1,)°,u° and 1,e80(3,1). We see that the prod-

uct p%'u?u’ is invariant under the SO(3,1) group and

therefore is invariant under the entire OSP(N,4) super-
group.
The first terms of 4° are the following:

pt=dx® + % i8,7°7° dO’ + imB,0" d' x,
- % mB,yy° d6°6%6, — % m8,y° 688,

+ % m0,y°y°0%d0,6' + O(m?).

This gives the following action density:

L= — l2 det( ? + % 0,7y 3,0' + im6,0°8,6 .
a

— 57 9056, - % md,y°3,0'96,

+ '1—’:‘ 8,/7°0%3,8,6" + 0(m2)) .
The first few terms are the following:

& = == iy O — imP Iy,
+ 250V 3P — 2 m Y OV

+ 34_':1¢17ﬂ7;# aa‘_bk'pi - 0(m2)9

where ¢/ are correctly normalized Goldstone fermion fields
¥ = (1/a)8", [a] = 1/x*. Using the Lee-Gursey transfor-
mation'8?

Al= (14} myx)f + -
and setting ¥'° = y*y° we obtain finally

&= —%—%ﬂiyai'—imz,-/l"

a
+ 2Ty AT+ %ﬂz,.ya/l ni,

_ ik'"—'z,.,i by AL — -3- .y oA 'my,

+ O(m?).

The Lagrangian density describes interacting Goldstone fer-
mions in anti-de-Sitter space. The mass term is proportional
to m = 1/R, where R is the anti-de-Sitter radius. The La-
grangian L = — 1/a* { .% dx is nonlinear and has global
OSP(N,4) supersymmetry. In a particular OSP(1,4) case
all formulas describing the transformation laws and the
components of Cartan form have the simplest form given by
Zumino.® Our Lagrangian density differs in principle from
the Zumino one only by the summation over index j, and
extends the results of Refs. 3 and 4 for N-extended Poincaré
supergroup to the case of nonvanishing anti-de-Sitter radius
R.
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IV. NONLINEAR REALIZATION ON PRODUCT OF
SYMMETRIC SUPERCOSETS APPLIED TO THE
SUPERCOSET OSP(N,4)/S0(3,1)

A. Algebraic considerations

The superalgebra OSP(N,4) contains the generators
Q, TY P,, M,,, where i, = 1..N, a, b=0...3. Using the
commutation relation (3.1) one can check that the genera-
tors @‘and 7Y, where ijj = 1...N — 1, belong to the symmet-
ric subalgebra OSP(N — 1,4) and Q% T™, i=1..N—1,
are generators of the supercoset OSP(N,4)/OSP(N — 1,4).
Using (3.1) we have

{QLV,Q;;} =m(Yo¥s)as T™
Expanding 7' ¢ in matrix basis /¥ and defining

TNk=J£”‘Tr= Tk; JﬁVr= 1= —J:N;

we obtain

[Tk9QN] =iQy; [Tk’Qi] = _5;cQN;
[QN’Mab] =iaabQN; [Pa’QN] =li mYaVSQN;
{QZ»Q‘;} = (fyo)aaPQ + m(aﬂbfys)apMab-

Commutation relations for @*, T'¥ are the same as in (3.1)
but now ij = 1...N — 1. We see therefore that using notation
from Sec. IT A,

H=(Q'TiM,,P,), S=(Q%T™,

we get the relation (2.1), with the supercoset OSP(NV,4)/
OSPN-4/0SP(N — 1,4) as a symmetric space. The superco-
set OSP(N,4)/S0(3,1) can be represented as the following
product of symmetric supercosets

_OSP(N.4) __ OSP(N#)

SO(3,1) OSP(N—14)
OSP(2:4) . OSP(1.4)
OSP(1,4) " SO(3,2)
= KyXKy_1 XKy XKy

OSP(N —1,4)

OSP(N —24)
S0(@3,2)
SO(3,1)

x..-x

At the end of this product we have the supercoset
OSP(1,4) _ SO(3,2)
S0(3,2)  SO(3,1)
considered by Zumino.® Supercoset OSP(K,4)/
OSP(K — 1,4) can be parametrized in the following way
(1<k<N):
K, =exp(0*Q*+ £4T}); i=1+k—1

(without summation over k1!).

B. Nonlinear realization on the product of symmetric
supercosets

Let us consider the action of an arbitrary element
8(p)eOSP(N,4) (p denotes parameters of g) on the super-
coset K. According to the general scheme from Sec. II C we
have (also see Ref. 20)
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g(p)KN = K;VgN— 1 (P:e N9gNi)’
g1 Ky_=K\_,8v_1(p,0 NoN- I,EMJN— ), (4.1)

goe_ xP, —e u:"‘P,l(p,e i’g ij,xa)’ 1] =1-- .N’

where g, belongs to OSP(X,4) and / belongs to SO(3,1) but
depends on p and the parameters of entire coset. Thus the
right transformation on K is represented by the left local
SO(3,1) transformation / = l(p,x* ,¢,£Y), ij=1---N.In
Sec. III C it was shown that the components of the Cartan
form w,

o=K'dk=2,0'+0,T!— io°P, + } io"*M,,,
transform under the action of an arbitrary element
gcOSP(N,4) by an element /eSO(3,1) which depends on
parameters p of g and on parameters of the supercoset, i.e.,
l= I(P’xa,e iaé_ ij);

o =lol '+ 1dl~". 4.2)

Therefore any expression constructed with o', o%, %, ©®
which is invariant under local SO(3,1) transformations, will
also be invariant globally under the entire supergroup
OSP(N,4). The first equation in (4.1) describes the nonlin-
ear realization of OSP(N,4) on the coset OSP(N,4)/
OSP(N — 1,4), the second one, describes the nonlinear real-
ization of OSP(N-1,4) on the supercoset OSP(N-1,4)/
OSP(N-2,4), and so on. We see that to find the nonlinear
realization of OSP(N,4) on the supercoset OSP(N,4)/
SO(3,1) itis necessary to use N times, step by step, the non-
linear realization of OSP(K,4) on the coset OSP(K,4)/
OSO(K — 1,4) 1<K<N, accordingly with formula (4.1).
The formulas for nonlinear realization of OSP(KX,4) are the
following. (All expressions not defined here are given
in Appendix D.) If 2,cOSP(K 4), ie.,
g= 1 +E_1Qi +,{UT‘[] - isaPa + 5pabMab’

ij=1---k — 1 and g, is infinitesimal then

80%=it'T; +y msG y,vs — 1 p"0 0u

SN = —maifk+ A
and the transformation is linear. On the other hand, if
8o =a*Q* + A ¥T%;A ¥ a* are infinitesimal, we get
) ( — 1 )n + 122n

8ak=—k B ? k 2 ki ,
a +n§1 (2”)! 2n n(a 91' )
. & (= 1)ntip . .
6 kt=/1kl ( B Zkl k 2 ki .
P TR

The element g, _ , has the following form:
81 =B'Q+V*M,; +p* " 'Ty _,
where A,B=0---4,ij=1---K —1,and

l)n+2)22n -2
@n)!

E’.=n§4(l+(— an_l

Xj,, (ak)/l ki))
o n—2y9y2n
ngl (2”)!

XJ 2@ Ak,

2n-—1
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© n—2yn2n
o= (I1+(=—1D""%2 —ZB

2n—1

n=1 (2")!
XR %@k A k).
C. Cartan form

The components of the Cartan form o are the following:

o*Q* = ch(§ mx) (4, + C)Q* — (1/x) (4ymx)
Xx*(4, + C)7.75Q,

oMTy, = (B, +D{)T; i=1-K—1,

where 4,, C;, B}, D are defined by the recurrent formulas

A1=(Zz+1 +EI+1
—[m/Q1 +x1)]al(zl+1 +Ci. )6,
E'l= —"[B;-H +D§+1 + (Bll’+1 +D‘l’+l)§lp]
X [1/(1+x,)18,,
Bi= [m/(1+x,)]@'(A,+1 +Cri1)éh

and
£i=1 i>1=B|=0,
D;Tl+li=D§+lTI+li
+[1/(1+x1)][—(B;+1+Df+1)
+ (BY,, + DY, )EST,
+ B +DY, )ELT, i
— (B, +D§+|)x1T1+1n
and
x,=im@'9' + &%, p=1---1—1.
For /> k we set
Z;k+1=0; D§c+l=0;
Zk+1=Ek+1+I_{k+l+6k+l;
B;c+l=E;c+l+F;c+l+G§€+1’
where
E_,=E_,(E+H+G)
I?l—l =FII_1(E'1‘B+G'I‘B+H;‘B)§
G_,=G_,(E,+Ef+F:+H + G+ G,
2 =E\_(E,+Gi+HI+F;
bk=1---K—1;
Ff_ ,=Ff_ (G¥+E,+Fi+F;
Fl\=FF (G +F);
Lk=1k—-2, mn=1---k—-2.

We use these recurrent formulas up to / = X — 1 and finally
we put

Ek =Ek(“p); H, = H, (u");
F, =F.(4"); G, =G, (@ u").
The remaining components are the following:
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oM, = 1 2 ch(mx) (x°x,t *°M,, + L
x mx

X sh(mx) —lix“t“Mab,
X

®° = 2t%x, sh(mx) + t2452 + ch(mx) — 1)
. XX,
X(6 x2 )’
where
AB —_ EAB HAB G,:B,

Ef2, =E{® (E?+F;4+G% +H?),

H{® =H{?2 (E{"+H*+ G,

G\ =GE}+H[+Gi+F{+E{+G.
Finally we put

E:B=Et3(ur); HgB(ur);
Explicit forms of above formulas are given in Appendix D.
As it was mentioned above the supergroup OPS(N,4) acts
on the components »® and »* of the Cartan form by a trans-
formation belonging to SO(3,1) subgroup [see formula
(4.2)]. We shall construct, using these components of o, the
SO(3,1) invariants, which will be also OSP (N,4) invariants.
More precisely, the forms w* transform as follows:

@P, = LoP,1["; 1LeSO(3,1),

and because we have [M,,,T;] = 0, »” are the Lorentz sca-
lars

- a)’llek - Ilmlka,I 1_ 1 = wIkTIk.
Let us write the first few terms of v and o
—10"Y° d6, — imB,0*° do' x,
+1(£%, + 2imx)8'yy do'
+10 0% +
WV =dEV+ EMAES +EMAEL + mO'do’
+2im*de* 066, + ---

o® = dx°®

The forms w? can be written
o’ = o', 0, = o™el e dx,
(aé-l.l é_,,,,ag”‘ §m1 g’" ...)
Xee, dx,,

where e;; are the vierbeins defined by the relation

= Nab e;: ez’
8, are the metrios in anti-de-Sitter space, and 7,, are in
Minkowski space.
We define the scalar product
(a)a’wb) = ﬂab’

Using (4.3) we get

— 8
gyv - epeav

(4.3)
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(w”',w,-j)—(ai“ +EmIE 4 EM 2 5"' )

x"
% %" )
+ ‘mi + .o
(3 v J ax>
Xeser @, w,)
_ 08" 9y §"" 35"‘
Ix+ axvg“ i g7

(4.4)

The formula (4.4) defines a Lorentz scalar. We see that the
following action:

L=J#°yly2y3(l + (0'0;))
4 1 1 .., s =
_—_Jd x(——z__,,i 7/'31-,-—lm/l,-/1‘,+---)
a 2

i JgE,
x(1+ai §u guv

ax* ox¥
i ogE™
aé- é—’m gv +...)

1 g7 9y
— d4 (____ i v
f x a’> I ox¥ &

_%iz"y-a/{i_imziii_'_...)_l_..-,

where E'%=(1/a)&" and A= (1/a)
X (14 imy’x, + --+)84, is Lorentz invariant and there-
fore OSP(N,4) invariant.?!

This is a nonlinear action describing N-Goldstone fer-
mions interacting with N(N — 1)/2 Goldstone scalar fields
£Y(x) in anti-de-Sitter space. The action is globally
OSP(N,4) supersymmetric. If we take the OSP(KX,4) sub-
group K<N then allfields 8°(x) and £ /(x), where /> K will
transform linearly under OSP(K,4) and remaining fields
with index /<KX in a nonlinear way.

D. Nonlinear realization of OSP(2,4) supergroup on the
supercoset OSP(2,4)/0SP(1,4)

The supergroup OSP(2,4) can be parametrized in the
following way:

exp (02Q2 + £Texp(6'Q “)exp — ix°P,l,,

where /, is an element of SO(3,1) group. The supercoset
parametrized by the exponential

exp(02Q% + £T) (4.5)
is a symmetric space. The transformation laws of the param-

eters 6% and £ belonging to the supercoset (4.5) are the fol-
lowing:

(i) go€OSP(1,4),

ie, go=1+a'Q' —is"P, + 4iv*°M,,
and g, is infinitesimal then

86 = iga' + yms"0%y'y’ — 6%,

86 = — ma'0>. (4.6)
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Both parameters transform in a linear way.
(ii) g=1+a*Q%+ AT, 6%/ are infinitesimal then

- o« _ n+1492n —-
sor=g+ 3 (ZAT2" 5 T
=1 (2n)!
) o (_ 1)n+122n
=4 - B, .2,
J +,.Z', (2n)! !
where

Y, = {£¥0 + Jimg >~ — 5(n — 1)* + }(n — 2)*6%0 %"

+n44(n— )BT ,0%°T*] — mE>—*0(2n — 4)(— 5(n — 1)> + }(n — 2)%(8%6)%?

—AEPT182 4 im(n — 1)EX~30(2n — 3)A6%9%67},
Z, ={imf* 0% + m(n — NE*0(2n — 3)020%0%a>
—imAEP 30202 — m*A(n — 1)E>~*0(2n — 4)(0%6%)%).
The function [J(k) is defined in the following way: '
1, if k>0,
Dtk = {o, if k<0,
The Cartan form on the coset OSP(2,4)/SO(3,1) parametrized by the exponentials
exp(62Q2% + EDexp(8'Q)exp( — ix°P,)
take the form

b d a
o° = dx° + (fh_ vmx 1)(dxa _Xax,x ) + 20y, shymx®
mx —

x? mx

b a
+s”[6,‘§ — (chym5® — 1)(5;: _X5X )] :

x2
o= — iz chym®x*x® dx® + lz chym®x%t bx,x% — sh(mx) (—m—) x°s®,
X X X
o =2z(1—4imB'0' 4+ im*(8'6")? — mB8'Y) + im*8'Y6'6",
@° =ch (—l- mx) _Pz + i sh (i mx) xaﬁﬂ’a ¥s»
2 x 2
. 1 =, 1 1 5
o' =ch|—mx)P, +—sh|—mx)x°Py,vs
2 X 2

where
$*=3(14+imB'0")(8'Y° db") + x0%y*y° dO* + A0 ' yy°6>
+ By dO? — (1 + 1imB'0'y"¥°V),
t®=m(1 +im6'6")6'0*° do' + mx0%0** d0? + mAG'0*0* + mBO '0** d
—m(1 +1m8'6")6'0*,
and
A=X(—2imf'do*—4mb'do%6's"),
B=X(2im0*do" + 4mb26'6'6"),

1
X= S ——[£%*_ 2kim&? 02k — 2]],
kzo 2k + 2)! H J [ 1l
Vo 1
“o 2k + 2)!

1
—kZo 2k +2)!
+ 3mE2* 02k — 1)kB2 dO?0*

+2méE*—'0(2k — 1)k6%0* d6*?

k

[i§2k+ld§2 +§2k dé—@Z
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+im?£* 302k — 3) (k — 1)*(4 — 5)(8%0%)%d8*>
- mk§2"‘2EI(2k —2)d£ 6%6%02],

Z= ,
5+ Z (2k+l) ,
- 1
Y=d6o? —Y;.
+k§l (2k+ 1) *

Here Y, and Z, are given by (4 7) provided that we put a? = d6? and finally

P,= Y+-2-zm0 Y9! +

P=dd'+— ; L imbdorer + L 3 ! imd91da" —

— im6'V8" + imb'6 ‘?—%m(§‘01)2?+ X(2imB'de* 62

— 4m?0'0'6%0' dO? + 4m?0'9'6"' do2 6?).

V. NONLINEAR REALIZATION OF OSP (2N,4)
SUPERGROUP ON THE COSET OSP (2N,4)/
SO (3,1)xu™

A. Algebraic considerations

Following Lukierski and Rytel'> we introduce for OSP
(2N,4) the following pair of N-component Majorana spinor:

(Qa :t 75Q1+N)

The internal symmetry algebra O(2N) has the symmetric
subalgebra U (N). The generators of this subalgebra are 4/
and S/, so any elment of the group U(N) can be written as

exp(a; A7 +1,;,8"), ij=1-N;

and the coset O(2N)/U(N) can be described as
cexp(u, X7 +v,Y"Y), ij=1-N,

where X'/ and Y are the generators of the coset [see Ap-
pendix C—nonlinear realization of O (2N)].

The commutation relations for internal symmetry sec-
tor O(2N), ie, for 4,;, S;;, X;;, ¥;; are given in Appendlx
C. Anticommutation relations for Q‘* are the following'*:

li_

i=1--N.

{005}

=8 YopP. + m[YopX + (Yo¥s)ae Y], (5.1)

{0205}

= m&(0™Y°Y’) pMap + m[VopA Y + (V) 0pS ],
(5.2)

{0:.057}

= 89(YVY) upPo + m[Vop X' — (P°V) 0 Y ]. (5.3)
The covariance relations for supercharges are as follows:
[Mo,Q'] =io™Q"*; [P.Q"™* ] =im(r.ys) @'
5. 48)

[4,.0=] =iriQi=; [5,,Q't]=iJ9Q/%;  (5.4b)

where 4"/ = A4,J ¥. Additionally we have
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m?0'Y0'6'9' +iZo! -—3—sz‘010'

m2(§10')2d01+ 14

—2im8'6% do>

[X.,0*]=JT1Q'F; [Y,.,Q'*]1=U0Q'F. (55)
The OSP (2N,4) superalgebra admits Z, grading,'>?? with
the following four sectors:

L, L, L, L,

M, QS P Q

A; Fx¥

Sy Y
which satisfy the grading relation

[Ln..L,]CL,» n+mmod4.

This gives the possibility of performing the following rescal-

ing's:

1 1 1
LO—'LO; Ll—*fL; L2—>—;'L2; L3—>fL3.

We see that the relations (5.1), (5.3), and (5.4) are un-
changed, but the relations (5.2) and (5.5) are rescaled, and
we get

[erQii]"":"-; [Yr’Qii]N_lr‘Q (56)
) ) 1 1
+.0i=l~— [P, ,P]~—. 5.7
[Q )Q ] ’ » [ a b] ’2 ( )
For the internal symmetry group we obtain
; 1
i yklY . — . ij yki
[x9x*] > UN);, [X5Y%]~ r2 U(N);
(Ysy*] ~% U(N). (5.8)

From (5.7) we see that in the contraction limit 7 — « sectors
@'* and ¢~ decouple, so there remain only three sectors
Ly,L,,L,. The relation (5.8) implies that ¥¥ and XY become
Abelian generators, and describes central charges, because
they commute with all generators of superalgebra.

The generators P,, in the contraction limit also became
Abelian. So setting r— o we obtain N-extended Poincaré
superalgebra, with N(N — 1) central charges.'*> Group
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U(X) is now the internal symmetry group. The entire group
U(N) appears as unbroken symmetry only when central
charges vanish. When central charges are present, the inter-
nal symmetry group must be broken to its subgroup com-
muting with central charges. In our case the number of cen-
tral charges N(N — 1) does not admit internal symmetry
group U(N). So taking the limit 7— o we shall set also a”
and # equal to zero. Such a reduction of internal symmetry
group was considered in Refs. 23 and 24.

B. Nonlinear realization of OSP (2VN,4)

Now we use the rescaled commutation relations to ob-
tain nonlinear realization of the OSP (2N,4) supergroup on
the supercoset OSP(2N,4)/S0(3,1) X U(N).We use the
following parametrization of the supercoset:

exp(0, Q' + 6, Q' )exp(u; X7 + v; Y Yexp( — ix°P, ).

The parameters 8+ and @ ~* transform under the action of
the group element g,eS0O(3,2) X O(2N), i.e.,

G=14+u X"+ v,Y"+a;4% 41,89
— is°P, + p*M,,,
as follows

807 =2 w8t — 2 i, 0% + 2ia 0%+ + 2ir, B*
r r

+lms“§:"}rs?/a_ ab0+ Oap>
2r
L Y ST U T
601 =210k,0 +2ltk10++_uk10++—2’vk10 7/5
r r
1 _
+‘7ms¢91_7’a7’5 100 0.

The transformations are linear.
The nonlinear transformations are obtained if

g.=1+a*Q', +a Q" , and ai are infinitesimal. In
such a case
_ o (_ 1)n+122n _ )
80, =a; -~ B, 033 5.9)
T AT @ (
-_ = (=D e
50 = = - B, ,0; , 5.10)
1 a,; n;l Qm! 2n—1 (
where
- 1 R
0P =—mqgs, 07,7 — w(2n—1)01 O
2r
—2i(ag, 1 )aba = 2i(t2n— 1 )kl9 *
"—2’(142,.—1)“0 + (U(zn—l))kla v
(5.11)
al(zn) —2—mq"2,,_,,6 Ya¥s — w(2n—1)01 O

—2i(ag,_1 )kla —2i(t, _, )kle

.1 =k 2, =t
_21—;(“(2n—-1))k10+71(v(2n—l))k10 7
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and
Qon_1y = — [§1+7/759‘_+(2n—2)+§‘+7ﬂ7ﬁbl—(2n—2)]’
u)‘(lgn—l) =,_i_m[al+a.ab§i+(2n—2)+§iagbo§z,,_z)],

(U3,)5 = _im[(§i+7,50j+£2n_z)_

+ (bi-Ysof @n=D _ jesf) ],
Van-1y =QM[(§,+01.+(2"—') _§j+01+(2n—2))

§j+ .};0 1+ 2n— 2))
(5.12)

. (@i— 9,'_ (2n—2) __

(@2 _1)y =%m[(@i~—fgj+(zu_z) _

a}-oi+(2n—2))]’
'o'j—— 7;0 t+(2u_2))

— (0787 " —iop],

(t2u—1)ij =§l-;m[(§,.+ej— (2u—=2) 4 §j+01_ (2u—2))

—_ (@I_—oj+ Qu-2) o aj—§i+(2u—-2))]’
07 9=a*, and ;7 @ =a;.
The action of the element g, on the supercoset

expatQ*ti+a Q' defines the element
h,eSO(3 2) XO(2N) (see Sec. II B), via the formula

=¢°P, + w*M,, + u'X, + ¢'Y,
+E;S7+a’d,,
where

_ (1+(_1)k+2)22k_2
2 (2k)

By _1qGak—1 »
b _ b
w”= — z By 1\ W3k—1y»
K=h
¥ ]
W= — z By 18— 1y»
=1
¥ — g
a = — E By _18tu_1y>
k=1

th=—% By_1the_1)-
=4}

This gives
x°=q°+ ’ /
( ad q”x (5.13)
x>
Using the results of Appendix C we obtain
ow=p+ 3T, e
¥ (2n)! I
oo ( — 1)u+ 122u i
v =g 2= 2 B._.b, 5.15
14 q’ + Zl (2“)! 2u—1%2 ( )
where 4§, and 5, are defined in Appendix C.
C. Cartan form
The Cartan form for the coset OSP(2N4)/

SO(3,1) X U(N) is the following:
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o= eik‘P,é(u‘,x"+ u,,v”)e(@,*Q',, +8; Q'

xd(e37?§’+ - al—at)e(“v"y"' "U"a)e_ ix*P,
. — p—
=wid;, + o, Q + a)’.Q "+ olX;
+ &Y, — io°P, + J0*M,, + o¥, 8.

Using the same methods as in previous cases we obtain

ot

= ch( mx) Etkexp(—ay +1y) —--—l-sh(2 )]
r

o,

x
X [5 +kexp( —ay + L) VaYsx’}]s

= ch(l mx)[g_’ —kexp(—ay +ty) — 1 sh(i mx)]
2r x 2

r

X [E ~*exp( — au + 1) ¥V'V’%. ],

where

2\ 7.

+
1\ 3

By =uy +vyy’s Dy=uy—uvyuy,

i+= i 1L__g+an,
¥=o (2k+ 1) ’
< 1 y T

Z_=
! k20(2k+1)

2

where 6 /* @ and 8 ¥ were defined in (5.11). Fork =0
we have

§1+(°)=d@,+ and a,_(0)=d§,_.

The forms w and w? are the following:

w — wlll+ wi:l’ a)“’—a) +(02"

and we have
1 - 1 tl( ) 14 ~ 1 nI k)
W, = —w w," = ( ,
o (k1) 2 o (kY 7
where
il i ki . i sl
Oy = — 2(t oy, (k— ) — @@k i1y ); Doy =0U",
il — ki . il — il
Dy = 2By 1) + Li@yik—1)); Doy = 8V,

6“"

231

and 8v” are defined as follows:
i - 1 . & i
Su¥ = k}_:o e iy, and @Y%, =mY,
< | ajj i
o= kzo o b, and 0%, =nt.
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Finally,
i ~ 1 i r )
my= — kzomu{Zk-'—l) and 0(0) 0
i - 1 ij D i
n-’:kzom v{2k+l) and 0(0) =db

The quantities v, , ,, and u?,, , |, were defined in (5.12).
We shall define also

e ; 1 .
2 g oo, 26 _ i
@ = s Oxrys Wy = T Dk
k=0 (k') kzo (k')
but now
oo, =m’? and 0¥, =n'Y,
where
o 1 o )
m'Y = —_— Y and u¥, =du’
(2k)» (0) )
kgo 2k + 1)
® 1 " "
ni= —_— and v%,, =dv"
(2k) (0) ’
kZO 2k+1)

with 4Y and v¥ describing the parameters of the coset
O(2N)/U(N). The remaining components of the Cartan
form o are the following:

vboa
@® = qra+ (ch(g) _ 1)(q,a+ xbizx )

+—=sh ( )w’“”x,,,
r

mx
2
o = ( )sh( ) x%q’® Z(L”T)ch(mx)w""x x°,
X r x r
where

1 —i —
= - z 9Gk+ 1) T e 2k +2) and 6o, =do*

a - 1 a r 3

=& ey ey e O =D

@2+ 1y and wi, . |, are defined in (5.12).

The forms »° depend on &', d8’, x*, dx only. Then,
similarly as in Sec. III we can construct purely fermionic
nonlinear Lagrangian density . defined as follows:

0’00’0’ = —a® L dx’dx' dx*dx?, [a] = 1/x%
Using correctly normalized Goldstone fermion field

¥ = (1/a)@ and using the Lee-Gursey transformation
given in Sec. III we can write the first few terms of .¥

g=-Lt _Yayar-—imifa-
Q* 2

—~ %(71 FpddF —imA AN
LTk T vig ke
7 vkl o

+%Z,+yﬁk71k+a,1'+

D. The contraction limit
If we take the contraction limit 7 — « in formul_as from
Secs. V Band V C, and if we interpret u¥, v/, 8 = 6'* asthe
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fields in anti-de-Sitter space with coordinates x°, we obtain
the following transformation laws:

u = —im[0'V°d — 6'ya’] — ‘gbiyaysa’aau"",

vi= —m[8'e — 8'a’] — 16,y"V°a'd, V",

80'=a' — 16,V 3,0, 6x"= — 10,V
Similarly in the contraction limit the Cartan form became

' =0"'=d0" w'=dx"+ 0, do’,
wj{=dv”—1m[0‘d0j—9jd9i],
of =du’ + im[6'Y° d6’ — 8'y° d6'].

Identical formulas were obtained earlier by Ferrara.®
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APPENDIX A
Following Zumino® we define the operation A
XANY=[XY]
X:AY=[X[XY]]..,

where X, Y are arbitrary generators belonging to Lie algebra.
For every function f(x) the expression

Sx)Ay

can be derived by expanding the function f(x) as a power
series in X. One can easily check the following formulas®:

eYe *=e"NY, (Al)
e *=[(1—e)/X]NOX, (A2)

where & is an arbitrary variation.

APPENDIX B
Using the notation introduced:-in Appendix A, Eq.
(3.11) can be written in the form®

1—e %
—=5——N86,Q'=h,
6,0

i

~80f - N
e " Ng,Q - (B1)
Anticommutation relations for spinor generators ¢ can be
written in the form of commutation relations if we use the
Majorana spinor parameters ¢. We get

{6,0'.0:0" = mB,2*%9'M,, + mb' 6 "T,

g (B2)
where A,B =0,1,2,3,4 and

mB,3%0 "M, = mB,y"Y'6 P, + m6,0"°6 ‘M.,
ab = (1/. m)P
We have also
[MAB’aiQi] = ialEABQI'
It can be written as

[A{ab’a in' ] = i@ iaabQi’
[Pa90iQi] = imbiyaYbQi'
Using these commutation relations we can find that
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(a,-Qi)Zk/\aka~Qi,

(8,2 *'ANa . Q*~M, 5 + T;eS0(3,2) XO(N).
On the right-hand side of Eq. (B1) we have only generators
M, P,, and T}, so we must set equal to zero in left-hand
side the part with even powers of 8;Q ‘, because even powers
are proportional to ¢ . This condition gives

56,0' = 8,0 coth(8,0°) N6,Q'

© (_1)k+122k _ N2k A = )
=kZIWB2k_1(0iQ‘)2 Aa, Q'
(B3)

where B,, _, are Bernoulli numbers. Using (B2) we can
also find the element 4,€S0(3,2) X O(N),

1—-ch(6,0)  _ .
h =—A i '
1 Sh 0Ql alQ
2(22k_1) ( _1)k+122k ]
B, —
,;_:1 2k (2k)! By

X(aiQi)2k+lA§iQi- (B4)
Because of anticommuting property of spinor compo-
nents any power of ,Q", i = 1- - - N, higher then 4N vanishes

identically. Therefore power series (B3) and (B4) are not
infinite. Using the commutation relation (B2) we find

(6,09 ANa, Q"' = im[3a*69, + 20,0'a, + a'6%6,1Q,,
generally

(0 Q' )Zk/\a Q'=8%
where

o2 = (im)*[ — 355,06, + 260,85 _,

+mk—29 01]-

We find also

(6,09* *'Na,Q'=mb,3*3 M, + m6,2% T, o
where

2(22k 1_1) (_1)k+122k ai
k;l 2k)! B, — 2k sz—l]CIZk'
Therefore we can write
- _; 0 _ l)k + 122k a:
=a + kZI ﬁ—sz— 18210

hy =m6, 2" 3\ M, + mb B T

APPENDIX C

The commutation relations for generators 7V of internal
symmetry group O(2N) are given in (3.1). We define!®*

Ay =3T3+ Tnrivi;); Sy =3Twiy—Tivsds
Xy =3Ty—Tyows)s Y= Tyiy+Tiviy)

wherei,j=1:-N. In this notatién and in rescaling given in
Sec. V, the commutation relations for O(2N) are the follow-
ing:

[Aij’YkI] = 5(51'1: Yik + 5:1: le - 5:1 ij - 5jk Yu),
[Sy: Y] = 4(8uXy — 8uXy — 64X + 64 Xy),
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[Sii’Xkl] = i(aﬂ Yik - 6jk Yil - 5.‘1 le + 511 ij )s
[Aij’Xkl] = 5(5ikal + 5jIXik - ¢Squk - 6ijil)’
[YyYu]= (1/27) (Oudy + 6,4, — 8,4, — 6, 4,),
[Si:Su] = 3(8udy + 8,4y + 644, + 6, Ay),
[Aii’AkI] = 5(6ikAj1 + 5jIAik - 5:'1Ajk - jkAn)a
[XyXui ] = (1/2P7) (84 dy + 83dy — 8,45 — 8, 4y),
[455S] = 3 — 8uSuc + 8uSi + Sy — 65Su)s

(X Y] = (1727)(— 8,8y + 84S — 84Sy + 84 Si)-
The generators A7 and S? give us the real representation of
the subalgebra U(X). This is the symmetric subalgebra, and

therefore the coset O(2N)/U(N) is a symmetric space. We
use the following parametrization of the group O(2N):
exp(u; X"+ v;Y¥)exp(a;4 7+ 1,87).
The first exponent describes the coset O(2N) /U (N) and the
second the subgroup U(A). The nonlinear action of O(2N)
group on the coset O(2N)/U(N) is the following.
If gU(N) and g, =1+ a,;4 7+ 1,57, g, is infinitesi-
mal then
J

APPENDIX D

6uil= 2( . tikvkl + aikukl)’

o= — 207 ™ + a0
On the other hand, if g, = 1 + pYX;; + ¢"Y; and g, is infini-
tesimal we get

i i & (—=1)+1 ail
u' =p +';=:IW 2u—1%2u)>
il il (= 1)+ il
o' =¢ +“EITBM—1U(2.‘),
where
ﬁiIZu) = “2(“;(‘1311—1) +Uit{‘§u_n )s

Al i 4kl P ki
020 = 2(Upt 3y 1y — Vi@2u—1))s
and

il _ 2 iau i ki
doy+1 = 7 (Uit 3y + Vil )s

i _ 2 inm i ki
Pausr =7 (Uit 2y — VicD(2y )5

. i il i il
with ©(,, = p" and vy, = ¢".

We give here explicit forms of expressions used in Sec. IV. The expressions used in Sec. IV B are the following:

T, (@A %) = {(E M5 a* + 4im(E™E 5"~ [(5u + J(u — 1))8 40 *a*

+ (u + §(u — 1))6'T ,6a*T* ]

— (= &% B (u—2)m¥( —s(u— 1)2 4 §(u — 2)?)(8*0 ) %a*

+EXAE +i(u— 1m0 NE™EN) B (u—2)E*A10%Y,
Zﬁi(ak’/{ ki) — {(é—lkgff)u—limakaké-ki_ (u— 1)m2(§lk§k)u—28(u _ 2)
xakakak ki_im(gikg-:c u—Zg(u_z)akekglk,{:cé—ki
+ [( _é-lké—:c)u—l _ imubkek( _é-lké—;c)u—z _ (n _ 2)2m2(§k0k)2( _glké—;c)u—Z(u _ 2)]
Xg’k(ll ;cé—kt_é-;c/l ki) _ (u _ l)mz(akek)2§lkl ;c(é—lké-;c)u-—f&g(u_z)gki}’

—I'L (a",/i ki) — {i(é—lké-;c)ugikak + 3um(§lk§;c)u—l§ik§k0kal_c

— 2um?E*(ERE XY 1R KGR 4 £ — s + })imP(u — 1)2(£*E k)2
X3 (u — 2) (B0 %)%k — i(£ " )~ 1 ke G-

- mu(é—lké—;c)u—lg (n _ 2)§Ik/{ fglkakokbk}’

J:B(ak,ﬂ, ki) — {(é—lké-;c)uma szBak + 21m2u(§ Ik§ ;C)u—l
X 640 9 <3450},

and

Ril:n(ak’,{ki) ={[i( —§”‘§f)"—imu§"0"( —5”‘5;‘)“_1

+ 4 — D*(—imB*0*)*(— E*ENH B u - (E*A ™ — ™A},

In Sec. IV C the following expressions were used:
E{(u"Q, + Ey (4)Q,
1

=U'Q:+ i —— [(€1€) 7§50, Qi + imBu + (16 B (u—2)]

=1 (2u)!

XELETU,0'0'Q; + 2imu(€iE,) B (u — 3)E5E16'0T,Q,
+m*(E1€,) B (u—3)EIEFI(u — 1)2 — 5(u —2)216'0T, 0,
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+ 2 1), [—i@;gki)"f;cﬁigk —3um (&gl !
X§& kG"U,-GkB + 2um(& )" '€ 40,6, U0,
+ 22 i e ) B - 264 @20H7T.0.).

u

where pli=1--"k—1,

F{(u"hQ, = 2 m[-—2 (£ e U™6, + 2m(u — 1)0*0*( — £1£,)" B (4 —2)§,, U™0'1Q,.
Herealsop=1---k—1,
Fmi(qu)T = i 1

! ™ & Qu+ 1)
+2m2(0'0’)2(u—1)2(§'}§,, “"B(u—2))ETuiT,, m,i=l...k—1,

[ —2(&16)™ + 2imud’o'(£ig, )"

Hiw™"Q, + Hiw™Q, =u 3 (2 Gt €160 4 2im(u = D13 (u ~ 2)8'9"]
u=1

XEIB ST A0 015,150, +us 3 '(241—1)'
n=0

+ 2mu§ ke k(§ ;fﬁ)"_ lbszB de eszBQk

[ —i€i8"]

and also
Gi(uhuty =u* + uzl W Y, (uhut),
G (u*uth) = ..io mﬂ‘ (ukuM,
Gi(urut) = uil a—)'—Z” (uk,u™y,
Gr(utu*) = "20 (Zn—-li-l)'_ R™(u*u*), mn<k
G 23 (ukuMy = .,20 (z—ui—l-)TJgB(u",u"’).

The remaining cxpressions are the following:

E{®(u,) = z (2 )' —im(&1E) "+ 2m* (€ 1€)" R ( —2)79’0’]§501‘2“u,,
n=1

HP2(u'®) = u*® +u [z [2im(£i&)" " + um?(£1€,) B (u —2)6%61]

(2u)!
X(d0'+‘9’0’2"”0’+‘—0’“0’0’2“d€’)], wherei=1..k— 1.

We must define now the expressions u, ¥*2, u’, u*, u*:

z*=do* + 2 6‘1717 7. (d0%dE ™),
Z, ( 2n+ i I, (d6*dg™),

Ty, = dE*Thu + 2 —(-2—,;lmzzk(d9’%d§i)Tuk,

U = mz=0 -(3#2)' R¥(dO*dE™), nl<k,

Ut = 4G FZAB GO — uzomuﬂ(de k dE ).
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Cayley-Klein parameters and evolution of two- and three-level systems

and squeezed states
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In this paper the time behavior of quantum states ruled by Hamiltonians linear in the SU(2),
SU(1,1), and SU(3) generators in terms of the Cayley—Klein parameters, originally
introduced in classical mechanics is analyzed. Also pointed out is the link between the Cayley~
Klein parameters and the Wei-Norman ordering functions, exploited in the context of the

Schrédinger representation.

I. INTRODUCTION

Optics and quantum optics have largely benefited from
group theoretic methods.'? Just to quote a few examples we
recall that SU(#n) is now a widespread mathematical tool to
treat the evolution of n-level systems interacting with intense
em fields.?

On the other hand, the SU(1,1) group has been exploit-
ed both in quantum and classical optics to analyze, for in-
stance, the evolution of squeezed states* or the propagation
of Gaussian beams in selfoc fibers.>¢ Finally, Lie algebraic
methods have provided a useful mathematical framework to
construct numerical codes for the design of the magnetic
optics for transport channels in particle accelerators.” The
interest that has risen up around these techniques, already
exploited with astonishing success in atomic, nuclear, and
particle spectroscopy,® is therefore fully justified.

Within the above mathematical context, specific diffi-
culties have been encountered and solution techniques have
been discovered, or rediscovered. This is indeed the case of
the ordering theorems of the Wei-Norman (WN) type,®
which play a significant role in the analysis of the time be-
havior of quantum states ruled by Hamiltonians linear com-
bination of the generators of Lie groups, as SU(2), SU(1,1)
or SU(3).'° Although forgotten for many years, this tech-
nique became increasingly popular, owing to the renewed
interest in the algebraic treatment of problems in optics.

The WN theorems may be viewed, from a historical per-
spective, as the completion of the program originally under-
taken by Magnus'! and Fer'? of developing, whenever possi-
ble, a systematic and rigorous treatment of time-ordering
problems as opposed to the perturbative Feynman—-Dyson
technique'® (also see Refs. 2 and 14 for further comments).

According to the WN technique, the evolution operator
relevant to a Hamiltonian linear combination of Lie group
generators can be written as an ordered product of exponen-
tials, whose arguments are the product of a time-dependent
function and a generator of the group. It can be shown that
the time-dependent functions appearing in the exponentials,
namely, the characteristic functions of the ordering proce-
dure, are related to the coefficients of the linear combination
in the Hamiltonian by a nonlinear system of first-order dif-
ferential equations.>® For groups of particular physical in-
terest the WN characteristic equations have been further ela-
borated and, by introducing appropriate functions, cast in
the form of generalized Bloch equations.'*'
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The newly introduced functions deserve a particular
comment. In fact, according to whether one is dealing with
SU(2),SU(1,1), or SU(3) Hamiltonians, they obey a set of
equations identical to that of two or three coupled harmonic
oscillators, respectively. It is also worth stressing that all the
physical quantities are directly linked to these functions,
whose meaning we will try to further clarify within the con-
text of the present paper, where a different method to treat
ordering problems is proposed, when the above quoted three
groups are involved. Taking advantage from the spinorial
representation of the group generators'®!” we will show that
the characteristic functions of the ordering procedure can be
identified with the Cayley-Klein (CK) parameters'® intro-
duced in classical mechanics to treat rotation problems. Asa
consequence, the WN equations can be deduced from those
defining the time dependence of the CK parameters. The
remarkable practical advantage of the method we present in
the paper lies on its simplicity and on the consequent possi-
bility of avoiding the amazing amount of calculations im-
plicit in other proposed methods, employing, e.g., the Cay-
ley-Hamilton theorem.'®

1l. THE SU(2) AND SU(1,1) CASE

Let us consider, as first example, the Hamiltonian

B=00J,+0*0)], + Q0T_ (=1, @1)
with the operator .73, J + obeying the rules of commutation
of SU(2)

[Tl ]=+JT., [T.J_1=2];. (2.2)
The Hamiltonian (2.1) may describe, e.g., the interaction of
a chirped classical em field with a two-level atomic system.
Introducing the spinorial representation of the J operators
[the fact that we restrict ourselves to the lowest dimension-

ality representation of the group by no means affects the
generality of our results (also see Ref. 16) ],

~ 11 O)A_(o 1)A_(00)
J"E'(o —1) =0 o =\ o)
(2.3)

we can rewrite the Hamiltonian (2.1) in the form of a 2 X2
Hermitian matrix as

& fo(n)/2  Q*D) )
H= ( Q@) —wo()/2)° (24)
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Denoting with

(1)

the wave function representing the system, one immediately
gets the following system of coupled equations:

W, =)V, + Q% (OV_,
W_= —lo(V_+Q)VY, .

The components ¥_ and ¥, can be understood from the
physical point of view as the probability amplitudes for the
system of being in the lowest or excited state, respectively.
Since Eq. (2.6) represents a rotation of the vector ¥ in the
complex space, we can write its solution using the CK ma-
trix'® as

(2.5)

(2.6)

Y.\ (H* G \[l+(0))
(\p_) h ( —G* H)(\II_(O) ’ 2D
where H(0) = 1, G(0) =0, and
[H>+ |G|*=1. (2.8)

Inserting (2.7) into Eq. (2.6) we immediately find that the
CK parameters H and G obey the following system of first-
order differential equations:

iH= — (0/2)H + QG, iG= (0/2)G+ Q*H.
2.9)

The above equations resemble the ordering equations de-
rived in Ref. 16 and, in fact, within the present framework,
the CK matrix in (2.7) can be regarded as the matrix repre-
sentation of the time-evolution operator U relevant to the
Hamiltonian (2.4), or equivalently (2.1). In order to point
out the connection with the ordering method of Ref. 9, let us
write the evolution operator as the WN ordered product

f/(t) = N80T g —F (DT (2.10)

which, using the spinorial representation (2.3), can be cast
in the simple matrix form'®

~ (1 —f)e" ge"
U(t)=(—fe"' e"‘)'

As a consequence of the unitarity of Uwe readily obtain the

(2.11)

geh=(fe™h*, (1—fye=e"". (2.12)
Therefore, comparing (2.11) with the CK matrix (2.7), itis
easy to recognize the CK parameters H and G as

H=e"" G=ge’" F=fe "=G*, (2.13)
which are the characteristic functions of the ordering proce-
dure introduced in Ref. 10.

The above relations, together with (2.9), yield the sys-
tem of differential equations specifying the WN functions
(h.g.f ), namely,

h= —i(w/2)h + iQge*",

g= —i(w/2)g—iQ*e~* —hg,

f=iQe*.

It is worth noticing that the CK parameters, rather than
the WN functions, specify measurable physical quantities
relevant to the system under study. In fact, it can be easily
shown that the evolution of the Bloch vector as well as the
wave function is entirely specified by H and G.

The evolution of the pseudospin of the system can be
immediately obtained, noticing that

T3y = (W|T,| W) =4[ |W, |>— [¥_|*],

(2.14)

Ty =T, |0y =% ¥_, (2.15)
Ty =(WJ_|¥)=v* v, .
Furthermore, introducing the Bloch vector S,
y)
§= <"2> s (216)
)
where
Jo=3J,+J_1, L=a2bl,-T_], @I17)

it is readily seen that it changes with time according to
s(2) = R(1,5,)s(2) (2.18)

with s(z,) denoting the Bloch vector at the initial time #,.
The 3% 3 matrix R(?), which, as noticed elsewhere,!® is a
generalization of the Rabi matrix,?° can be written in terms

relations 1 of the CK parameters as
Re(H** - G?) IIm(H** + G?) —2Re(H*G)
R(t) =| —IIm(H** —G?) Re(H**+ G?) 21Im(H *G) (2.19)
2Re(HG) —2lIm(HG) |H|?—|G?

The vector (2.16) describes the evolution of the expectation
values of the angular momentum-type operators J, but no
information can be inferred on the relevant fluctuations. To
this aim, it is convenient to introduce the tensor

Fy=JJ) — Q)T hi=123, (2.20)

which for i = j yields the variance of the Bloch vector com-
ponents. The time behavior of the fluctuation tensor can be
easily calculated in terms of the H and G functions; the ex-
plicit expression are omitted for the sake of conciseness.

As a further support of the importance of the CK pa-
rameters, with respect to the WN functions, let us briefly
discuss the evolution of the wave function.

237 J. Math. Phys., Vol. 31, No. 1, January 1990

I Labeling with |J,m) a generic angular xhomentum state,
we can express W(r) as

J
2 C,.()|Jm).

m= —J
The time-dependent coefficients C,, depend on both the ini-
tial value of the wavefunction and the “scattering matrix”
S(t,t,), whose elements defined as

(2.21)

S, = Jn|UJm), (2.22)
are related to C,, (1), according to
J
Ca)= 3 S,.(1)C, (1) . (2.23)
n= —J
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The matrix elements S, ,,, whose explicit expression can be
inferred from (2.22) and (2.10) as!®

J+n T N\ o
S (o) = J+n_J\J—n Hom

‘[sgn(m — n)|G|]1"> ~"< -expliy(m —n)}
XF(—=J—n_J—n_+1;
n, —n_+1L|G», (2.24)

with y = arg(G), n_ = min(m,n), n, =max(m,n), and
,F; hypergeometric function, are fully defined by the func-
tions H and G.

With regard to the time dependence of the CK param-
eters, let us stress that H and G satisfy the same second-order
differential equation, easily inferred from the system (2.9)

aslS

Q
25 [laps @0 ;28] 4
y y+[||+4 I~+isgb
(2.25a)
with initial conditions
G(0) =0, G) =iQ(0).

Equation (2.24), as it stands, cannot be solved exactly for
any time dependence of @ and (). Bambini and Berman?'
found a class of solitary pulses that allow the solution of
(2.24) in terms of hypergeometric functions. Later on the
method of Ref. 21 was generalized to chirped pulses.'>??

In this paper, for the sake of completeness, we discuss
the case of time-decaying pulses, which leads to exact solu-
tions of (2.24) in terms of Bessel functions.

Assuming for €} the time dependence

Q) =Qee (2.26)
and using the Liouville transformation
y=e UDa§(y), (2.27)

we can turn (2.25a) in the following harmonic oscillator-
type equation for &:

S+ [Qe—2 — (a +iw)*]6=0.
Redefining the variable according to
xX=e ¥, (2.29)

(2.28) reduces to a Bessel-type equation

5+x—6+ [——x _T(I-H_) ]5 0.

(2.28)

a
(2.30)
Consequently, the function H can be written as
H=e—(a/2)t[aJv(Qo —at) +bY (&e at)] ,
a
(2.31)

the constants a and b being evaluated from the initial condi-
tions (2.25b), so that we finally obtain

H= ZL Qoe_ at [qv(& e at’ﬂg)
a a a

(2.32)
v=}(1 + i(w/a))
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where the functions p, and g, are defined as*

p.(ab) =J ()Y, (b) —J ()Y, (a), (2.33)
g.,(ab) =J, (@)Y, (b) =T, (D)Y, (a).
A similar expression can be obtained for G, namely,
G=e—(a/2)lﬂQO[ a _ I]P (_(_)’(le—-at&) .
2a 120, "\ a “a
(2.34)

At this point we can find a very simple result concerning the
long-time behavior of a two-level system driven by a time-
decaying pulse. Assuming, e.g., that initially the only non-
zero component of the Bloch vector is the third one, we can
prove, according to (2.17) and (2.18), that the population
inversion behaves like

(LY« |H*—|G]*=1-2|G>. (2.35)
Fmally, using the expression of J, and Y, for small argu-

ments,? we obtain the asymptotic behavior of (J,) or equiv-
alently of the cross section of the process, namely,

; Q0 (. @ (Q ) 2

Ty ~1— o 1 AT (=2

s a cosh(rw/2a) \ + 403) a
(2.36)

It is important to emphasize that the crucial parameter of the
scaling (2.36) is 2o/, which is the total area of the pulse
integrated in time.

We will finally spend a few words to comment on the
SU(1,1) case. The Hamiltonian we consider is now

H=wtk,+ Q* 0k, + Q(0)k_, (2.37)

where IAc3, k + are the generators of the SU(1,1) group obey-
ing the rules of commutation,

[hpk, 1= +k,, [k k_1=—2k. (238)

The operator (2.37) is a model Hamiltonian for parametric
amplification in a nonlinear medium and furthermore, as
noticed elsewhere,* is the most general SU(1,1) coherence
preserving Hamiltonian.

The group SU(1,1) consists of the set of all two-dimen-
sional pseudounitary unimodular matrices that leave invar-
iant the quadratic form

1Zy* =12, (2.39)
To keep the discussion as close as possible to the SU(2) case,

we therefore use the non-Hermitian realization of the
SU(1,1) algebra,'®i.e.,

s 11 0) A_(o —1) A_(OO)
k3_z(o 1) == o) =\ o)
(2.40)

In this case the Hamiltonian (2.37) writes in the following
2X 2 non-Hermitian form [this apparently surprising fact
has been discussed in Ref. 16, where the non-Hermitian rep-
resentation (2, 40) is used The operator H is “Hermitian”

accordmg to HM = MH * with M being the metric matrix

M= )

~ (yo(t)
“\Q@)

- ﬂ"‘(t))
—lo(t) /)’
It is now easy to prove that the SU(1,1) CK matrix is

(2.41)
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FIG. 1. The interaction of a three-level system with three intense em fields.

A~ H* —

U=(_G, ) (2.42)
where H(0) =1, G(0) =0, and

|H>?—|G|>=1. (2.43)

Correspondingly, the time behavior of H and G is specified
by

iH= — (0/2)H - QG,

iG= + (0/2)G+ Q*H. (2.44)

The derivation of the WN equations is also straightforward
along the lines previously outlined, and will not be discussed
for the sake of conciseness. For further comments the reader
is addressed to Ref. 16.

lil. SU(3)-TYPE HAMILTONIANS

The most general Hamiltonian, allowing SU(3) cou-
pling, is

H=0,T,+ 0T, + 0, T_+o,U, + 04U, +Q,U_
to,V,+ 0V, +9,7_, (3.1)

where the nonsingular time-dependent functions @’s and £)’s
are real and complex, respectively. From a physical point of
view, the operator (3.1) describes the interaction of a three-
level system with three intense electromagnetic (em) fields
according to the scheme of Fig. 1. (For the case of three-level
atomic or molecular systems one coupling is forbidden ac-
cording to the Laporte rule. We discuss, however, the case of
three nonvanishing couplings in order to treat a more gen-
eral situation, which can be encountered in the treatment of
three coupled harmonic oscillators.)

The Hamiltonian (3.1) exhibits an SU(2) & SU(2)
® SU(2) group structure rather than SU(3), which can be
immediately recovered defining the ‘‘hypercharge” operator

Y= /BT + 7). (3.2)

Representing the (/7\",,1\]3}) operators in terms of the Gell-

=Ho —1 o], 7.=[0 o o],
2\o o of 0 0 0
0 0 0

?_:(1 o of,

0 0 0

10 0 0 0 1
ﬁ3=l(ooo,f1+=ooo,

20 0 -1 0 0 0

00 0 00 0
A3=l(o 1 o), v.=lo o —1},
20 0 -1 00 0
0o 0 0
v_.=lo o o], (3.3)
0 —1 0

the Hamiltonian (3.1) can be written in the following 3 3
matrix form:

H= Qr —or —ay) -0y
Qy -Q, — oy +oy)

(3.4)

Now we proceed in analogy to the SU(2) case and introduce
the following column vector for the system wave function:

(¥,)
<\l’d ) ]
(¥,)
where W, represents the probability amplitude for the sys-
tem of being in one of the levels of Fig. 1. From the Schro-
dinger equation we obtain

W, = oy + o)V, + OV, + QY ,

W, =0 ¥, — Hor —w,)V, — QY ,

W, =Q,¥, -Q,%, — oy +0,)Y, .
As before, the CK matrix allows the solution to the system
(3.6) in the form. (At the initial time the only nonvanishing

terms in the CK matrix are the diagonal elements, all set
equal to unity.)

V= (3.5)

(3.6)

v, A B v, (0)
VY,1=|D E FjVv,00) 3.7
v,) \6 H I/\v,(0

Inserting (3.7) into Eqs. (3.6) we find the important result
that the column elements in the SU(3) CK matrix (4,D,G),
(B,E,H), and (C,F,I) obey the same system of first-order

Mann and Ne’eman matrices as® N differential equations
d m %(wu + @y ) Q?— L0} m
i—n|= Qr — o7 —wy) -0y n|. (3.8)
Qy —-Q, — oy +op)J\P
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The CK parameters in (3.7) are the auxiliary functions in-
troduced by the authors in Ref. 10 to treat SU(3) time-or-
dering problems and the result (3.8) was obtained after a
tedious large amount of algebra.

To better clarify this point we write the evolution opera-
tor 4 l1a Wei-Norman, thus obtaining

/(}= ar,l\juily ) (3.9)
where each Uis given by
U, = etha(PTig8al07% o= Sl (3.10)

a

A

Therefore, using the representation (3.3), we can express U
as a 3 X3 matrix with elements

Uy =+ GrFr)(1+ GyFy)/HHy,

U, =(Gr/Hy)(1+ G Fy)
—(GyFy/Hy)(1 4+ G,Fy),

U =(GyHy/Hr)(1 + GrFr) — GrGy,

U, = (F;:/Hy)(1 + G Fy), (3.11)
Uy, = (Hy/Hy)(1 + G Fy) — FrGyFy,
Uy =F;GyH, — H;Gy,
Uy =Fy,
Uy, =HyFy,
Us;=HyHy,
where
H,=e " G,=g,e™ F,=fe . (3.12)

Comparing (3.11) to (3.7) we immediately obtain the rela-
tion between CK parameters and WN ordering functions. In
analogy to the procedure of the previous section we could
deduce from (3.8) the WN ordering equations; this is
straightforward but rather tedious; the interested reader is
therefore addressed to Ref. 17, where those equations have
been obtained within a different context.

Again, we stress that there is no need for the knowledge
of the functions (3.12). Indeed, as in the SU(2) case, the CK
parameters have relevance from the physical point of view.
Furthermore, introducing the eight-dimensional vector s,
whose components are defined according to

5, = (YT, + T_)219), s,= (¥[(T, —T_)/2i|¥),
5= (UTW), s,= (YT, + T_)/2|9),

5= (WU, = U_)20®), se=¥|(V, +V_)2|¥),
5= (W|(V, = V_)/2i|¥), s5=(¥|(T,+ /I}s)/‘/?.!;l‘l)?,;

we can write the time evolution of the generalized Bloch
vector s in the form

52(0) =R, 5(1)55(0) , (3.14)
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where R,z are the elements of an 8 X 8 matrix, which is th/g
direct generalization of (2.18). Needless to say, the matrix R
can be expressed in terms of the CK parameters and its ex-
plicit expression is reported in Ref. 17.

It is also important to emphasize that a number of con-
servation laws follow directly from the unitarity of the CK
matrix and from Eq. (3.8), namely,

AP +|BP+|CIP=1, |G*+|H|*+I|*=1,
P+ DP+|GP=1, |CP+IF*+ =1,

IDP*+|E*+|F|?=1, |BI?+|E|>+|H|*=1.
(3.15)

The above laws of conservation are in some sense “intrin-
sic,” since they are contained implicitly in the ordering pro-
cedure. They acquire physical meaning in the context of the
particular problem under study. As a final comment, we no-
tice that the procedure we have developed is independent of
the particular SU(3) representation one chooses. The Gell-
Mann and Ne’eman representation is only one of the possi-
bilities, but, e.g., the Morris realization** could be straight-
forwardly used as well.
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By reconsidering the linear equation which describes in the hodograph plane the motion of a
relativistic fluid, a significant difference with respect to the analogous equation obtained in the
classical fluid dynamic theory is found; while the latter satisfies a condition which greatly
simplifies the determination of the Riemann function (required for the integration), the former
does not fulfill in general a similar condition except when adopting specific pressure laws.
Implications and properties of the relativistic system in these extreme cases are discussed.

I. INTRODUCTION

The hodograph transformation in combination with the
Riemann method of integration of a linear hyperbolic equa-
tion has been used to obtain explicit solutions to the equa-
tions describing the motion of a classical perfect fluid as well
as to many other systems of physical interest.

This technique, in the form which we refer to, has been
developed, on the basis of previous works, by Jeffrey,' who
has shown that it can be applied to all 2 X 2 “reducible’” qua-
silinear hyperbolic systems, i.e., to systems which in general
have the form

U +4U, =0, (1)
where U is a two-component vector, and 4 is a 2 X2 matrix.

The term “reducible” means that the independent vari-
ables x and ¢ do not appear in the entries of the matrix 4, so
we have simply A = A(U). The system (1) is supposed to be
totally hyperbolic, i.e., the matrix 4 possesses a pair of dis-
tinct real eigenvalues p and v, and in correspondence with
each eigenvalue, left and right eigenvectors that will be indi-
cated by /'Y and r*’ (for A = p,vand u > v). The eigenvec-
tors ] ¥, 1 and r'®, r'* are linearly independent and sat-
isfy the equations

14 __.'ul (M)’ ]MY4 = ,VI(V)’
Ar® = pr® | 4r® = ),
together with the orthogonality conditions
I(ﬂ)r(v) — I(V)r(u) = o’ l(p)r(p);éo’ I(V)r(");éo.

Following Refs. 1 and 2 we left-multiply the system (1)
by I'*? and I’ and then we obtain

(U, +pU,)=0 and I™(U, +vU,) =0,

(2)
which may be written as
dU du
IW_— =0 and W —=0, 3
do dr S0

where d /do and d /dr denote the derivatives along the char-
acteristics dx/dt = p and dx/dt = v.
The expressions for the Riemann invariants are then

Jq(ﬂ)l () dU= r(r) and Jq(v)l(v) dU=S(¢T),
4)
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where ¢'*’ and ¢'*’ are two integrant factors. From (4) it
follows that ‘

1
Vyr and I =
q(u) q(V)

(v =55 7357):
au, avu,
then, Egs. (2) become
Vor(U, +uU,) =0 and Vys(U, +vU,) =0,
which give, by the chain rule,
re+upur,=0 and s, +vs, =0. (5)

I(") —

Vus,

Now if it is possible, under the usual conditions, to inter-
change the roles of dependent and independent variables, we
can get

x=x(rs) and t=1t(rs),
with x and ¢ satisfying the two linear equations

X, =MW, (6a)
and

x, = ut,. (6b)
By differentiating (6a) with respect to s and (6b) with re-

spect to r, and equating the cross derivatives, one gets the
following second-order equation for #:

te— [vo/ (=]t + [,/ (g —)]t, =0. (7
This equation can be solved, at least in principle, by standard
methods.

Up to this point, we have given an account of the tech-
nique expounded in Refs. 1 and 2. What we are going to do
now is apply the Jeffrey method to the system of equations
describing the motion of a perfect fluid in special relativity.
We will firstly make such a system fit the general form (1),
whereupon we shall specialize (7) in the case of a relativistic
fluid. We shall show finally that the integration of (7) in
such a case presents significant differences with respect to
the nonrelativistic fluid.

II. THE RELATIVISTIC FLUID

A perfect relativistic fluid is described by the energy-
momentum tensor’

T = (w+ p)uu® + pg™,
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where w and p are, respectively, the total energy density and
the pressure measured in a frame in which the fluid is at rest,
u° is the four-velocity (#°u, = — 1), and g is the metric
tensor.

The conservation laws for the matter and for the energy-
momentum are written

V,(pu") =0 (8a)

and
V., T%=0, (8b)

where p is the proper matter density. We shall confine our
interest in what follows to the one-dimensional motion in a
Minkowski space. Then we shall introduce the inertial co-
ordinates (x,y,z,t) and the relative velocity v so that

w=y(){cv,00}, yu) =1 —u/c?)~?,

while V, denotes the usual partial derivative. Furthermore
we assume that the flow is isentropic, and then (8b) reduces
to the sole equation of conservation of momentum and the
Gibbs relation writes de = — p(p) d(1/p), with e the den-
sity of internal energy.

With these hypotheses the system (8) in matricial form
is

AU, + Z'U, =0,
where

0_( Y2 (v) pvc")
ey,  pf /)’

o = ( i) p )
Y 2(v)p, pfo
Note that U™ = (p,v), f= 1 + i/c?* is the so-called “index”
of the fluid,* and i is the specific enthalpy.

If we multiply (9) by the matrix (.27°) ~! we get a sys-
tem in the form (1) with 4 = (2/°) ~ 7" given by

(9

v p
4| Y@=/ (1 —a%?/ch
- a’/p v ’
) (1 —a??/c*)  Y(a)(1 —a*v*/c?)

where ¢ = P,/f. The zeros of the determinant det(4 — A1)
are

v+a v—a
1 + av/c? 1 —av/’
1 and v are the expressions for the Doppler-shifted velocities
of sound in a fluid moving with velocity v, while
a(p) = c(p,)'"* = (p,/f)'/*is the relativistic sound speed
in a reference frame in which the fluid is at rest.*
The set of left and right orthonormal eigenvectors span-
ning the space (p,v) are then

(11)

Ay=p= and A,=v=

I® =(a/pAW), 19 =(—a/p,A(v)), (12)
1 ( p/a ) , 1(—p/a)

w - 1 , rY = . 13

Tl T T 2w o

One easily recognizes in (12) and (13) the structure rel-
evant to the system in which the Riemann invariants are
additively separable.? In fact, if we take in (4)
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g = ¢ = 1, the expressions for the Riemann invariants
are

r = c arctgh(v/c) +J‘______a(p) dp,
p (14)

s = carctgh(v/c) —f alp) dp,
p

which coincide with those deduced by A. H. Taub.? The
form of a(p) depends on a suitable choice of the state equa-
tion. Once the function p = p(p) has been given, the prob-
lem reduces to integrate Eq. (7). In several applications of
Jeffrey’s method®>® it has been shown that the determina-
tion of the Riemann function is simplified if

Oh = [p,/(u—v)]dr + [v,/(v —p)]ds (15)
is an exact differential; in such a case one has

#5)=3)

Is\u — Ir\v—pul’ (1)

In the above cited works™* the fact has been pointed out that
many systems of physical interest satisfy this condition. In
particular, in the case of the classical gas dynamics, the rela-
tion (16) holds without restrictions on the form of the equa-
tion of state p = p(p). So as a first approach, we wish to
know if this circumstance is still valid in our case.

lil. THE CONDITION FOR 5/ BEING AN EXACT
DIFFERENTIAL

It is convenient for our purposes to write the relation
(16) in the form

R= rs +”rs + (ﬂr”s —‘V,_'Vs)/('V—[[) =0.

(17)
By setting
a(p) = ¥*(a) %a;,, (18)
simple calculations give
R = (1/) (u* — v){(p/a)a,
+ (/A (1 -a®)(u—w} (19)

This expression vanishes when @ = + 1, i.e., if the function
a(p) satisfies the following equation:

7/2(0)% @, F1=0. (20)

Thus at variance with the nonrelativistic case (when
¢— x, R—0), here the condition for 4 being an exact differ-
ential is not in general verified, except when the pressure law
is such that (20) holds. In order to see what this condition
implies, we calculate the gradient of the eigenvalues z and v,
namely

Vo =y (@) (@)a,, ¥ (v)), (21
Vov=y"2(v)— P(@)a,, 7®)) (22)

By combining these results with (13) to form the products
(VyA)-r'® (kA = p,v), one obtains

(Vo) r'® =4 pr =([1+a(p)172)y~2(w), (23)
(Vov) - =4 v, = (11 + a(p) 172y *(v), 24)
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(Vou) r” =1p; =([1—a(@)12y~2(u), (25)

(Vov) r® =4y, =([1 —a(@)12)y~2(v). (26)

The condition @ = — 1 yields (Vyu)-r' = (Vyv)
- = 0 and corresponds to a system which after P. Lax is
said to be completely “exceptional.” As pointed out in Ref.
2, in this case, because of the orthogonality property of vec-
tors (12) and (13), one has /' aV u and ! *aV 4v. From
(25) and (26) one also gets ¥ (u)(Vyu) r™
= P2 (v) (Vyv) - r™ = 1, which precisely yield

1Y =9y (u)Vyu and I = P(»)Vyw.
By using these relations in system (2) one obtains two equa-

tions in diagonal form?:

v, + uv, =0 along the characteristics % =4,

K. + v, =0 along the characteristics

—_—=.

As far as the Riemann invariants are concerned, for
a = — 1 they take the simple form

r= J Y*(v)Vyv dU = c arctgh(v/c),
(27)

5= f Y (u)Vypu dU = c arctgh(u/c)

and, by putting 8(u) = c arctgh(u/c), we get the relations

r=0(v) =60() —0(a), s=0(u)=~0(v) + 6(a),
i.e., rand s are nothing more than the hyperbolic representa-
tion of the sound speeds v and .

The hodograph system writes

Xy =Pl
by eliminating x one sees that for any exceptional system the
equation for ¢ has the canonical form®

t,, =0. (28)
When @ =1 one has (Vyu) r'” = (Vyv) r'® =0

and Y2 (u) (Vyu) - r'™ = p?(v) (Vyv) 7" = 1, which implies
1® =2(u)Vyu and 1 =P (»)Vyv,

with these eigenvectors the system (2) splits into two invis-
cid Burgers equations:

and x, = vt,,

B, +pp, =0 along the characteristics = _ J7a

(29
v, + vv, =0 along the characteristics — =+,
while » and s are given by
r= f Y(u)VyudU=c arctgh(ﬁ) ,
¢ (30)

s= J PVyvdU=c arctgh(l) ,
c
with
r=0(u) =0() +8(a), s=~0(v)==~0()—0(a).

Once more the Riemann invariants are equal to the angles
that in the complex plane represent the two eigenvalues, but
in an interchanged way with respect to (27). We wish to
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mention that Egs. (29) are known in classical context as the
“Staniukovich system” and have been used in the theory of
detonation.”

When a = 1 the hodograph system takes the form
x, =, and x, =ut,.

The condition for the compatibility of these equations leads
to a degenerate form of the Euler—Poisson-Darboux equa-
tion

t,—t, + (u— t,, =0,
which can be written as

X, =0
with X = (u — v)z.

(31)

IV. DISCUSSION ON THE PRESSURE LAWS
CORRESPONDING TO a=+1 AND CONCLUSIONS

Bearing in mind that @ = (p},/f)'/?, a simple integration
of Eq. (20) gives the pressure law p = p(p). This has already
been discussed in both cases @ = + 1 in Ref. 8. In relativity
an important role is played by the barotropic fluids which
are characterized by an equation of state relating the pres-
sure to the total energy density w = p(c? + e). It is a trivial
matter to write Eqs. (20) in terms of w instead of p, so we
have

(w+p)poy, +2p,(1 —p,) =0 for a= —1 (32)
and
(w+ppo, —2w,(1—p,)=0 fora=1  (33)

whose solutions, in order to be consistent with the relativistic
causality, must satisfy the inequality

Pu<l, (34)
while the further condition
P >0 (35)

is required for the shock to be compressive. The latter in-
equality can be however violated in several nuclear matter
fluids.®
Equation (32) is well known in the theory of relativistic
discontinuity waves®; its general solution reads'®
p=B—-A%(w+B/c*) (A and B constants),

which does not satisfy (35). The only solution of (32) com-
patible with (34) and (35) is the pressure law characterizing
the incompressible relativistic fluid, i.e.,

P = w + const.

Equation (33) admits the parametric solution [satisfy-
ing both (34) and (35)]:

p(x) =k(sinhx —x), w(x)=k(sinhx + x),
and the trivial one, too:

P =w -+ const.

So when the fluid is incompressible (p = w + const)
onehasyu, = v, =pu, = v, =0, then 4 and v do not depend
eitheronrors. Inthiscaseinfacta =c,u =c,andv= —g,
and (5) reduces to two linear and uncoupled equations,
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r.+cr,=0 and s, —cs, =0.
t x t X

Now we wish to correct an error which makes some
formulae of this paper inconsistent with those of my pre-
vious one.® The correct forms of Eqs. (1b) and (11) inRef. 8
are

at :tavt + (v:ta)(ax :tavx) =0’
Aa, +v, + [(v+a)/(1 +av/?)](4a, +v,) =0,

i.e., the sign behind the fractionis + (in Ref. 8 it erroneous-
lyis + ). This leads to some equations which are incorrect,
as far as a sign is concerned, but does not affect in any way
the substance of the paper.

In conclusion, the main result of the present work is to
point out a significant difference between the classical and
the relativistic gas dynamics in Minkowski space, as far as
the integrability of the equation in the hodograph plane is
concerned; the property of 64 in (15) being an exact differ-
ential is not in general shared by the relativistic fluid. It is
recovered only for fluids obeying certain pressure laws. In
these cases, the equation in the hodograph plane assumes the
canonical form of the linear homogeneous wave equation, so
the problem is integrable in an elementary way. This circum-
stance might be exploited to test numerical codes.
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This paper deals with the analysis of the initial value problem in all space R? d>2, for the
discrete Boltzmann equation with multiple collisions. After a preliminary analysis of the
mathematical modeling of the evolution equations, global existence and asymptotic behavior
are proven using suitable stability criteria. Some applications verify the analysis for specific

models.

I. INTRODUCTION

The discrete Boltzmann equation is a mathematical
model in the discrete kinetic theory of gases,! which defines
the time-space evolution of a system of gas particles with a
finite number of velocities v;, i = 1,...,n.

As known,' this model has the structure of a system of
semilinear partial differential equations of hyperbolic type
that defines the evolution of the number densities
N; = N,(t,x), where ¢ is time and x is space, joined to the
velocities v;.

Classically, the study of the initial value problem in all
space essentially consists of the analysis of the existence,
uniqueness, and asymptotic behavior of the solutions to the
discrete Boltzmann equation with given initial conditions
N;o = N,(0,x) in all space.

It is well known, after the results of Tartar,’ Beale,’
Bony,* Cabannes and Kawashima,® and Toscani,® that the
initial value problem in one space dimension has always a
global solution for bounded initial conditions. Then one may
derive information on the asymptotic behavior of the solu-
tions under suitable assumptions on the initial data.

On the other hand, global existence and uniqueness in
more than one space dimension can be proven only under
suitable smallness assumptions of the initial data. In other
words, the distance between the initial conditions and either
the zero solution or the Maxwell solution must usually be
small.

Several papers provide mathematical results on the ini-
tial value problem in discrete kinetic theory for initial data
close to vacuum in more than one space dimension, whereas
the mathematical theory for initial conditions near equilibri-
um has been essentially developed through other papers.”®

In addition to the papers that have already been cited,
the reader is addressed to the review paper by Platkowski
and Illner® for the mathematical aspects of discrete kinetic
theory and to Ref. 10 for the more general theory of the
initial value problem referred to as the full Boltzmann equa-
tion.

All papers that have been cited above essentially deal
with mathematical models derived on the basis of simple
binary collisions. On the other hand, very little is known
about the analogous results for models that may include
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multiple collisions. These collisions, in particular, may
hopefully provide a more accurate description of nondiluted
gases.

Therefore, it seems interesting that the development of a
mathematical theory for the analysis of the initial value
problem for the discrete Boltzmann equation with multiple
collisions is suitable to show, in particular, the influence of
multiple collisions upon existence and stability results.

It will be shown, indeed, that models with multiple colli-
sions have better, in a sense to be specified afterward, stabil-
ity properties than the corresponding models with binary
collisions only, referring to the Cauchy problem with initial
conditions near equilibrium.

More details on the content of this paper are as follows:
Sec. II provides the general framework for the mathematical
modeling of kinetic equations with multiple collisions as well

.as the general definitions of the equilibrium Maxwellian

state. Section III deals with the analysis of the initial value
problem for the discrete Boltzmann equation with multiple
collisions: A global existence and stability result is proven
for an initial data close to equilibrium. Finally, Sec. IV con-
tains some applications: Two discrete velocity models are
proposed according to the analysis developed in Sec. IT and
their stability properties are verified on the basis of the analy-
sis developed in Sec. III.

Il. THE DISCRETE BOLTZMANN EQUATION WITH
MULTIPLE COLLISIONS

As already mentioned, discrete velocity models in kinet-
ic theory define the time-space evolution of the number den-
sities N; = N, (£,x):[0,T ] XR*> R, d>2, of a gas particle
system with a finite number of velocities v,, iel = {i,...,n}.

If one considers simple binary collisions between parti-
cles with velocities (v;,v;)<>(v,,v,), the discrete kinetic
theory' leads, in the case of simple collision preserving mo-
mentum and energy, to equations of the type

a - P
(Z+vv W= T 5 ULNN - 4NN,

=1 G

(2.1)

where the transition rates 4 }* are non-negative constants

joined to the transition probability densities a}* in a fashion
that

®© 1989 American Institute of Physics 245



Al =Sy, —v,|al, ;; alf=1, (22)
ex))
where S is the cross-sectional area of the gas particles.
Classically, the transition probability densities a}* satis-
fy the indistinguishability and reversibility properties

alf=all =da} =ay, (2.3a)

ayt = aj. (2.3b)

Moreover, the same properties are fulfilled, owing to Eq.
(2.2), by the transition rates.

Using these properties, Eq. (2.1) can also be written in
the following form:

d
(E + v;'Vx).N" =§;A i (NuNy — N:N)).

Consider now triple collisions between triplets of parti-
cles with velocities (v;,v,v;)«>(v,,¥;,¥,), and analogously
for higher-order multiple collisions. Then, the evolution
equation takes the form

(2.1

% (24)
where the term J {? is the one already shown in Eq. (2.1)
and the additional terms have to be computed on the basis of
pertinent physical assumptions. In particular, the math-
ematical theory should provide models which indicate that
for a rarefied gas, multiple collisions are less probable than
binary collisions. The said probability may become of the
same order only for a dense gas.

Keeping this in mind and to avoid being too formal, let
us limit our attention to triple collisions. Then, also taking
into account the analysis of Refs. 11 and 12, the following
assumptions are here proposed.

(i) Collisions preserve momentum and energy;

(i + v,.~v,)N,. —J[N]= ,,22 JPIN],

(2.5)
(2.6)

V,-+Vj +V,=Vg+v,, +Vk,
v+ =02 + i + 0.

(ii) The gas particles are not distinguishable and un-
dergo reversible collisions;

afj* = afj*=-afi* =af’ = - = aj¥, an
afi* = aj. '

(iii) The transition rates A4 are related, for symmetric
collisions, to the transition probability densities by the rela-
tion

ok = QTS (s/3)(Iv, — vy + [v: — v,

+ |v; — v, Dai%, (2.8)

which express the probability that a particle, say i, j, or /is in
the action volume of the other two colliding particles. All
three possible encounters being equally probable.

Remark 2.1: The indistinguishability and reversibility
properties of the terms a is transferred, by Eq. (2.8), to the
terms A.

Taking into account this property as well as all previous
statements, the evolution equations for the densities N,
when both binary and triple collisions are considered, can be
written as
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d
(3;+v,.-V) ._;EA “(NuNi — NiN))

1
+§ ;;’ igj’l'k(N N,N,
- jlighk

— N,N,N,), (2.9)

where the terms 4 }* and A 4* are given by (2.2) and (2.8),
respectively.

Remark 2.2: The modelization (i)-(iii) provides a re-
sult formally analogous to the one of Ref. 11 as far as the
permutability of the indexes of the terms A4 is concerned.
However, it introduces, as in Ref. 12, the concept that multi-
ple collisions are less probable than binary collisions.

In order to point out the difference of collision frequen-
cy between binary and multiple collisions, it is convenient
writing Eqs. (2.9) in a dimensionless form obtained normal-
izing time, space, velocity, and density with respect to suit-
able reference quantities, say ¢,,/_,/./t., and N, and also nor-
malizing the cross-sectional area with respect to 0%, where o
is the radius of the particles, 7o? = S. This yields the dimen-
sionless equation

('g—t + ""'V*)N' = Lu@INT+ W PIND, (210)
€

where € and 7 are dimensionless constants

1/e=d?IN., n=dN,, (2.11)

and where J {» and J {* are the operators indicated in Eq.
(2.9) referred to the new dimensionless variables.

Remark 2.3: Here, € is proportional to the Knudsen
number referred to /_, i.e., €  Kn, and 7 has physical mean-
ing if of a smaller order with respect to the unity.

The analysis proposed to model the evolution equations
when triple collisions are considered can be straightforward-
ly extended to model an-evolution equation in the case of
multiple collisions. Some additional notations are useful for
this purpose. Accordingly, let us first write the term 4, cor-
responding to encounters with a number p of particles, as

A “5 ;s a= {ap ,a} B {Bl’ ’B }GI

(2.12)

where 7 =1 X -+ X I with p terms.
Consequently, the general expression of the collision op-
erator J ”, a;€l, defined in Eq. (2.4), takes the form

J<p>[1v]=—z§,4 (HNB llea.,)’ (2.13)

where af = {a,,...@;_ 1,@; 1,...a,}I?~ ' and where
P 2 2 P
Ag=—"— % |v,, —V, |s(—s5’2)11"‘ Vag.
= =D & M ?

(2.14)

The general expression of the corresponding evolution
equation can finally be written in a dimensionless form as
4
(i+v,-v,)N, =L pe-oymNy, 215
a t € p=2

where J (P are given by Eq. (2.13) and are referred to as the
new dimensionless variables.
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Remark 2.4: The indistinguishability and reversibility
properties, referred for every p>2 to the terms A, can also
formally be written as

AFP =A5=A4%,, Voss, (2.16a)
A5 =A%, Vapel’, (2.16b)
where s,, is the permutation group over {1,...,p} and

Va.pel?,

(@) ={a o}, oes,, ael’. 2.17)

The notations of Remark 2.4 will be used in the analysis
developed in what follows.

The definitions of collision invariants and Maxwellian
state can now be given.

Definition 1: A vector ¢eR" is defined “collision invar-
iant” if for each p = 2,...,P the following equality holds:

A5($ 0.~ $n)=0 vaper

The space of collision invariants is denoted by .#'.
Definition 2: A vector function N> 0, NeR", is a Max-
wellian if, for each p = 2,...,P, the following equality holds:

4 ;;(f[N,,' - f[Nﬁq)=o, Va,el”.
g=1

g=1

It is now a matter of straightforward calculations, also
after Ref. 1 so that the proof is not repeated, proving the
following propositions.

Proposition 2.1: For a vector ¢eR”, the following rela-
tions are equivalent:

(i) ged;

(ii) for each p:(¢,/J P [N ]) = 0,V NeR"

(iii) (¢ [N ]) = O,V NeR".

Proposition 2.2: For a vector NeR", with N> 0, the fol-
lowing relations are equivalent;

(i) Nis a Maxwellian;

(ii) log Ne#;

(iii) for each p = 2,...,.P: J P [N] =0;

(iv) J[N] =

Here, Jand N denote, in the statements of Propositions
2.1-2, the vectors with components J; and N, respectively.
Analogous definitions and properties are given in Ref. 11.

(2.18)

(2.19)

1Il. STABILITY CONDITIONS AND GLOBAL EXISTENCE
NEAR EQUILIBRIUM

Global existence and asymptotic behavior for the solu-
tions to the initial value problem for initial conditions close
to equilibrium have been studied in Refs. 7 and 8 for discrete
velocity models with binary collisions only. This section will
develop the analysis for general discrete velocity models
with multiple collisions.

The line developed throughout this section is the follow-
ing: We first derive an evolution equation for the perturba-
tion of the Maxwellian state, then a global existence theorem
is proven under suitable stability conditions, and finally,
some detailed criteria are prowded in order to verify the
stability of specific models.

Keeping this in mind and putting N = {N,,...,N,}",
JIN] = {J,[N1,...J, [N 1}7, then Eq. (2.15) can be rewrit-
ten in the vector form
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JN N = »
wr Eaagmimi= Zoewn,
where in Eq. (3.1) the dimensionless constants, say ¢, 1,...,
have been put (as well as in the equations which follow), for
simplicity, equal to one. Moreover,

v =diag{v,),...0;}, 1<j<d, (3.2)
where the jth components of the vectors xeR“ and v,eR ¢
have been denoted by x; and v;;.

We deal with the initial value problem referred to Eq.
(3.1) in all space R? when the initial conditions are close to a
constant Maxwellian M = {M,,...,.M,}7>0 chosen arbi-
trarily. Letting N = N(¢,x) be the solution of such a prob-
lem, it is convenient, as usual, to express N as a perturbation
of M, by means of a suitable vector function f= f(#,x), and
derive an evolution equation for f. Thus let

N=M+A,f, A, =diag{M,,..M,}, (3.3)

then, substituting (3.3) into (3.1) and recalling that
JIM] =0, yields

(3.1)

a af
ALY i 4 L.f=T,If], 3.4
Mat+j§|v ”ax,+ wf=Tylf] (3.4)

where, with obvious meaning of symbols, J[ N] has been de-

composed into the linear and nonlinear terms — L,/ and
Ty [f), respectively. That is, J[M + Ay f] = —Lyf
+ T lf].

The term L,, will be called, in what follows, the linear-
ized collision operator. Recalling that J is the sum of the J ¢”’
terms, one has, based on the fact that L ,, is linear, the follow-
ing:

P
Lyf= z L}(tll,)f:
p=2

In addition, using (2.13), an explicit expression of each
L £f can be provided. In details the a;th component of
L 2f is, for any a,€l, the following:

(3.5)

172 zg’A (HM + HMB.,)

g=1

(& En)

(3.6)

where the double summation is taken over all a*e/*~ ' and
Bel®.

Remark 3.1: The fact that M is a Maxwellian and conse-
quently it satisfies the equality 4 gII M, = 43I M , for
any a, fel’, has been used in deriving Eq. (3.6).

By virtue of (3.6), it is simple to prove the following.

Lemma: L,, is an n X n real symmetric matrix with con-
stant entries. Moreover, L ,, is non-negative definite and its
null space 4#"(L,,) coincides with the space .# of the colli-
sion invariants.

Proof: Let f and g be arbitrary vectors in R”. Simple
calculations, using (3.6), give, besides constants put equal to
one, the following:
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for each p = 2,...,P.
The right-hand side of (3.7) is symmetric with respect
to fand g. Therefore, we get

(LiPfg)y =ALP8f);
on the other hand, as an elementary property of the inner
product of R”, we have

<L (P)gf) (f‘L (P)
then
(L$fg) = (LPg).

This shows that each L & is real symmetric and hence the
same is true also for LM Moreover, putting f= g in Eq.
(3.7), shows that (L {2, f ) >0, which means that each L &’
is non-negative. Therefore, also, L,, is non-negative. In addi-
tion, L,,f=0 holds if and only if L{’f=0 for each
p = 2,...,P. This property, referred to in (3.7) with f=g is
equivalent to the following one:

V4 P
for eachp =2,...,P: 4 Z( Y fa,—

g=1

Va,Bel®.

This means that fe.#. Then we have proved that
A(L,g) = 4 .Theproof of the Lemma is then complete. B

Remark 3.2: The multiple-collision linearized operator
L,, satisfies the same properties of the corresponding opera-
tor in the case of binary collisions. This equivalence was stat-
ed, without proof, in Ref. 11.

According to Remark 3.2, the same techniques applied
in Ref. 7 can now be straightforwardly applied in the multi-
collisional case in order to provide global existence results
for the solutions to Eq. (3.1) for initial data in a neighbor-
hood of a Maxwellian.

In general, global existence does not hold for all discrete
velocity models, but only for models that satisfy suitable sta-
bility conditions, which assure the energy decay of the solu-
tions to the linearized problem.

Keeping this in mind, we recall the stability conditions
formulated in Ref. 13 as an improved version of the condi-

tions previously given in Ref. 7. Then let
o = {w,,....0, s ' and let
d
V(o) = 2 Vio; = diag(vyo,...,v,'0), (3.8)

j=1

then the two equivalent stability conditions, which follow,
can be stated:

Stability condition 3.1: Let ¢c.# and let v(w)d = A for
oes’ ™' and AeR, then ¢ = 0.

Stability condition 3.2: There exists a matrix K(®)
smoothly depending upon wes? ~ ' with the following prop-
erties:
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(i) K( — 0) = — K(o) for wes?~;

(ii) K() is, for each wes® ™!, a real skew-symmetric
matrix;

(iii) the symmetric part of the matrix K(o)
V(o) + L,, is positive definite for any wes? .

Under Stability condition 3.1, which is equivalent to 3.2
(according to Theorem 1.1 of Ref. 13, see also Sec. 4.3 of
Ref. 4), global existence of the solution to the initial value
problem for initial conditions near equilibrium can be prov-
en according to the following theorem.

Theorem: Let d>2. Assume that stability condition 3.1
holds and consider the initial value problem defined by Eq.
(3.4) with initial data f (0,x) = f,(x),xeR"

(a) Global existence and stability. Suppose that
JoeH *(R) for s> [d /2] + 1such that the norm of /i, ||f5 ]I, is
sufficiently small. Then, the initial value problem has a
unique global solution = f (#,x) which satisfies the follow-
ing:

JeB([0,00 );H*(R))NB([0,00 );H ™ (RY)),

3, feL([0,00 );H*~ ' (RY),
(3.9)

with obvious meaning of symbols. In addition, the following
estimate,

F @I+ L 18:f (D151 dr<ellfoll:,

holds for any ¢>0, where ¢ is a constant. Moreover f (£,x)
converges to zero uniformly in xeR? as #— oo.

(b) Quantitative asymptotic behavior. Suppose, in addi-
tion, that f,cH *(RY)NLP(R?) for s>[d /2] + 1, 1<p<2
and that the norm |||, is sufficiently small, then the solu-
tion obtained according to step (a) satisfies the following
inequality:

I (D), <C+ )~ follsps
for any >0, where Cis a constantand y =
2).

Proof: Considering that the statement of the theorem
refers first to global existence and stability and then to quan-
titative asymptotic behavior, then also the proof, which fol-
lows the same logic line as in Ref. 7, is in two steps.

Step 1: Global existence is proven applying the classical
fixed point theorem. Consider then the Banach space X *de-
fined as

X* = {feBY[0, 0 );H ‘(R"));9,.feL ([0, 0 );
X H*~(R)},
equipped with the norm ||||||,:

(3.10)

3.1
(d/72) (1/p—

A = suplir ol + [ s @Iy ae. 3129

For a given function geX°, let us consider the linearized
equation

Ay af+ Z ViMy :f + Ly f=Tylg), (3.13)
Jj=1
with initial conditions f (0,x) = f,(x), x€R?. This linearized

problem has a unique solution:
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FeC([0,0),H* (RH)NCH[0,00 );H*~ ' (RY).

An estimate on the solution will now be derived in order to
show that feX . To this aim, we take the Fourier transform
of (3.13) with respect to the variable x, obtaining

AM%+ GIE|V(@)Ay)f= Tylgl, (3.14)
where f (£,§) is the Fourier image of f (2,x), and & = &/|§|.
Since Stability condition 3.1 is equivalent to condition 3.2,
we can find a matrix K (o) characterized by the properties
defined in the said condition. Then, E[f] can be defined,
with the aid of such a matrix, as

E[F1 = (AylF) — ap([§)) (K ()f), (3.15)
where a > 0 is a constant, 5(r) is a function of >0 such that
p(ry=r/(1+7r*),and {---) is the inner product of C".

It can now be easily verified that if & > 0 is chosen suffi-
ciently small, then repeating calculations technically analo-

gous to the ones contained in the proof of Proposition 4.1 of
Ref. 7, one has

clfP<E [F1<clf|2 (3.16)
and
% [” +ep([EDIFP<C| T 811
3.17
p(r)=r2/(1+r2), (3.17)

and c and C are positive constants. In particular, inequalities
(3.16) and (3.17) can be derived on the basis of properties
(ii), (iii) of K(®), on the ones of L,, stated in the lemma as
well as the fact that T, [g] is orthogonal to .#. If now
(3.17) is multiplied by (1 4 |€|*)* and the integration over ¢
and EcR” is executed, then also using (3.16) together with
Plancharel’s theorem, one can prove the following estimate:

Vol + [ 16/ i dr<CE A

+¢ [ 1Tl drl, (3.18)
0
where C,> 1 and C are constants and ¢>0.
On the other hand, by virtue of Nirenberg’s inequality,
one has for some constant C and using the fact d>2 (the
estimate, in fact, is not true ford = 1),

P—-2
17l <C ('S Nl gl 0wl .

Then one obtains

t P—2 2
[ 17 iar<c (S i) el

The estimate (3.18) combined with (3.19) shows that if
geX’ then also feX*. In addition, the same inequalities
[(3.18) and (3.19)] show that the mapping g—f defined by
(3.13) has an invariant subset WeX ® defined by the closure

w={fexs||Ifll,<2Collfoll, . (3.20)

where C, is the constant already defined in (3.18), provided
that the norm of f, is sufficiently small. Moreover, if the
norm of f, is sufficiently small, the mapping g—fis a con-
tractive mapping with respect to the norm |||-|||,. Conse-

(3.19)
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quently, a unique fixed point of such a mapping exists in W
and is the solution of the initial value problem. This proves
the first step of the theorem’s proof.

Step 2: The solution f of (3.4) satisfies (3.16) and
(3.17) with f= g, therefore we have

If (1,6)12<C exp( — cp (| AIfo (B) 2
+ cf exp( — ep([E]) (2 — 7))
0

X|To LF1(6) 2 d, (321)

where ¢ and C are positive constants. By straightforward
calculations, (3.21) yields

I OIE<C + D212, + cf(l ti_r)-n
(V]

X || Taef (D2, dr,

where C is a constant and ¥ = (d /2) (1/p—
other hand, for some constant C one has

1Tl <C (S, WS

Substituting this estimate into (3.22), yields the estimate
(3.11) required by the statement of the theorem, if |||, , is
sufficiently small. The proof of the theorem is completed. W

Remark 3.3: The method employed in the theorem is
not valid for d = 1. Nevertheless, it seems simply a technical
problem deriving a mathematical result analogous to the one
proved above still in the line followed in Ref. 7. Nevertheless,
this aspect is not developed in this paper.

The application of the theorem to the analysis of the
intial value problem near equilibrium referred to specific
models requires the analysis of the space .# of collision in-
variants and the verification of Stability condition 3.1. Nev-
ertheless, it is reasonable to expect that several specific mod-
els with multiple collisions are characterized by only
classical collision invariants defined by mass, momentum,
and energy:

¢(°) =(L..,D7
69 = (v,5y0e00s) 7,

¢(d+ D= (U%’--wvi)r-

(3.22)
1/2). On the

1<j<d; (3.23)

When this situation is verified, simple stability criteria can be
provided in order to verify technically Stability condition
3.1. The first one is essentially the same as the one proposed
by Cercignani in Ref. 15 referred to models with binary colli-
sions only, and can be formulated as the following.

Criterion 3.1 (Ref. 15): Let d>2 and consider a d-di-
mensional model such that

dim # =d+2, # =span{$®¢?,1<j<d,¢“*}.
(3.24)

Then the model satisfies Stability conditions 3.1 if the fol-
lowing (d? + 5d + 2)/2 vectors are linearly independent:

¢(0)’¢U)’ 1 <j<d; v’¢(k)’ 1 <j<k<d§

v 1gikd.

Remark 3.4: Criterion 3.1 requires that the number » of
velocities in the model satisfies the condition

(3.25)
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n>(d?*+ 5d + 2)/2 and that the model involves different
velocity moduli.

When the discrete model is a relatively simpler one and
involves only one velocity modulus, the collision invariants
¢ and ¢+ are not linearly independent. In this case, a
similar criterion can be formulated

Criterion 3.2: Let d>»2 and consider a d-dimensional
model with one only velocity modulus and such that

dim 4 =d +1, 4 =span{¢®,¢Y,1<j<d} (3.26)

then such a model satisfies Stability condition 3.1 if the fol-
lowing (d? + 3d)/2 vectors are linearly independent:

$%9V,1<j<d g P, 1<j<k<d,
v, 1gikd — 1.

Proof: Let ge.# and let V(w)¢ = Ad for @S¢~ ! and AeR.

The relation ¢e.# means, according to (3.26), that

d
¢ — a0¢(0) + z aj¢(i)’

j=1

(3.27)

(3.28)

for some real constants @, and a;, 1<j<d. If this expression
is substituted into V(w)¢ = Ag, then a simple calculation
that uses (3.8) as well as the relations

VJ¢(0) — ¢(i), 1 << d;
Viph = Vig®, 1<jk<d;
i Vig = ¢(d+ N _ vz¢(0);
=
where v is the modulus of the velocities v;, shows that

d
0,007+ Y awi ¢ + ¥ (aro; + ao ) V!
j=1

1<j<k<d

d—1
X¢(k) + z (ajmj — adwd)qui‘j’

=

= aAd? + i a, AV .

=1

Considering now that the vectors listed in (3.27) are
assumed to be linearly independent, we can conclude that

a0 =ak, aw,=a;A, 1<j<d,

1< k<d,

1<jgd —1.

These relations show that a, = 0 and a; = 0, 1<j<d, which
imply, according to (3.28), that ¢ = 0. This shows that the

model which has been taken into account satisfies Stability
condition 3.1. The proof is then complete. [

a,o; + 4,0, = 0,

ajwj = adwd'

IV. APPLICATION

As an application of the theory developed in the preced-
ing sections, we shall consider here two specific models and
verify, for these models, the stability criteria developed in
Sec. III. It is interesting, indeed, verifying if the stability
conditions are fulfilled by model with multiple collisions
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when the same conditions are not verified for the corre-
sponding model with binary collisions only.

In details, we shall consider here a plane regular discrete
velocity model such that all velocities have the same modu-
lus but six directions in the plane and a second model with 12
velocities in the plane, six with a modulus and six with a
different one.

A. Model 1
Consider the following six-velocity discretization:
i=1,.6:v,=ce, e =cos(n/6+ mw(i—1)/3)o,

+ sin(a/6 + (i — 1)/3)oy;
(4.1)

if one restricts the attention to the so-called “nontrivial”
collisions, namely, collisions which modify the fluxes, that
s,

V¥ F (V¥ ), (V,9,,9,) £ (V,¥,,V, ) (4.2)

It is simple to verify that condition (4.2) holds true, in the
case of both of binary and triple collision, when the resultant
momentum before and after the collision is equal to zero.
In detail, the nontrivial collisions consistent with the
velocity discretization (4.1) are the following.
(a) Binary head-on collisions with equally probable
scattering in all radial directions:

(Ni’Ni+3)H(Nh’Nh+3)’ h= l,...,6.

(b) Triple collisions between particles forming an equi-

lateral triangle with equally probable scattering into three
equally angularly spaced directions:

(Ni’Ni+2;Ni+4)‘—’(Nh,Nh+z,Nh+4): h= ],...,6 .

The application of the method developed in Sec. II pro-
vides the following model equation:

F 1fcS &
(F+vm =T 2 otes -

6 6
+ ﬂ_\/%cs.sslz Y (NyNyy2Nyis

h=1

—N.-N.-HN,H)], 4.3)

where all quantities have been normalized as indicated in
Eqgs. (2.10) and (2.11).

Remark 4. 1: If all velocities in the plane are considered,
say v(0) = c(cos O, + sin fw,), instead of six velocities
only, then one obtains the so-called semidiscrete Boltzmann
equation with triple (symmetrical) collisions. Such a model
was proposed by Cabannes'® and studied in Refs. 17 and 18
in the case of binary collisions only.

This equation defines the time-space evolution of the
density N = N(1,x;0) by means of the integrodifferential
equation
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(i + v(9)-V,)N (1,x;0)
ot

\16/77 S53/2

= _1_[25 f ﬂ(N(t,x;¢)N(t,x;¢ + ) — N(t,x;0)N(1,x;6 + m))dd + 17—
€ELTJ

0

B. Model 2

Model 1 is characterized by only one velocity modulus.
This implies that only two fluid-dynamic parameters can be
regarded as independent variable or, in other words, the tem-
perature is not an independent variable.

On the other hand, using the same direction discretiza-
tion, as in model 1, it is possible to obtain a 12 velocity model
with 2 velocity moduli by means of the following discretiza-
tion:

i=1,.,6:x; = ce,, (4.5)

If each set of velocities is joined to the densities N; and
M,, respectively, the following nontrivial collisions are con-
sistent with such a discretization.

(a) Binary collisions between NV and M particles, sepa-
rately, as in (a) of model 1.

(£ +cecv,

1 6
=:{EZ Nh+3

v; = 2ce, .

NiNiy3) +2eS(N; 3 M

xfh (N( t,x;¢)N(t,x;¢ + 2—;’)N (t,x;¢ + is”-) — N( t,x;0)N(t,x;0 + T”)N (t,x;0 + 1‘31) d¢)] :

(2m)
(4.4)

(b) Binary collisions mixing N and M particles:

W, +2)“’(Na+39 :+1)(Nr’ n+4)“’(Nx+3’M+s)-
(4.6)

(d) Triple collisions among N and M particles, sepa-
rately, as in (b) of model 1.
(e) Triple collisions mixing N and M particles:

(NuNuM, | 3)> (NN, M, . 3);

(M,N; 3Ny 3) (M, Ny 35N, 3),
forh=1,..., 6 and

(NoM; (M, 3)e(N 3 M, 5, M,);

(M,Mi+5,Mi+3)<—’(M+3»Mi+1sMi) .

Consequently, the discrete velocity model can be writ-
ten as’

6
X Y NNy 2 Nypa = NN N o) +ﬂ(3J_)cs 53/2[ > (NyNM, .3 —NNM, ;)
K= T

+6(N, MM, + M, ,)—-NM, (M, , +M,

(£ + 2009, Jut, = [2"3 S (MM, ,

h=1

—MM,; ;) +4cS(M; 3N, ., +M; N, ;

i+1 +N1+3M+5 MMi+2 _N1M5+4) +77( 63/7)CS'S3/2
h=1
i+5))]]’ (4.7a)

"MiNi+2 "‘MiNi+4)

2 (‘/6/ﬂ)cS .§32 2 MM, M, ,—~MM .M, ,) +77FS .§3/2

h=1

6
X[ 2 (M}, . 3N, N,

h=1

6 N (Vi +Nias) = My N + )]

C. Global existence and stability

Section III has shown that global existence of the solu-
tions to the initial value problem near equilibrium for dis-
crete velocity models with multiple collisions can be proven
under suitable stability conditions. In particular, we refer to
conditions 3.1 and 3.2 as well as to the sufficient stability
criteria provided in order to verify the above conditions.

Model 1 will be studied in details, whereas only some
indications will be given referring to model 2 in order to
repeat technically the analysis. In particular, condition 3.1 is
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—M,~1V,~+ 3Ni+3)

(4.7b)

r

verified for model 1 by using criterion 3.2, While the same
condition can be verified for model 2 by using criterion 3.1.
Referring now to model 1, the following can be proven.

Proposition: Consider model 1 when both binary and
triple collisions are taken into account, then

(i) Dim # = 3, 4 = span{¢?,¢'"",¢?}, and the sta-
bility condition 3.1 is verified through criterion 3.2. On the
other hand, when binary collisions only are taken into ac-
count, then

(ii) Dim # = 4, 4 = span{¢"®,¢'",¢?,y} where y is
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an artificial invariant, specified later, and Stability condition
3.1 is not verified.
Proof: Let ¢ = 2, then the six velocities of the model are
Vi=—V= (\/3:1),
v=—v=(02), 3= —v=(—y31).
Therefore, in two space dimensions
V! =,3diag(1,0, — 1, — 1,0,1),
V?=diag(1,2,1,—1,—2,—1).

The space of collision invariants has dimension 3 and is
spanned by mass, and momentum, in the directions o, and
®,, as vectors of R®:

dim # =3, 4 = span{9",4",4?},

where
1] [ 1 7] M1 7]
1 0 2
1 -1 1
¢ = , 0= Nc) , ¢ =
1 -1 -1
1 0 -2
| 1] | 1 ] | —1

A simple calculation shows that V'¢®=g¢® and
y! ¢(l) — 2¢(0) + ¢(4)’ where

1 7 [ 1 7]
0 -2
-1 1
3) @ _
=3 L ¢ e
0 -2
-—-1- li

the vectors ¢*,¢",4?,6*, and ¢ form an orthogonal sys--

tem in R® and therefore ¢%,¢",¢?, ¥ ¢V, ¥ '¢@ are linearly
independent vectors so that the stability condition 3.1 is veri-
fied. (Note that Stability condition 3.1 can be directly veri-
fied by simple technical calculations.)

On the other hand, model 1 does not satisfy condition
3.1 when binary collisions only are considered. To see this,
we first note that in this case,

dim .# =4, .4 =span{¢,6",¢?y},

where y is an artificial invariant and is given by

[ — 1

Consider now the set () consisting of six unit vectors in
R%

n"_‘{( + 1,0),:ti):ti}’ (4-8)
then, it is easy to see that for each we(}, there exist real
numbers a,, a,, and S satisfying (a,,a,,8) #0 such that

V(@) =0 for ¢=a¢” +a¢? + By,

which means that condition 3.1 is not verified in this case.
The proposition is then proven. |

252 J. Math. Phys,, Vol. 31, No. 1, January 1990

Remark 4. 1: Even in the case of binary collisions only, if
one considers a one-dimensional flow in @ directions, it is
possible to verify Stability condition 3.1 frozen at o, pro-
vided that & # (), where ) is given by Eq. (4.8). However, as
it has been pointed out above, the stability condition does not
hold for all .

The stability analysis can be applied, in the same fashion
as for model 1, also in the case of the second model thus
arriving to the same conclusions, which essentially confirm
that including triple collisions improves the stability proper-
ties of the model itself. We can acknowledge these conclu-
sions without repeating all calculations, which can be re-
garded as a repetition.

Some conclusions can now be worked out from the anal-
ysis developed throughout the paper. Referring to Ref. 7
where the stability problem was originally posed in the style
of this paper, the author conjectured that some models do
not show stability properties toward equilibrium as their in-
trinsic structure was too simple to be physically consistent
with a reasonable physical behavior (in our case: stability of
small perturbations of equilibrium ). In the light of the analy-
sis developed in this paper, the said conjecture appears essen-
tially correct.

In fact, the introduction of triple collisions exploits
more completely the applicability of a certain discretization
and may, in the largest part of cases, stabilize unstable mod-
els. In any case, even if this cannot be regarded as a general
rule, the paper provides a rigorous method to establish sta-
bility properties of the mathematical models of the discrete
kinetic theory with multiple collisions.

On a physical ground, it can be conjectured that intro-
ducing multiple collisions increases the gas viscosity so that
trend to equilibrium is improved. This conjecture, however,
still has to be put in mathematical terms. The main conclu-
sion still remains that a careful analysis of the stability prop-
erties of the discrete Boltzmann equation is one of the main
steps toward the validation of specific discrete velocity mod-
els.

ACKNOWLEDGMENTS

This work was partially supported by the Italian Minis-
ter for Education, and the National Council for the Re-
search, Project MMAL. This paper has been concluded dur-
ing the visit of both authors at the “Laboratoire de
Modelisation en Mecanique,” University of Paris VI,
France. The authors are indebted to Professor H. Cabannes
and Professor R. Gatignol for their support and for their
encouraging this research line.

'R. Gatignol, Théorie Cinétique des Gas a Répartition Discrete des Vitesses,
Lecture Notes in Physics, Vol. 36 (Springer, Berlin 1985).

2L. Tartar, Internal Report, Univ. Wisconsin—Madison (1980).

3T. Beale, Comm. Math. Phys. 106, 569 (1986).

J. M. Bony, Journées Equations aux Derivées Partialles, Centre Ecdle Po-
lytecnique, Paris (1987).

SH. Cabannes and S. Kawashima, Comp. Rend. Acad. Sci. Paris 307, 507
(1988).

$G. Toscani, to be published in Commun. Math. Phys. (1988).

N. Bellomo and S. Kawashima 252



S. Kawashima, in Recent Topics in Nonlinear PDE, Lect. Notes in Numer.
Appl. Anal. 6, Kinokuniya, Japan, 59 (1983).

8S. Kawashima, Commun. Math. Phys. 109, 563 (1987).

T. Platkowski and R. Iliner, SIAM Rev. 30, 213 (1988).

19N. Bellomo, A. Palczewski, and G. Toscani, Mathematical Topics in Non-
linear Kinetic Theory (World Scientific, Singapore, 1988).

YR, Gatignol and F. Coulouvrat, in Discrete Kinetic Theory, Lattice Gas
Dynamics and Foundations of Fluid Dynamics, edited by R. Monaco
(World Scientific, Singapore, 1989).

12E. Longo and R. Monaco, in Rarefied Gas Dynamics, AIAA Progress in
Astronautics and Aeronauticsn. 118, edited by E. P. Muntz, D. P. Weaver,

253 J. Math. Phys., Vol. 31, No. 1, January 1990

and B. H. Campbell (AIAA, Washington, 1989).

13y, Shizuta and S. Kawashima, Hokkaido Math. J. 14, 249 (1985).

148, Kawashima and Y. Shizuta, J. Mec. Théor. Appl. 7, 597 (1988).

15C, Cercignani, Comp. Rend. Acad. Sci. Paris 301, 89 (1985).

16H. Cabannes, in Mathematical Methods in the Kinetic Theory of Gases,
edited by H. Neunzert and D. Pack (Land-Verlag, Frankfurt, 1979).

17N. Bellomo, R. Iliner, and G. Toscani, Comp. Rend. Acad. Sci. Paris 279,
835 (1984).

'8E. Longo, R. Monaco, and T. Platkowski, J. Mec. Théor. Appl. 7, 233
(1988).

N. Bellomo and S. Kawashima 253



Addendum: Static spherically symmetric space-times with six Killing vectors
[J. Math. Phys. 29, 2473 (1988)]

Asghar Qadir and M. Ziad
Department of Mathematics, Quaid-i-Azam University, Islamabad, Pakistan

(Received 29 June 1989; accepted for publication 19 July 1989)

In a previous paper’ static spherically symmetric space- X, X,]l= — X5,
times with six Killing vectors were studied. They gave the (X,.X,] = X,,
symmetry group SO(1,2)  SO(3). Of those space-times
one metric was a generalization of a metric given by Petrov.” [X;.X,] =0,

The Killing vectors for that space-time were not given sepa-
rately. They are given explicitly by Petrov and satisfy the
algebra G ® SO(3), where G has the following commutation 1A Qadir and M. Ziad, 3. Math. Phys. 29, 2473 (1988).

relations: _ ’A. Z. Petroz, Einstein Spaces (Pergamon, New York, 1969).

and is not an SO(1,2), but a solvable Lie algebra.
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